UASB反应器设计计算
- 格式:doc
- 大小:47.50 KB
- 文档页数:8
UASB相关计算公式UASB(Upflow Anaerobic Sludge Blanket)是一种高效的生物反应器,用于处理含有高浓度有机物的废水。
它的设计和操作依赖于多个关键参数和计算公式。
以下是与UASB反应器相关的几个重要计算公式。
1. 水力停留时间(Hydraulic Retention Time,HRT):HRT是废水在反应器中停留的时间,通常以小时(hr)为单位表示。
它是根据废水的流量(Q)和反应器的有效体积(V)来计算的。
HRT=V/QQ是输入废水流量,V是反应器的有效体积。
2. 有机负荷(Organic Loading Rate,OLR):OLR是反应器中单位体积废水所包含的有机物质量。
通常以kg COD/m³.day表示。
COD(化学需氧量)是一种常用的表示废水有机污染物浓度的参数。
OLR=Q*COD/VQ是输入废水流量,COD是废水的化学需氧量,V是反应器的有效体积。
3. 有机去除率(Organic Removal Rate):有机去除率是指废水中有机物质被反应器去除的百分比。
可以通过测量输入废水中有机物质的浓度(C_in)和输出废水中有机物质的浓度(C_out)来计算。
有机去除率 = (C_in - C_out) / C_in * 100%4. 气体产量(Gas Production):气体产量是指在反应器中产生的可燃气体,通常以m³/day或L/day 表示。
这些可燃气体包括甲烷、氢气等。
气体产量 = V_gas / tV_gas是收集到的气体体积,t是收集气体所需的时间。
这些是UASB反应器的一些基本计算公式。
除了这些公式,还有其他参数和公式用于计算UASB反应器的效率、污泥产率等。
这些公式一般需要根据具体的废水特性和反应器设计进行调整和应用。
UASB设计计算详解UASB (Upflow Anaerobic Sludge Blanket) 是一种高效的厌氧废水处理技术,适用于有机废水的处理。
UASB反应器设计需要考虑污水的处理量、COD(化学需氧量)负荷、有机负荷、气水比等因素。
首先,需要确定UASB反应器的决定性因素,即COD负荷。
COD负荷是指进入反应器的废水中化学需氧量的总量。
常用的计算公式为:COD负荷=废水流量×废水COD浓度接下来,需要计算有机负荷,有机负荷是指单位功率和单位反应器体积的甲烷产生速率。
常用的计算公式为:有机负荷=COD负荷/反应器有效体积然后,需要确定反应器的高度、直径和有效体积。
反应器高度可以根据废水的停留时间来确定,一般情况下,停留时间为4-12小时。
停留时间由废水流量和反应器有效体积决定:停留时间=反应器有效体积/废水流量反应器直径可以通过确定反应器的表面载荷来确定,反应器表面载荷可以根据废水流量和反应器有效面积来计算:表面载荷=废水流量/反应器有效面积有效面积的计算通常需要考虑污泥浓度和污泥沉降速度。
最后,需要确定反应器的气水比。
气水比是指进入反应器的气体和液体的体积比。
一般情况下,气水比为1:1或2:1、气水比的大小决定了甲烷气体的产生速率。
需要注意的是,在UASB反应器设计过程中,还需要考虑反应器的温度、PH值、进水水质和污泥沉积速度等因素。
这些因素对反应器的甲烷产生速率和处理效果都有一定影响。
总结起来,UASB反应器的设计计算主要包括COD负荷、有机负荷、停留时间、表面载荷、反应器直径、反应器高度、反应器有效体积和气水比等参数的计算。
通过合理的设计计算,可以确保UASB反应器能够高效地处理有机废水并产生甲烷气体。
UASB设计计算书1.厌氧塔的设计计算 1.1反应器结构尺⼨设计计算(1)反应器的有效容积设计容积负荷为)//(0.53d m kgCOD N v = 进出⽔COD 浓度)/(20000L mg C = ,E=0.70 V=3084000.570.0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3C 0——进出⽔COD 浓度kgCOD/3m E ——去除率 N V ——容积负荷(2)反应器的形状和尺⼨。
⼯程设计反应器3座,横截⾯积为圆形。
1)反应器有效⾼为m h 0.17=则横截⾯积:)(4950.1784002m hV S =有效==单池⾯积:)(16534952m n S S i ===2) 单池从布⽔均匀性和经济性考虑,⾼、直径⽐在1.2:1以下较合适。
