七年级数学第五章知识点整理
- 格式:docx
- 大小:36.63 KB
- 文档页数:2
七年级数学下册第五章三角形知识点总结 考点一、三角形1、三角形的三边关系定理及推论1三角形三边关系定理:三角形的两边之和大于第三边. 推论:三角形的两边之差小于第三边. 2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°. 推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和. ③三角形的一个外角大于任何一个和它不相邻的内角.注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.4、三角形的面积三角形的面积=21×底×高 考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形. 2、三角形全等的判定 三角形全等的判定定理:1边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS”2角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA”3边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS”.4角角边定理:有两角和一边对应相等的两个三角形全等可简写成“角角边”或“AAS”.直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL”3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换.全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换.2对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换.3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.考点三、等腰三角形1、等腰三角形的性质1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等简称:等边对等角推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线.1三角形共有三条中位线,并且它们又重新构成一个新的三角形.2要会区别三角形中线与中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:位置关系:可以证明两条直线平行.数量关系:可以证明线段的倍分关系.常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半.结论2:三条中位线将原三角形分割成四个全等的三角形.结论3:三条中位线将原三角形划分出三个面积相等的平行四边形.结论4:三角形一条中线和与它相交的中位线互相平分.结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等.解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半.3、直角三角形斜边上的中线等于斜边的一半4、直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、锐角三角函数的概念 3~8分 1、如图,在△ABC 中,∠C=90° ①c asin =∠=斜边的对边A A②c bcos =∠=斜边的邻边A A③batan =∠∠=的邻边的对边A A A④abcot =∠∠=的对边的邻边A A A2、一些特殊角的三角函数值3、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A,tanA=cot90°—A,cotA=tan90°—A2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4弦切关系:tanA=AAcos sin 三角形相似考点一、比例线段 1、比例的性质 1基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔22更比性质交换比例的内项或外项dbc a =交换内项 ⇒=d c b a acb d =交换外项 abc d =同时交换内项和外项3反比性质交换比的前项、后项:cd a b d c b a =⇒= 4合比性质:ddc b b ad c b a ±=±⇒= 5等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC,BCAC>BC,并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈ 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 考点三、相似三角形 1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形.相似用符号“∽”来表示2、相似三角形的基本定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似.相似三角形的等价关系:1反身性:对于任一△ABC,都有△ABC∽△ABC;2对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC3传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’.3、三角形相似的判定1三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似4、相似三角形的性质1相似三角形的对应角相等,对应边成比例2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比3相似三角形周长的比等于相似比4相似三角形面积的比等于相似比的平方.5、相似多边形1如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比或相似系数2相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比.性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比.由一个图形得到它的位似图形的变换叫做位似变换.利用位似变换可以把一个图形放大或缩小.。
