(完整版)垂径定理练习题及答案
- 格式:doc
- 大小:505.50 KB
- 文档页数:10
垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。
2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。
3. 已知圆的半径为5cm,那么圆的直径是______。
三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。
如果OP的长度为4cm,求点P到圆上任意一点的距离。
2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。
已知AB=6cm,求BC的长度。
四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。
2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。
答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。
2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。
《垂径定理》专题【知识考点】1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。
这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。
2、掌握垂径定理在圆的有关计算和证明中的广泛应用。
【精典例题】1、如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 . 解:∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD , ∴CD 是△APB 的中位线, ∴CD=21AB=21×8=4,2、如图,在半径为13的⊙O 中,OC 垂直弦AB 于点B ,交⊙O 于点C ,AB=24,则CD 的长是 . 解:连接OA , ∵OC ⊥AB ,AB=24, ∴AD=21AB=12, 在Rt △AOD 中,∵OA=13,AD=12,∴OD=5, ∴CD=OC-OD=13-5=8.3、把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米.解:EF 的中点M ,作MN ⊥AD 于点M ,取MN 的中点O ,连接OF , 设OF=x ,则OM=16-x ,MF=8, 在直角三角形OMF 中,OM 2+MF 2=OF 2 即:(16-x )2+82=x 2 解得:x=104、当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为 cm 。
解:连接OA ,过点O 作OD ⊥AB 于点D , ∵OD ⊥AB , ∴AD=21AB=21(9-1)=4, 设OA=r ,则OD=r-3, 在Rt △OAD 中,利用勾股定理 解得r=625cm .5、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 mm .解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB=2AD , ∵钢珠的直径是10mm , ∴钢珠的半径是5mm ,∵钢珠顶端离零件表面的距离为8mm , ∴OD=3mm ,在Rt △AOD 中,∵AD= =4mm ,∴AB=2AD=2×4=8mm .6、如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 .解:如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H , ∵在Rt △ADB 中,∠ABC=45°,AB=2 2 , ∴AD=BD=2,即此时圆的直径为2, 由圆周角定理可知∠EOH=21∠EOF=∠BAC=60°, ∴在Rt △EOH 中,EH=OE •sin ∠EOH=1× 23 = 23, 由垂径定理可知EF=2EH= 3,【巩固练习】1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8(第1题)(第2题)(第4题)(第5题)(第7题)2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.53.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm414.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是()A. B. C. D.6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.53米8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.310.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm 11.在直径为10cm 的圆中,弦的长为8cm ,则它的弦心距为 cm 12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 13.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm14.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则CD = 厘米(第14题) (第16题) (第17题) (第18题) (第19题) 15.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm16.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是17.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m18.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2)和A(2,0),则点B 的坐标是19.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm20.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=(第20题) (第21题) (第22题) (第23题)21.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm 22.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米23.