立体几何中角的求法
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
立体几何中的角度问题攻略新东方孟祥飞异面直线角:采用平移法,或者向量线面角:(1)当射影线好找时采用定义法,(2)当射影线不好找时建议采用向量法,但是等体积法也是不错的选择二面角:(1)当二面角的二面为双等腰图形或者全等对称或者二面交线垂线相对好平移的情况,采用定义法即可(2)当二面交线垂线不好平移(主要原因为计算量太大)建议直接采用向量法,但是三垂线法也是不错的选择,可以减少平移运算。
(3)三垂线法也会出现射影线不好找的情况,此时可以采用等体积转化。
S 中,E,F为中点,求异面直线BE,SF所称角度例题:1.正四面体ABCSEA CFB异面直线角的求法只需记住平移和向量即可,但是有些小题考查可能不好建系,所以需要大家对平移好好掌握,而平移其实就是构建辅助线,辅助线的构造基本和证明线面平行时的构造相同,即平行四边形构造和中位线构造,相对而言中位线可能够难想一点,中位线构造常常出现在三棱锥中。
SEPA CPF和SF所成平面角即所求FBSE这样的构建也是不错的选择EQ 和EB 所成角为所求A CQF B求三边套余弦定理即可,令正四面体边长为2,则EB=3,EQ=23,QB=27 所以32323247343cos =⨯⨯-+=QEB 此题还可以采用五坐标向量法来求解,2.三棱锥A BCD -,且,,,)(,>=<+===AC EF f DFCFBE AE λλλαβαλλ>=<BD EF ,λβ,求)(λf 的单调性 A EQB DFC此题的方法也为平移转化,由于是三棱锥,所以采用中位线(等比例线)方式平移,如图,不难发现,其实题目设计成求和角单调性,由于内角和为定值π,其实就是求角EQF 的单调性,而角EQF 为棱AC 和BD 之间角,是为定值的3.正方体1111D C B A ABCD -,E 是1BC 中点,求DE 与ABCD 所成角。
D 1 C 1 A 1 B 1 ED C Q A B线面角在求解时,我们觉得可能难度略大于异面直线,但是同学们注意其实把方法掌握,一样是很简单的,因为立体几何的特点是规律性非常强!我们看此题,线面角的定义是射影和斜线的成角,所以我们要先找DE 直线的射影,不难发现DE 的射影即为DQ ,所以所求线面角的平面角即为∠EDQ ,只需求解直角三角形EDQ 即可求出线面角的三角函数值。
-立体几何中的传统法求空间角知识点:一.异面直线所成角:平移法二.线面角1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有面面垂直的结构,找到交线,作交线的垂线即可。
2.用等体积法求出点到面的距离sinA=d/PA三.求二面角的方法1、直接用定义找,暂不做任何辅助线;2、三垂线法找二面角的平面角.例一:如图, 在正方体错误!未找到引用源。
中, 错误!未找到D1C1引用源。
、错误!未找到引用源。
分别是错误!未找到引用源。
、错误!未找到引用源。
的中点, 则异面直线错误!未A1B1N找到引用源。
与错误!未找到引用源。
所成的角的大小是______90______. D CM考向二线面角AB 例二、如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥PD,BC=1,PC=2 3 ,PD=CD=2.(I )求异面直线PA与BC所成角的正切值;(II )证明平面PDC⊥平面ABCD;(III )求直线PB与平面ABCD所成角的正弦值。
练习:如图,在三棱锥P ABC 中,PA 底面A B, C P A, AB 6 0A B,C, BC A点D,E分别在棱PB, PC 上,且DE // BC(Ⅰ)求证:BC 平面PAC ;(Ⅱ)当D 为P B 的中点时,求AD 与平面PAC 所成的角的正弦值;(Ⅰ)∵PA⊥底面ABC ,∴PA⊥BC.又BCA 90 ,∴AC ⊥BC.∴BC⊥平面PAC.(Ⅱ)∵D 为PB 的中点,DE//BC ,∴1DE BC ,2又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点 E.∴∠DAE 是AD 与平面PAC 所成的角,∵PA⊥底面ABC ,∴PA⊥AB ,又PA=A B,∴△ABP 为等腰直角三角形,∴1AD AB ,2∴在Rt△ABC 中,ABC 60 ,∴1BC AB.2∴在Rt△ADE 中,sin DAE DE BC2 AD 2AD 4,考向三:二面角问题在图中做出下面例题中二面角例三:.定义法(2011 广东理18)如图5.在椎体P-ABCD 中,ABCD 是边长为 1 的棱形,且∠DAB=60 ,P A PD 2 ,PB=2,E,F 分别是BC,PC 的中点.(1)证明:AD 平面DEF;(2)求二面角P-AD-B 的余弦值.法一:(1)证明:取AD 中点G,连接PG,BG,BD。
立体角计算公式立体角,又称夹角、内角、拱角,是指在立体空间内三条曲线汇合成的一种特殊的角,它体现了空间几何学的概念。
它的计算通常使用三角函数和立体几何的相关参数。
立体角的计算都是围绕着一个拱角内三个平面之间的夹角来完成的。
基本计算公式二维平面立体角的计算公式如下:夹角=sin-1[(b x c)/(|b||c|)]其中,b和c是向量,|b|和|c|分别是b和c的模长,x表示叉乘。