七年级数学上册第五单元的必背知识点一、代数式与整式1. 代数式:定义:用运算符号 (加、减、乘、除、乘方、开方)把数或表示数的字母连接所成的式子,叫做代数式。
单独的一个数或一个字母也是代数式。
书写规范:字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写。
除法运算一般写成分数的形式。
字母与数字相乘时,通常把数字写在字母的前面。
字母前面的数字是分数的,一般写成假分数的形式。
如果字母前面的数字是1或-1,通常省略不写。
2. 单项式:定义:数与字母的乘积,这样的代数式叫做单项式,单独的一个数或一个字母也是单项式。
系数:单项式中的数字因数,叫做这个单项式的系数。
次数:单项式中所有字母的指数的和,叫做这个单项式的次数。
3. 多项式:定义:几个单项式的和叫做多项式。
项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
次数:多项式里次数最高项的次数,是多项式的次数。
4. 整式:单项式和多项式统称为整式。
5. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
二、几何图形初步1. 几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
2. 分类:立体图形:有些几何图形的各部分不在同一平面内,如圆柱、棱柱、圆锥等。
平面图形:有些几何图形的各部分都在同一平面内,如三角形、四边形、圆等。
3. 基本概念:点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
直线没有端点,可以无限延长;射线有一个端点,可以向一方无限延长;线段有两个端点,长度有限。
面:包围物体的是面,分为平面和曲面。
体:由面围成的图形叫做体,简称几何体。
4. 立体图形的特征:柱体:包括圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱 (长方体、正方体)等。
人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题知识框图朱国林定义:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程一元一次方程等式的性质1:等式的两边加上(或都减去)同一个数或式,所得的结果仍是等式等式的基本性质等式的性质2:等式的两边都乘或都除以同一个数或式(除数不能为0),所得的结果仍是等式解方程:求方程解的过程一元一次方程的解法分母为小数的方程:先将小数变为整数,然后再去分母一元一解方程的步骤去分母→去括号→移项→合并同类项→两边同除以未知数的系数次方程>重和叠差问倍题分:问借题助:可于以韦从恩题图目列中方看程出,明主确要的有等人量数关重系叠或面积重叠课外拓展应用题类型审题:分析题意,找出数量关系,尤其是等量关系!列方程解实际问题的一般过解方程:求出未知数的值程检验:检查求得的值是否正确和符合实际情形,这是在草稿纸上完成或心里完成的,并写出答案以及答,这是在试卷上完成的关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3 是一元一次方程吗从概念上来看,是一元一次方程,但稍作变形,就是 2=3,是不是觉得很可笑因此, 一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为 ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
-关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 考点三、解一元一次方程考点四、列一元一次方程解与实际生活无关的题目(可以是选择题、填空题、解答题) 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题)"将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )12(x 1) 2x 1x 1 A .3x=y -1B .C .3(x -1)= -2x -3D .3x 2-2=3E . x1 12 12 3x y 2 x2 0 x x 2 2x3 0 , 中一元一次方程的个数为(2、在方程 A .1 个 , , )x B .2 个 C .3 个 D .4 个 3x6 0是一元一次方程,那么a3、如果 a2 1,方程的解为。
七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
七年级下册数学知识点归纳第五章《七年级下册数学知识点归纳第五章》七年级下册数学第五章可有意思啦。
这章里有好多关于相交线和平行线的知识呢。
相交线就像生活里那些偶然碰到一起的事儿。
两条直线相交就有了对顶角,对顶角那可是相等的哟。
就像两个人面对面站着,互相看着的那种感觉,角度都是一样的。
还有邻补角,这就像邻居一样,紧紧挨着,它们的和是180度呢。
在生活里,我们也能找到这样的例子,比如说墙角,相邻的两个角加起来就是平角。
再说说平行线吧。
平行线就像是两条铁轨,永远都不会相交。
判定两条直线平行有好几种办法呢。
同位角相等,两直线平行。
这就像是有两个小角,它们在同样的位置,只要它们相等了,那这两条线就是平行的。
内错角相等的时候也是这样,就好像是两条线里面错着的两个角,一相等就平行啦。
同旁内角互补呢,就是两条线同一侧的两个角加起来是180度,那这两条线也是平行的。
平行线的性质也很有趣。
两直线平行,同位角相等,内错角也相等,同旁内角互补。