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )A.95B. 245C. 185D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )A. AG =BGB. AB ∥BFC.AD ∥BCD. ∠ABC =ADC4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) A. cm B. cm C. cm 或cm D. cm 或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A. cmB. 5cmC. 4cmD. cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D.8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. 2B.C.D.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A. 10B. 8C. 5D. 311、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C.6D.812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A. B. AF=BF C. OF=CF D. ∠DBC=90°13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A. 5B. 10C. 8D. 614、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O 的半径为()A. 4B. 5C. 4D. 315、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不.正确..的是()19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.图20 图21 图2220、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.图23 图24 图25 图26 图27 图2823、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB 的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为 ____________.30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
垂径定理练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(垂径定理练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为垂径定理练习题及答案的全部内容。
垂径定理一.选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )A .4B .6C .7D .8答案:D★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( )A .2B .3C .4D .5答案:B★★3.过⊙O 内一点M 的最长弦为10 cm,最短弦长为8cm,则OM 的长为( )A .9cmB .6cmC .3cmD . 答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A.12个单位B .10个单位C .1个单位D .15个单位答案:B★★5.如图,的直径垂直弦于,且是半径的中点,,则直径的长是(A .B .C .D .答案:D★★6.下列命题中,正确的是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心cm 41O ⊙AB CD PP OB 6c m C D ABD .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A .5米B .8米 C .7米 D .5米答案:B★★★8.⊙O 的半径为5cm ,弦AB//CD,且AB=8cm,CD=6cm ,则AB 与CD 之间的距离为( )A . 1 cmB . 7cmC . 3 cm 或4 cmD . 1cm 或7cm答案:D★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( )A .2B .8C .2或8D .3答案:C二.填空题★1.已知AB 是⊙O 的弦,AB =8cm,OC⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm答案:5 cm★2.在直径为10cm 的圆中,弦的长为8cm ,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB 是⊙O 的弦,AB =8cm ,OC⊥AB 与C,OC=3cm ,则⊙O 的半径为 cm答案:5 cm ★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则CD = 厘米答案: cm ★★66cm 的圆中,垂直平分半径OA 的弦长为 cm. 答案: cm ★★7⊙O 内一点M 的最长的弦长为,最短的弦长为,则OM 的长等于 cm3AB 图 46cm 4cm★★8AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm答案:3★★13.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm答案:6★★★15.⊙O 的半径为13 cm ,弦AB∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D,若AB=8,CD=2,则圆的半径为 答案:5 ★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米答案:★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米答案:7或1★★★19.如图,是一个隧道的截面,如果路面宽为8米,净高为8米,那么这个 隧道所在圆的半径是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