设直径m D 15=,则⾼182.1*152.1*===m D h ,设计中取m h 18= 单池截⾯积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总⾼m H 18=,其中超⾼1.0m单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺⼨:m m H D 1815?=?φ反应器总池⾯积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?=(3)⽔⼒停留时间(HRT )及⽔⼒负荷(r V )v Nh Q V t HRT 722430009000=?==)]./([24.036.176********h m m S Q V r =??==根据参考⽂献,对于颗粒污泥,⽔⼒负荷)./(9.01.023h m m V r -=故符合要求。
1.7.2 三相分离器构造设计计算(1)沉淀区设计根据⼀般设计要求,⽔流在沉淀室内表⾯负荷率)./(7.023'h m m q <沉淀室底部进⽔⼝表⾯负荷⼀般⼩于2.0)./(23h m m 。
UASB反应器根据国内生产运行的经验,在常温条件下,UASB反应器的进水容积负荷选用6.0k g·COD/(cm3·d),COD,BOD的去除率分别为80%和85%,污泥产生率0.10k g·SS/kg·COD,沼气产生率0.41m3/kg·COD.⑴反应区设计计算UASB反应器的有效容积负荷6.0k g·COD/(cm3·d)(配水系统上缘至三相分离器之间的空间)为V=24QS0/N0=115×2000/(6.0×1000)=38(m3) 利用一座UASB反应器,则每座反应器有效容积为38m3,有效水深为4m,则每座反应器面积A=10m2.每座反应器平面尺寸L×K=2m×5m校核水力停留时间t.t=V/Q=38/5=8h(Q=115/24=5m3/h)⑵三相分离器设计计算三相分离沉淀区的表面积同反应区的水平面积,即沉淀区的表面负荷率为q=Q/A=115/(5×1×24)=0.94[m3/(m2·h)]<1.0[m3/(m2·h)] 设上、下三角形集气罩斜面水平倾角分别为55°和60°下三角形集气罩进水缝隙上升,速度Va取1.25m/h,则缝隙面积A1为A1=Q/Va=115/(1×24×1.25)=4(m2)取3条缝隙(即上集气罩有3个),则每条缝隙宽k2为k 2=A1/(L×3)=4/(2×3)=0.67(m)取干舷高度h1=0.5m,h2=0.5m则h3=k1×tg60°=0.5×1.73=0.86(m)沉淀室进水缝隙废水速度V2取1.50m/h,则进水缝隙总面积A2为A 2=Q/ V2=115/(1×24×1.50)=3(m2)每条缝隙宽cdcd= A2/(L×10)=3/(2×6)=0.25(m)>2.0mbd=cd/sin30°=0.25/0.5=0.5(m)取ab=0.4m,上三角形集气罩的位置即可以确定,其高度h4为h 4=(ab×cos60°+k2/2)tg55°=(0.4×0.5+0.67/2)×1.428=0.76(m)(>0.6m,符合要求)h5=ab×sin60°=0.4×0.866=0.35(m)已知上三角形集气罩顶的水深为0.5m,则下三角形集气罩反应器内的位置已确定。
.UASB的设计计算:1.1 设计说明:厌氧反应器一般可采用矩形和圆形结构,对于圆形反应器在同样面积下,其周长比矩形少12%,但是圆形反应器这一优点仅在采用单独池子时才成立,当采用两个或两个以上时,矩形反应器可以采用共用壁。
本工程厌氧反应器进水水质:水量1200 m3/d COD30000mg/l,BOD20000mg/l,SS2000mg/l。
SS去除率19%,CODcr去除率40%,BOD5去除率45%。
本工程选用四座座矩形UASB反应器,钢筋混凝土结构,体积有效系数90%。
1.2 设计计算:1.反应器几何尺寸:(1)容积负荷法:参考工程实际及本工程的水质条件,容积负荷选用9.5kgCOD/( m3/d)。
反应器体积V=QS0/q其中Q—反应器有效体积,m3 q—容积负荷,kgCOD/( m3/d)S0—进水有机物浓度,gCOD/L则V=1200×30/9.5=3789.47 m3选用4座同样规格的池子,则每个池子体积不小于3789.47/4=947.37 m3,假定UASB体积有效系数取90%,则每池总容积不小于1052m3。