这就像是因为两条线平行了,所以这些角就有了特定的关系。
就好像因为某些规则,大家就有了不同的状态。
平移也是这章的内容。
平移就像是把一个图形从一个地方整个搬到另一个地方,形状大小都不变,就是位置变了。
就像我们搬家的时候,把家具从一个房间挪到另一个房间,东西还是那个东西。
我觉得这章的知识特别实用。
在我们看建筑的时候,那些平行的线条,相交的结构,都有着数学的影子。
而且这些知识在以后学习几何的时候也是基础中的基础。
如果把数学知识比作一座大楼,那这第五章的知识就是大楼的一块重要的基石。
我们要好好掌握这些知识,这样才能在数学的世界里走得更远,去探索更多有趣的数学奥秘呢。
七年级上数学每章知识点第一章有理数
有理数的概念
有理数的表示方法
有理数的大小比较
有理数的加减运算
有理数的乘除运算
有理数的应用
第二章整式与因式分解
整式的概念
整式的基本运算
整式的因式分解
公式与分式
整式的应用
第三章方程与不等式
方程的概念
一元一次方程
解一元一次方程的应用
不等式的概念
一元一次不等式
解一元一次不等式的应用
第四章分数
分数的概念
分数的基本性质
分数的基本运算
分数的化简与换算
分数的应用
第五章比例与比例的应用比例的概念
比例的表示方法
比例的性质与基本计算
分项与比例
应用题目
第六章相似与相似三角形
相似的概念与判定
相似三角形的性质
重心、中点、垂心、外心的性质相似三角形的应用
第七章平面直角坐标系
平面直角坐标系的建立
平面直角坐标系中点、距离公式点、线段、中点的坐标表示
图形的坐标表示
平面直角坐标系的应用
第八章线性方程组的解法
方程组的概念
二元一次方程组
三元一次方程组
解线性方程组的方法
线性方程组的应用
第九章一次函数
函数的概念
一次函数的定义与性质
一次函数的图象及相关概念
一次函数的应用
以上为七年级上数学的每章知识点内容,每章内容较多,需要
认真理解掌握。
为了更好的学习效果,建议结合教材里的示例和
习题进行练习。
掌握每章的知识点,对于学习数学后续的知识和
应用都将起到很好的帮助作用。
祝愿每位同学在学习中有所收获!。
七年级上册数学北师大版第五章知识点七年级上册数学北师大版第五章知识点1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,假如交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:假如两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的间隔:直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有一样位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即假如命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向挪动一定的间隔,图形的这种挪动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点挪动后得到的,这样的两个点叫做对应点。
16.定理与性质对顶角的性质:对顶角相等。
17.垂线的性质:性质1:过一点有且只有一条直线与直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与直线平行。
七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。
在相交线中,我们主要研究的是对顶角和邻补角。
对顶角相等,邻补角互补。
同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。
2. 平行线:平行线是指两条直线在同一平面内,且不相交。
平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。
此外,我们还学习了平行线的性质和判定方法。
3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。
这些性质是平行线的基本性质,也是解决相关问题的关键。
4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。
通过这些判定方法,我们可以确定两条直线是否平行。
5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。
同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。
以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。
一元一次方程知识点(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2) 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π ②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14). 解:设圆柱形水桶的高为x 毫米,依题意,得3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1 4.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
北师大版七年级数学上册第五章知识点汇总归纳北师大版七年级数学上册第五章知识点汇总归纳1.一元一次方程1)概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程.2〕方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.3〕等式的根本性质1:等式两边同时加〔或减〕同一个代数式,所得结果仍是等式。
等式的根本性质2:等式两边同时乘同一个数〔或除以同一个不为0的数〕,所得结果仍是等式.4)利用等式的根本性质解一元一次方程:利用等式的性质把方程ax+b=0(a≠0)进行变形,最后化为x=-b/a的形式,它一般先运用根本性质1,将ax+b=0变形为ax=-b,然后运用根本性质2,将ax=-b变形为x=-b/a即可。