圆的垂径定理习题一. 选择题1.如图 1,⊙ O的直径为 10,圆心 O到弦 AB的距离 OM的长为 3,那么弦 AB的长是()A.4B.6C.7D.8 2.如图,⊙O的半径为 5,弦 AB的长为 8,M是弦 AB上的一个动点,则线段 OM长的最小值为()A .2B.3C.4D.53. 过⊙ 0 内一点 M的最长弦为 10cm,最短弦长为 8cm,则 OM的长为()4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 OA、OB在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O点靠在圆周上,读得刻度 OE=8个单位, OF=6个单位,则圆的直径为()A . 12 个单位B.10 个单位C. 1 个单位D.15 个单位5.如图,O⊙的直径 AB垂直弦 CD于 P,且 P是半径 OB的中点,6cmCD则直径AB的长是()6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为()18.⊙ O的半径为 5cm,弦 AB//CD,且 AB=8cm,CD=6cm,则 AB与 CD之间的距离为 ()A . 1 cm B.7cm C. 3 cm或 4 cm D.1cm或7cm 9.已知等腰△ ABC的三个顶点都在半径为 5 的⊙ O上,如果底边 BC的长为 8,那么 BC边上的高为()A.2B.8C.2或 8D.3二、填空题1.已知 AB是⊙ O的弦, AB=8cm,OC⊥ AB与 C,OC=3cm,则⊙ O的半径为cm 2.在直径为 10cm的圆中,弦 AB的长为 8cm,则它的弦心距为cm3.在半径为 10 的圆中有一条长为16 的弦,那么这条弦的弦心距等于4.已知AB是⊙ O的弦,AB=8cm,OC⊥ AB与C,OC=3cm,则⊙ O的半径为cm 5.如图,⊙ O的直径 AB垂直于弦 CD,垂足为 E,若∠ COD=120°,OE=3 厘米,则 CD=厘米6.半径为 6cm的圆中,垂直平分半径OA的弦长为cm7.过⊙ O内一点 M的最长的弦长为 6cm,最短的弦长为 4cm,则 OM的长等于cm8.已知 AB是⊙ O的直径,弦 CD⊥ AB,E 为垂足, CD=8, OE=1,则 AB=9.如图, AB为⊙ O的弦,⊙ O的半径为 5,OC⊥AB于点 D,交⊙ O于点 C,且 CD= l ,则弦 AB的长是10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径 OA= 10m,则中间柱 CD 的高度为m11. 如图,在直角坐标系中,以点 P 为圆心的圆弧与轴交于A、B两点,已知 P(4,2)和 A(2,0) ,则点 B 的坐标是12.如图, AB是⊙ O的直径, OD⊥ AC于点 D,BC=6cm,则 OD=cm14.如图,⊙ O的半径是 5cm, P 是⊙ O外一点 ,PO=8cm,∠ P=30o, 则 AB=cm15.⊙ O的半径为 13cm,弦 AB∥CD, AB=24cm,CD=10cm,那么 AB和 CD的距离是Cm16.已知 AB是圆 O的弦,半径 OC垂直 AB,交 AB于 D,若 AB=8, CD=2,则圆的半径为17.一个圆弧形门拱的拱高为 1 米,跨度为 4 米,那么这个门拱的半径为米18.在直径为 10 厘米的圆中 , 两条分别为 6 厘米和 8 厘米的平行弦之间的距离是厘米19.如图,是一个隧道的截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径 OA是___________米20.如图, AB为半圆直径, O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。
典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O中,弦cm12=AB,O点到AB的距离等于AB的一半,求:AOB∠的度数和圆的半径.2、已知:⊙O的半径1=OA,弦AB、AC的长分别是2、3.求BAC∠的度数。
例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为ba,.求证:22baBDAD-=⋅.例题7、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAE⊥E,CDBF⊥于F.求证:FDEC=.A BDCEO作 业: 一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
中考数学专题复习《垂径定理》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.2.如图 AB 是O 直径 直线l 经过O 上一点C 过点A 作直线l 的垂线.垂足为D .连接AC .已知AC 平分DAB ∠.(1)求证:直线l 与O 相切(2)若70DAB ∠=︒ 3CD = 求O 的半径.(参考数据:sin350.6︒≈cos350.8︒≈.tan350.7︒≈)3.如图 AC 与BD 相交于点E 连接AB CD CD DE =.经过A B C 三点的O 交BD 于点F 且CD 是O 的切线.(1)连接AF 求证:AF AB =(2)求证:2AB AE AC =⋅(3)若2AE = 6EC = 4BE = 则O 的半径为 . 4.如图 四边形ABCD 内接于O 对角线,AC BD 交于点E 连接OE .若,AC BD O ⊥的半径为,r OE m =.(1)若ABC BAD ∠=∠ 求证:OE 平分AEB ∠(2)试用含,r m 的式子表示22AC BD +的值(3)记ADE BCE ABE CDE 的面积分别为1S 2S 3S 4S 当求证:AC BD =.5.如图 AB 是O 的直径 ,C D 是O 上两点 且AD CD = 连接BC 并延长与过点D 的O 的切线相交于点E 连接OD .(1)证明:OD 平分ADC ∠(2)若44,tan 3DE B == 求CD 的长. 6.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD 是O 的切线(2)若AE BC ⊥ 垂足为M O 的半径为10 求AE 的长.7.已知 在O 中 AB 为弦 点C 在圆内 连接AC BC OC 、、,ACO BCO ∠=∠.(1)如图1 求证:AC BC =(2)如图2 延长AC BC 、交O 于点E D 、 连接DE 求证:AB DE ∥(3)如图3 在(2)的条件下 设O 的半径为,3R DE R = 弦FG 经过点C 连接BG BF 、 72,3,33DBF DBG CG R ∠=∠== 求线段CF 的长. 8.已知点,,A B C 在O 上.(1)如图① 过点A 作O 的切线EF 交BC 延长线于点,E D 是弧BC 的中点 连接DO 并延长 交BC 于点G 交O 于点H 交切线EF 于点F 连接,BA BH .若24ABH ∠=︒ 求E ∠的大小(2)如图① 若135AOC B ∠+∠=︒ O 的半径为5 8BC = 求AB 的长. 9.如图 A B C D 分别为O 上一点 连AB AC BC BD CD AC 垂直于BD 于E AC BC = 连CO 并延长交BD 于F .