(2)池子几何尺寸(以单池为计算模型):一般UASB的生产性装置的有效高度常采用5—8m,浓度较高的废水水力停留时间长时,常采用较大的反应器高度,鉴于此垃圾渗滤液的浓度较高,从微生物代谢及投资费用方面考虑,最大高度为10.5m。
沉淀区水力负荷不超过0.7。
本工程有效高度H取10.5m,超高H2取0.7m。
则表面积A=V/H1其中A—厌氧反应器表面积,m2;H1—厌氧反应器高度,m;A=1052/11.2=93.9 m3。
由于矩形池在同样面积下比正方形的周长大,从而矩形UASB需要更多的建筑材料,但从单池布水的均匀性和经济性考虑,选择正方形的池子较为合理,从实际工程来看,反应器的宽度在20m以下是成功的。
综上:长取10m,宽取10m,则实际表面积为A=10×10=100m3>93.9 m3,表明设计合理。
uasb设计计算UASB设计计算UASB(Upflow Anaerobic Sludge Blanket)是一种高效的生物处理系统,广泛应用于废水处理领域。
UASB设计计算是指对UASB 反应器进行设计和计算,以确保其能够达到预期的处理效果和稳定运行。
一、UASB设计参数UASB设计计算需要考虑的主要参数包括:进水流量、进水COD浓度、反应器有效容积、污泥停留时间(HRT)、温度、pH值等。
这些参数将直接影响到UASB反应器的设计和运行。
进水流量是指单位时间内进入UASB反应器的废水流量,通常以立方米/小时(m³/h)表示。
进水COD浓度是指废水中COD(化学需氧量)的浓度,常以毫克/升(mg/L)表示。
反应器有效容积是指UASB反应器的容积,通常以立方米(m³)表示。
污泥停留时间(HRT)是指废水在UASB反应器中停留的时间,通常以小时(h)表示。
温度和pH值对于UASB反应器内的微生物活动和反应速率有重要影响。
二、UASB设计计算方法1. 确定进水负荷:进水负荷是指单位时间内进入UASB反应器的COD负荷,通常以千克COD/立方米/天(kgCOD/m³/d)表示。
根据进水流量和进水COD浓度,可以计算出进水负荷。
2. 确定反应器有效容积:根据进水负荷和污泥停留时间,可以计算出反应器的有效容积。
通常,污泥停留时间在4-12小时之间,具体取决于废水的特性和要求。
3. 确定污泥量:污泥量是指UASB反应器中所需的污泥量,通常以千克污泥/立方米/天(kgSS/m³/d)表示。
根据进水COD浓度和污泥负荷系数,可以计算出污泥量。
4. 确定气体产生量:UASB反应器在处理废水的过程中,会产生大量的沼气。
根据废水的COD负荷和沼气产量系数,可以计算出气体产生量。
5. 确定反应器尺寸:根据反应器有效容积和反应器高度与直径的比值,可以确定反应器的尺寸。
一般来说,反应器的高度与直径的比值在4-6之间。
原始数据进水流量Q(m3/d)240.00水温℃进水水质COD0BOD0(mg/l)7290.003500.00容积负荷率U 4.00kgCOD/(m3.d)COD去除率%0.70SS去除率%0.60沼气表观产率0.50m3/(去除kgCOD)污泥表观产率0.05kgVSS/(去除kgCOD)VSS/SS0.601、处理后出水水质出水水质COD1BOD1(mg/l)2187.002、UASB反应器有效容积2.1、有效容积V R437.40m32.2、反应器数量 1.002.3、单个容积V R'437.40m32.4、有效高度H10.00m32.5、反应器面积S43.74m22.6、反应器尺寸设定反应器宽B8.00m反应器直径D7.467.00 3、反应器的外形尺寸长 5.00宽直径7.00高重新核算后的面积40.00或者圆形容积400.00或者圆形4、反应器的水力停留时HRT40.00或者圆形5、三相分离器设计沉淀区的表面负荷0.13或者圆形沉淀区的水深h 1.00m停留时间 4.00或者圆形6、回流缝设计设集气罩的水平夹角55.00取保护高度h10.50m 设下三角集气罩高度h30.80m 上三角形顶水深h20.50m 则有b10.56m 设单元三相分离器宽b2.50m 则下部污泥回流缝宽度b2 1.38m 下部污泥回流缝总面积a122.07或者圆形求得下三角形回流缝的上升流速v10.45或者圆形设上部三角形集气罩回流缝宽度b30.64m 