三维平面立体角的计算公式如下:夹角=cos-1[(a x b)c/(|a||b||c|)]其中,a、b和c是向量,|a|、|b|和|c|分别是a、b和c的模长,x和表示叉乘和点乘。
立体几何计算公式立体几何的计算公式可以用来表示立体角的特性,以此来计算夹角的大小。
1.体积公式:V=abc其中,a、b和c是三条曲线汇合处的长度或边长,V表示立体角的体积。
2.表面积公式:S=ab+bc+ca其中,a、b和c是三条曲线汇合处的长度或边长,S表示立体角的表面积。
3.距离公式:D=√(a+b+c)其中,a、b和c是三条曲线汇合处的长度或边长,D表示立体角的距离。
4.角平分公式:α/β/γ=a/b/c其中,α、β和γ是各角的大小,a、b和c是三条曲线汇合处的长度或边长。
5.体积中垂线公式:V=abc sin其中,V表示立体角的体积,a、b和c是三条曲线汇合处的长度或边长,α表示立体角的内角大小。
立体角的应用立体角计算公式广泛应用于几何学、机械工程、电子学等领域,它可以用来计算空间坐标系的定位,构建复杂的几何体,也可用来测量空间距离、角度、体积等。
比如,在机械结构设计中,立体角的计算公式可以用来计算连接的螺栓的角度、位置和大小,为准备安装和维护机械设备提供依据。
在电子工程中,立体角的计算公式也可以用来计算电子元件之间的位置、距离和角度,这些参数对正确构建电子系统非常重要。
总结立体角是一种有三条曲线汇合而成的特殊角,它体现了空间几何学的概念。
立体几何二面角求法
立体几何中的二面角是指两个平面的夹角,其中一个平面是由立体图形的两个面组成的。
二面角是非常重要的几何概念,它在计算立体图形的体积、表面积和角度时都有很多应用。
二面角的求法有很多种,其中比较常用的方法有以下几种:
1. 用余弦定理求解
在立体图形中,二面角的两个平面可以看做是两个三角形的平面。
如果已知两个三角形的边长及它们之间的夹角,就可以用余弦定理求出二面角的大小。
2. 用向量求解
向量是几何中非常重要的概念,可以用来表示空间中的点和方向。
如果已知二面角的两个平面的法向量,就可以用向量求解的方法求出二面角的大小。
3. 用三维坐标系求解
在三维坐标系中,可以用向量表示空间中的点和方向。
如果已知二面角的两个平面在三维坐标系中的方程式,就可以用向量求解的方法求出二面角的大小。
以上是三种比较常用的二面角求解方法,不同的方法适用于不同的情况。
在实际应用中,根据具体的问题选择合适的方法可以提高计算的效率。
- 1 -。
DBA C α立体几何第三课 §用传统方法求距离和角度一、知识点1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。
(1)异面直线所成的角的范围是]2,0(π。
求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。
具体步骤如下:①作平行四边形对边; ②作三角形中位线;(2)直线与平面所成的角的范围是]2,0[π。
求直线和平面所成的角用的是射影转化法。
具体步骤如下:①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。
注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,α为斜线与平面内任何一条直线所成的角,则有αθ≤; (3)二面角的范围是],0(π,作二面角的平面角常有三种方法①定义法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角; ②三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;③射影面积法:θcos ⋅='S S (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成二面角的平面角) 2.空间的距离求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
点到平面的距离:点P到平面α的距离为点P到平面α的垂线段的长. 常用求法①作出点P到平面的垂线后求出垂线段的长,“一找二证三求”;②等体积法锥体体积:Sh V 31=(S 为底面积,h 为高)二、例题1、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 例题1证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,42PD =,在Rt DCE ∆中,22DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=2、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ;(2)求证:AD PB ⊥;(3)求二面角A BC P --例题2证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD (2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角 在Rt PBG ∆中,PG BG =,∴045PBG ∠=3、如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点, 2, 2.CA CB CD BD AB AD ======(I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小; (III )求点E 到平面ACD 的距离。