(1)求证:CD CF =(2)若10BC = 6BE = 求O 的半径.10.如图 在 Rt ABC △中 90C ∠=︒,AD 平分 BAC ∠ 交 BC 于点D 点O 是边 AB 上的点 以点O 为圆心 OD 长为半径的圆恰好经过点A 交AC 于点E 弦 EF AB ⊥于点G .(1)求证:BC 是O 的切线.(2)若 12AG EG ==,,求O 的半径.(3)设O 与AB 的另一个交点为 H 猜想AH AE CE 之间的数量关系 并说明理由. 11.如图 在ABC 中 90ACB ∠=︒ 5AB = 1AD = BD BC = 以BD 为直径作O 交BC 于点E 点F 为AC 边上一点 连接EF 过点A 作AG EF ⊥ 垂足为点G =BAC GAF ∠∠.(1)求证:EG 为O 的切线(2)求BE 的长.12.如图 四边形ABCD 中 90B C ∠=∠=︒ 点E 是边BC 上一点 且DE 平分AEC ∠ 作ABE的外接圆O.(1)求证:DC是O的切线(2)若O的半径为5 2CE=求BE与DE的长.13.如图1 在直角坐标系中以原点O为圆心半径为10作圆交x轴于点A B,(点A⊥(点D在点E上方)连在点B的左边).点C为直径AB上一动点过点C作弦DE AB∥交圆O于另一点记为点F.直线EF交x轴于点G连接接AE过点D作DF AE,,.OE BF AD(1)若80∠=︒求ADFBOE∠的度数(2)求证:OE BF∥(3)若2=请直接写出点C横坐标.OG CG14.如图AB为O的弦C为AB的中点D为OC延长线上一点连接BO并延长交O于点E交直线DA于点F B D∠=∠.(1)求证:DA为O的切线(2)若42EF=求弦AB的长度.AF=2⊥交O于B C两点.连15.如图在O中M为半径OA上一点.过M作弦BC OA=.接BO并延长交O于点D连接AD交BC于点E.已知EB ED(1)求证:60CD =︒(2)探究线段CE EM 长度之间的数量关系 并证明.参考答案:1.(1)1(3)45︒2.(2)2583.4.(2)()222242AC BD r m +=-5.(2)6.(2)AE =7.(3)21349CF =8.(1)48E ∠=︒ (2)9.51010.(2)52(3)2AH AE CE =+11.(2)16512.(2)6BE = 25DE =13.(1)100︒(3)点C 555-14.28215.(2)2CE EM =。
圆的垂径定理习题一. 选择题 1.如图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( )2.如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为()3.过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为()A* 9cmE, 5cm4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直位 D. 15个单位5.如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是()6. 下列命题中,正确的是(A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为A.4B. 6C. 7D. 8 B. 3 C. 4 D. 5B . 10个单位 C. 1个单A . 212个单位E & 5米B, 8米C. 7米D,出米D8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm9•已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm8. 已知AB 是O 0的直径,弦CDL AB E为垂足,CD=8 0E=1则AB= __________9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD的高度为13. 如图,矩形ABCDf圆心在AB上的圆0交于点G B、F、E, GB=10 EF=8 那么AD= ______14.___________________________________________________________________________ 如图,O O 的半径是 5cm P 是o o 外一点,PO=8cm / P=3GO,则 AB ______________________ cm是 __________________ Cm16. 已知AB 是圆O 的弦,半径OC 垂直AB 交AB 于D,若AB=8 CD=2则圆的半径为 _______________ 17. 一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 ___________________ 米 18. 在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的20. 如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点0 若 AC=8cm DE=2cm 则 OD 的长为 _____________ c m21. 已知等腰△ ABC 的三个顶点都在半径为5的。
垂径定理一。
选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8答案:D★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5答案:B★★3.过⊙O 内一点M 的最长弦为10 cm,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位答案:B ★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm答案:D★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米答案:B★★★8.⊙O 的半径为5cm,弦AB//CD ,且AB=8cm ,CD=6cm ,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm 答案:D ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 答案:C 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm 答案:5 cm★2.在直径为10cm 的圆中,弦AB 的长为8cm,则它的弦心距为 cm 答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 答案:6★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm 答案:5 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米O图 4E DCA答案:3★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm 。