总面积a220.47或者圆形求得上部回流缝上升流速v20.24或者圆形7、三相分离器位置的确上三角形集气罩底端到下三角形集气罩斜面的垂直距离CE 上三角形集气罩底端到下三角形集气罩的竖直距离BC 取上三角形集气罩与下三角形集气罩重叠的斜面长度AB 求得上三角形集气罩底端与下三角形集气罩底端的高度h 则确定上三角形集气罩底端到池顶的距离 1.80m 下三角形集气罩底端到池顶的距离3.11m 8、气液分离设计沿下集气罩斜面方向的水流速度va 0.60或者圆形气泡的直径dg设为0.01cm 废水的动力粘滞系数μ=vρ10.01取(β*g/18μ)*(ρ1-ρg )*d²气泡在下集气罩边缘的上升速度vb=0.27cm/s9.59m/h9、核算设计结果BC/AB= 2.28vb/va=16.08或者圆形满足vb/va > BC/AB的要求,可以脱除直径等于或大于0.01cm的气泡。
第二章 啤酒废水处理构筑物设计与计算第一节 格栅的设计计算一、设计说明格栅由一组平行的金属栅条或筛网制成,安装在废水渠道的进口处,用于截留较大的悬浮物或漂浮物,主要对水泵起保护作用,另外可减轻后续构筑物的处理负荷。
二、设计参数取中格栅;栅条间隙d=10mm ;栅前水深 h=0.4m ;格栅前渠道超高 h 2=0.3m 过栅流速v=0.6m/s ; 安装倾角α=45°;设计流量Q=5000m 3/d=0.058m 3/s(一)栅条间隙数(n)max sin Q nbhv=0.058×√(sin45)÷0.01÷0.4÷0.6=20.32 取n=21条式中:Q ------------- 设计流量,m 3/sα------------- 格栅倾角,取450 b ------------- 栅条间隙,取0.01m h ------------- 栅前水深,取0.4mv ------------- 过栅流速,取0.6m/s ;(二)栅槽总宽度(B)设计采用宽10 mm 长50 mm ,迎水面为圆形的矩形栅条,即s=0.01m B=S ×(n-1)+b ×n=0.01×(21-1)+0.01×21 =0.41 m 式中:S -------------- 格条宽度,取0.01m n -------------- 格栅间隙数,b -------------- 栅条间隙,取0.01m(三)进水渠道渐宽部分长度(l 1)设进水渠道内流速为0.5m/s,则进水渠道宽B 1=0.17m, 渐宽部分展开角1取为20°则 l 1=112B B tg=(0.41-0.17)÷2÷tg20 =0.32式中:l1-----------进水渠道间宽部位的长度,mL2----------格栅槽与出水渠道连接处的渐窄部位的长度,m B -------------- 栅槽总宽度,m B 1 -------------- 进水渠道宽度,m 1-------------- 进水渠展开角,度(四)栅槽与出水渠道连接处的渐窄部分长度(l 2)l 2= l 1/2=0.32/2 =0.16m(五)过栅水头损失(h 1)取k=3,β=1.83(栅条断面为半圆形的矩形),v=0.6m/sh o =β×(S ÷b )4/3×V ^2÷2÷g ×sin α=1.83×(0.01÷0.01) 4/3×0.6^2÷2÷9.8×sin45=0.024 mh 1=k ×h 0 =3×0.024 =0.072 m 式中:h 0--------计算水头损失,m h 1---------过格栅水头损失,mk -------- 系数,水头损失增大倍数 β-------- 形状系数,与断面形状有关ξ S -------- 格栅条宽度,m b-------- 栅条间隙,m v -------- 过栅流速,m/s α-------- 格栅倾角,度(六)栅槽总高度(H)取栅前渠道超高h 2=0.3m 栅前槽高H 1=h+h 2=0.7m 则总高度H=h+h 1+h 2=0.4+0.072+0.3 =0.772 m(七)栅槽总长度(L)L=l 1+l 2+0.5+1.0+145H tg=0.32+0.16+0.5+1.0+0.745tg=2.68 m 式中:H 1------格栅前槽高, H 1=h +h 2=0.4+0.3=0.7(八)每日栅渣量(W)取W 1=0.06m 3/103m 3 K 2=1.0则W=12864001000Q W K ⨯⨯⨯=0.058×0.08×86400÷1.5÷1000 =0.27 ㎡/d (采用机械清渣)式中:Q ----------- 设计流量,m 3/s W 1 ---------- 栅渣量(m 3/103m 3污水),取0.1~0.01,粗格栅用小值,细格栅用大值,中格栅用中值.