2.求解一元一次方程1〕移项:方程中任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫做移项.(注意:移项要变号)2)解一元一次方程的根本思想:依据等式的根本性质把一元一次方程化简为ax=b〔a,b为常数,且a≠0〕的形式,再得到方程的解为x=b/a.3〕解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、未知数的系数化为13.列一元一次方程解应用题步骤:审清题意、找出等量关系、设未知数、列一元一次方程、解一元一次方程、检验解的合理性、写出答案.七上第六章数据的搜集与整理1.数据的搜集1〕方法:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等〔依据具体情况合理地选择数据搜集的方法〕.2〕步骤:〔1〕明确调查的问题和目的;〔2〕确定调查对象;〔3〕选择调查方法;〔4〕设计调查问题;〔5〕展开调查;〔6〕搜集并整理数据;〔7〕分析数据,得出结论.2.普查和抽样调查1〕普查:对全部考察对象进行全面调查叫普查优点:可以直接获得总体情况;缺点:总体中个体数目较多时,普查的工作量较大.2〕总体:所要考察的对象的全体叫总体个体:组成总体的每一个考察对象叫做个体1〕抽样调查:从总体中抽取局部个体进行调查,这种调查叫做抽样调查优点:调查范围小,节约时间、人力、物力及财力缺点:没有普查得到的结果精确样本:从总体中抽取的局部个体叫做总体的一个样本,为了获得较为精确的调查结果,抽样时要注意样本的代表性和广泛性.3.数据的表示1〕扇形统计图概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同局部,扇形的大小反映局部占总体的百分比的大小.特点:〔1〕反映具体问题中的局部与总体的数量关系.〔2〕只能得到各局部的百分比,得不到具体数量.〔3〕在扇形统计图中,每局部占总体的百分比等于该局部所对应的扇形圆心角的度数与360度的比.绘制扇形统计图的步骤:计算各局部占总体的百分比计算各局部对应的扇形的圆心角的度数画出扇形统计图,表上百分比写出扇形统计图的名称2)条形统计图:一般是由两条相互垂直的数轴和假设干长方形组成,两条数轴分别表示两个不同的工程,长方形的高表示其中一个工程的数据.特点:能清楚地表示出每个工程的具体数据.3〕频数直方图〔1〕频数:在数据统计中每个对象出现的次数称为频数〔2〕注意:频数能反映每个对象出现的一再程度;全部对象的频数之和等于数据总数.〔3〕绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图〔4〕频数直方图是一种特别的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴〔即长方形的高〕表示各组数据的频数.〔5〕频数直方图的优点:能更清楚、更直观地反映数据的整体状况.4〕折线统计图:用折线的起伏表示数据的增减变化.4.统计图的选择条形统计图:清楚地表示每个工程的具体数目折线统计图:清楚地反映事物的变化情况扇形统计图:清楚地表示出各局部在总体中所占的百分比频数直方图: 能更清楚、更直观地反映数据的整体状况.。
初一上册数学第五章知识点参考:一元一次方程朱熹曾说过:不勤于始,将毁与中。
换句话确实是:勤于始、精于始,才能成于始。
初中在小孩求学的生涯是一个重要的承上启下时期。
详细内容请看七年级上册数学第五章知识点。
1.等式:用=号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,同时未知数的次数是1,同时含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a 0).8.一元一次方程解法的一样步骤:化简方程----------分数差不多性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:多用于和,差,倍,分问题认真读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-----,利用这些关键字列出文字等式,同时据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
七年级数学下册第五章知识点整理在平凡的学习生活中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
还在为没有系统的知识点而发愁吗?以下是店铺收集整理的七年级数学人教版下册第五章知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。
七年级数学下册第五章知识点整理 1第五章相交线与平行线知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ = 180°; + = 180°; + = 180°;+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ;= 。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当= 90°时,⊥ 。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a ⊥ b 时,= = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。
图3中,共有对同位角:与是同位角;与是同位角; 与是同位角; 与是同位角。
②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
最新⼈教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线与平⾏线5.1 相交线⼀、相交线两条直线相交,形成4个⾓。