答案:63★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm 5★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ 答案:217★★9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m,半径OA =10m,则中间柱CD 的高度为 m答案:4★★11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P (4,2) 和A(2,0),则点B 的坐标是答案:(6,0)★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D,BC=6cm ,则OD= cm答案:3★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmB A POyxPBAO答案:6★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB,交AB 于D ,若AB=8,CD=2,则圆的半径为 答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米 答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
若AC=8cm,DE=2cm ,则OD 的长为 cm答案:3★★★21.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 答案:8或2★★★22.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为答案:23OABODAB★★★23.如图,⊙O 的的半径为5,直径AB ⊥弦CD ,垂足为E ,CD=6,那么∠B 的余切值为_________答案:3 三.解答题★★1.已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长 答案:26★★2.已知⊙O 的半径长为50cm ,弦AB 长50cm 。
求:(1)点O 到AB 的距离;(2)∠AOB 的大小 答案:(1)3(2)060★★3.如图,直径是50cm 圆柱形油槽装入油后,油深CD 为15cm ,求油面宽度ABD OA答案:40★★4.如图,已知⊙O 的半径长为R=5,弦AB 与弦CD 平行,他们之间距离为7,AB=6求:弦CD 的长.答案:8★★5.如图,已知AB 是⊙O 的直径,CD ⊥AB ,垂足为点E ,如果BE=OE ,AB=12m ,求△ACD 的周长答案:183OCAD BO CDE★★6.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长答案:163 3★★7.已知:如图,AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,BC=8,AD=10.求:(1)OE的长;(2)∠B的正弦值答案:(1)3 (2)25 5★★★8.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点 D.已知:AB=24cm,CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.ACD B答案:(1)略(2)13★★★9.如图,⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12.求⊙O的半径答案:254AB CDEO.ODACB★★★10.如图,已知⊙O 的半径长为25,弦AB 长为48,C 是弧AB 的中点.求AC 的长.答案:30★★★11.1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0。
1米)答案:27.9★★★12.已知:在△ABC 中,AB=AC=10, BC=16。
求△ABC 的外接圆的半径.答案:253★★★13.本市新建的滴水湖是圆形人工湖。
为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示。
请你帮他们求出滴水湖的半径。
答案:1442。
5★★★14.如图是地下排水管的截面图(圆形),小敏为了计算地下排水管的直径,在圆形弧上取了A ,B 两点并连接AB ,在劣弧AB 上取中点C 连接CB ,经测量45=BC 米,87.36=∠ABC °,根据这些数据请你计算出地下排水管的直径。
CABO(87.36sin °60.0≈,87.36cos °80.0≈,87.36tan °75.0≈)答案:2512★★★15.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB 为0。
6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0。
8米时,求水面上升的高度.答案:(1)0。
1 (2)0.1或0.7★★★16.已知:如图,AB 是O 的直径,C 是O 上一点,CD ⊥AB ,垂足为点D ,F 是AC 的中点,OF 与AC 相交于点E ,AC =8 cm ,2EF =cm 。
(1)求AO 的长; (2)求sin C 的值。
答案:(1)5 (2)45★★★★17.如图,在半径为1米,圆心角为60°的扇形中有一内接正方形CDEF,求正方形CDEF 面积。
CAB答案:23四.证明题★★1.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。
求证:OC=OD答案:略★★2.如图,AB 是⊙O 的弦,点D 是弧AB 中点,过B 作AB 的垂线交AD 的延长线于C . 求证:AD =DC答案:略★★3.已知:如图所示:是两个同心圆,大圆的弦AB 交小圆于CD,求证:AC=BD答案:略★★★4.如图,AB 、CD 是⊙O 的弦,且AB=CD,OM ⊥AB,ON ⊥CD ,垂足分别是点M 、N, BA 、DC 的延长线交于点P . 求证:PA=PC答案:略BADC O ·★★★5.已知:如图,点P 是⊙O 外的一点,PB 与⊙O 相交于点A 、B ,PD 与⊙O 相交于C 、D ,AB=CD . 求证:(1)PO 平分∠BPD ;(2)PA=PC 答案:略★★★6. 已知:如图所示,点P 是⊙O 外的一点,PB 与⊙O 相交于点A 、B ,PD 与⊙O 相交于C 、D ,AB=CD 。
求证:(1)PA=PC ;(2)AE EC答案:略五.作图题★★1.已知弧AB,用直尺和圆规平分这条弧.O DC PABA B。