立体几何求夹角方法总结立体几何体现了空间中物体的立体形态,它的重要性在于能够帮助人们更好地理解三维物体,并求出它们之间的夹角,这在数学、物理等领域都有着广泛的应用。
本文将总结出常见的几何求夹角方法,供读者参考。
方法一:向量求夹角向量是几何学中的常用概念,它由矢量和标量组成。
可以通过计算两个向量之间的夹角,得到它们之间的几何夹角。
具体做法如下:1. 求出待求夹角的两个向量;2. 根据向量的标准公式求出它们的数量积;3. 分别计算出两个向量的长度;4. 将数量积和长度带入余弦定理求出夹角。
方法二:平面法线求夹角在三维空间中,可以通过平面的法线向量来计算两个平面之间的夹角。
具体做法如下:1. 求出待求夹角的两个平面的法线向量;2. 根据向量的标准公式求出它们的数量积;3. 分别计算出两个平面的法线向量的长度;4. 将数量积和长度带入余弦定理求出夹角。
方法三:点法线求夹角与平面法线类似,我们也可以通过点和法线向量计算两个平面之间的夹角。
具体做法如下:1. 求出待求夹角的两个平面的任意一点坐标和两个平面的法线向量;2. 根据向量的标准公式求出它们的数量积;3. 分别计算出两个平面的法线向量的长度;4. 将数量积和长度带入余弦定理求出夹角。
方法四:球面三角学法求夹角该方法适用于计算球面上两个点或两个平面之间的夹角,方法稍微复杂。
具体做法如下:1. 求出待求夹角的两个点或平面的经纬度坐标;2. 根据球面三角学公式求出两个点之间的夹角或两个平面之间的夹角;3. 将弧度转化为角度,得到最终的夹角。
综上所述,立体几何求夹角的方法有计算向量之间的夹角、平面法线之间的夹角、点法线之间的夹角和球面三角学法求夹角。
每种方法都有其适用范围和计算步骤,要根据实际情况选择合适的方法进行计算。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
立体几何中角的求法
1.异面直线所成角的求法:范围(直线与直线所成角(] 90,0∈θ:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
2.直线与平面所成的角 范围:(直线与平面所成角[] 90,0∈θ)
斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影.通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键; 3。
二面角的求法 范围:二面角])180,0[ ∈θ 方法:作,证,算
知识:正弦定理,余弦定理,特殊角,反正弦(余弦,正切)
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
(4)射影法:利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此法不必在图形中画出平面角; 特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
(二面角的取值范围[) 180,0∈θ) 1、在正方体1AC 中,求下列线面角 ⑴1DB 与底面AC ⑵1A B 与平面11A B CD
2、如图,,,AB ABCD BC CD AB BC AD ⊥⊥=平面 与平面ABCD 所成的角为30o ⑴求AD 与平面ABC 所成的角 ⑵AC 与面ABD 所成的角
线线角
1. 如图所示,ABCD 是一个正四面体,E 、F 分别为BC
和AD 的中点。
A
C
D
B
F
E
求:AE 与CF 所成的角
2。
如图,长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,
AA 1=1,E 、H 分别是A 1B 1和BB 1的中点。
求:
(1)EH 与AD 1所成的角; (2)AC 1与B 1C 所成的角。
面面角
1、如图;四面体ABCS 中,SA 、SB 、SC 两两垂直,45,60SBA SBC ︒︒∠=∠=,M 为AB 的中点, (1)求BC 与平面SAB 所成的角 (2)求SC 与平面ABC 所成的角
2.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)面A 1ABB 1与面ABCD 所成角的大小; (2)二面角C 1—BD —C 的正切值
B
A
B C
D
A 1
D 1
C 1
B 1
E H
B
(3)二面角11B BC D --
3、设线段AB=a ,AB 在平面α内,CA ⊥α,BD 与α成30ο
角,BD ⊥AB,C 、D 在α同侧,CA=BD=b 。
求: (1)CD 的长;(2)CD 与平面α所成角正弦值。
4、过正方形ABCD 的顶点A 作PA ABCD 平面,
设PA=AB=a ,(1)求二面角B PC D 的大小;
(2)求二面角C —PD-A
5、如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (Ⅰ)求证AE ⊥平面BCE; (Ⅱ)求二面角B —AC —E 的大小; (Ⅲ)求点D 到平面ACE 的距离.
D B
A A
B
C
D A 1
D 1 C 1 B 1。