1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。
性质是对顶⾓相等。
①邻补⾓:两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线。
具有这种关系的两个⾓,互为邻补⾓。
如:∠1、∠2。
②对顶⾓:两个⾓有⼀个公共顶点,并且⼀个⾓的两条边,分别是另⼀个⾓的两条边的反向延长线,具有这种关系的两个⾓,互为对顶⾓。
如:∠1、∠3。
③对顶⾓相等。
⼆、垂线1.垂直:如果两条直线相交成直⾓,那么这两条直线互相垂直。
2.垂线:垂直是相交的⼀种特殊情形,两条直线垂直,其中⼀条直线叫做另⼀条直线的垂线。
3.垂⾜:两条垂线的交点叫垂⾜。
4.垂线特点:过⼀点有且只有⼀条直线与已知直线垂直。
5.点到直线的距离:直线外⼀点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
三、同位⾓、内错⾓、同旁内⾓两条直线被第三条直线所截形成8个⾓。
1.同位⾓:(在两条直线的同⼀旁,第三条直线的同⼀侧)在两条直线的上⽅,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同位⾓。
如:∠1和∠5。
2.内错⾓:(在两条直线内部,位于第三条直线两侧)在两条直线之间,⼜在直线EF的两侧,具有这种位置关系的两个⾓叫内错⾓。
如:∠3和∠5。
3.同旁内⾓:(在两条直线内部,位于第三条直线同侧)在两条直线之间,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同旁内⾓。
如:∠3和∠6。
5.2 平⾏线及其判定(⼀) 平⾏线1.平⾏:两条直线不相交。
互相平⾏的两条直线,互为平⾏线。
a∥b(在同⼀平⾯内,不相交的两条直线叫做平⾏线。
)2.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。
七年级的数学知识点必看学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。
下面是小编给大家整理的一些七年级的数学知识点的学习资料,希望对大家有所帮助。
新人教版七年级数学知识第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。
(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。
4、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)内错角相等,同旁内角互补。
5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,则……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。
6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。
2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
1.实数和数轴
-整数、自然数、有理数、无理数的概念和特点-数轴的表示及其利用
2.计算表示数
-绝对值的概念与性质
-计算含有绝对值的表达式
3.算术平均数
-平均数的概念和求解方法
-利用平均数解决实际问题
4.求解方程
-方程的概念和解的概念
-一次方程的基本概念和求解方法
-利用方程解决实际问题
5.数量关系
-集合元素的判定
-数量关系的表示和运算
-利用数量关系解决实际问题
6.几何图形与变换
-直角三角形的性质与应用
-平面镜像变换的基本要素与应用
-角平分线的概念与性质
-垂直线与平行线的判定与性质
7.统计与概率
-统计图的绘制和分析
-可能性的大小和计算
这些知识点是七年级数学第五章的主要内容,通过学习这些知识点,学生可以进一步提高对实数和数轴的理解,学习如何计算和表示数,掌握求解方程和解决实际问题的方法,了解数量关系的运算和表示,学习几何图形与变换的基本概念与应用,以及掌握统计与概率的相关知识。
通过这些知识点的学习,学生可以提高数学思维和解决问题的能力,为进一步学习高中数学打下坚实的基础。
同时,这些知识点也与实际生活紧密相关,能够帮助学生发展数学应用能力,培养科学的思维方式。
人教版七年级数学上册第四、五章知识点详细梳理1.几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
长方形、正方形、三角形、圆等都是平面图形。
立体图形与平面图形:许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线;线和线相交的地方是点;几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
6、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
一、绝对值
1、定义:绝对值是一个数字离零的距离,简称“绝”,用符号,x,
表示。
2、性质:
(1),x,≥0,即所有数字都有一定的绝对值;
(2)若x≥0,则,x,=x;若x<0,则,x,=-x;
(3),x,=,-x;
(4),x+y,≤,x,+,y;
(5),xy,=,x,×,y。
二、平面直角坐标系
1、定义:平面直角坐标系是一个平面上,在被细分的单位格子中,
以双精度的方式查找和标记任意一点的坐标系统。
2、成分:由原点、X轴、Y轴以及单位格子组成。
3、坐标:坐标是指点在该坐标系中的位置。
4、坐标原点:坐标原点是坐标系中的起点,其坐标为(0,0)。
5、X轴:X轴是平面直角坐标系中的一条直线,在两坐标轴之间,其
坐标为(x,0)。
6、Y轴:Y轴是平面直角坐标系中的另一条直线,位于两坐标轴之间,其坐标为(0,y)。
7、单位格子:单位格子是平面直角坐标系中的一个单元,在一个点上两个坐标轴之间,其坐标为(x,y)。
三、数轴
1、定义:数轴是一种以零为中心,以实数范围贯穿的坐标系统。
2、特点:
(1)数轴上同时具有实数和虚数;
(2)0位于数轴的中心;
(3)具有正负对称性;。