取0.08K 2-----------污水流量总变化系数.第二节调节沉淀池的设计计算一、设计说明啤酒废水的水量和水质随时间的变化幅度较大,为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节,由于啤酒废水中悬浮物(ss)浓度较高,此调节池也兼具有沉淀池的作用,该池设计有沉淀池的泥斗,有足够的水力停留时间,保证后续处理构筑物能连续运行,其均质作用主要靠池侧的沿程进水,使同时进入池的废水转变为前后出水,以达到与不同时序的废水相混合的目的。
UASB反应器的设计计算一、设计说明UASB,即上流式厌氧污泥床,集生物反应与沉淀于一体,是一种结构紧凑,效率高的厌氧反应器。
它的污泥床内生物量多,容积负荷率高,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。
设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,且不存在堵塞问题。
二、设计参数(一)参数选取设计参数选取如下:容积负荷(Nv)=10.2kgCOD/(m3•d);污泥产率0.1kgMLSS/kgCOD;产气率0.5m3/kgCOD(二)设计水质(三)设计水量Q=2500m3/d=104 m3/h=0.029 m3/s三、设计计算(一)反应器容积计算UASB有效容积:V有效=式中:Q ------------- 设计流量,m3/sS0 ------------- 进水COD含量,mg/lNv -------------容积负荷,kgCOD/(m3•d)V有效=2500m3将UASB设计成圆形池子,布水均匀,处理效果好取H=9m采用4座相同的UASB反应器则A1=69.4 m2D=9.4m取D=10m则实际横截面积为=πD2=×3.14×102=78.5m2实际表面水力负荷为=0.6<1.0q1故符合设计要求(二)配水系统设计本系统设计为圆形布水器,每个UASB反应器设36个布水点(1) 参数每个池子流量:Q=104/4=26m3/h(2)设计计算布水系统设计计算草图见下图2.3:圆环直径计算:每个孔口服务面积为:a= =2.2m2a在1~3m2之间,符合设计要求可设3个圆环,最里面的圆环设6个孔口,中间设12个,最外围设18个孔口1)内圈6个孔口设计服务面积:=6×2.2=13.2m2折合为服务圆的直径为:=4.10m用此直径作一个虚圆,在该圆内等分虚圆面积处设一实圆环,其上布6个孔口,则圆的直径计算如下:则d1==2.9m2)中圈12个孔口设计服务面积:S2=12×2.2=26.4m2折合成服务圆直径为:=7.1m中间圆环直径计算如下:π(5.672-d22)=S2则d2=3.92m3)外圈18个孔口设计服务面积:S3=18×2.2=39.6m2折合成服务圈直径为:=10.04m外圆环的直径d3计算如下:π(8.012-d32)=S3=6.24m则d3(三)三相分离器设计三相分离器设计计算草图见下图2.4:(1)设计说明三相分离器要具有气、液、固三相分离的功能。
UASB 的设计计算6.1 UASB 反应器的有效容积(包括沉淀区和反应区)设计容积负荷为)//(0.53d m kgCOD N v =进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V=3028560.585.02.111500m N E QC v =⨯⨯= 式中Q —设计处理流量d m /3C 0—进出水COD 浓度kgCOD/3mE —去除率N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸工程设计反应器3座,横截面积为矩形。
(1) 反应器有效高为m h 0.6=则 横截面积:)(4760.628562m h V S =有效== 单池面积:)(7.15834762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。
设池长m l 16=,则宽m l S b i 9.9167.158===,设计中取m b 10= 单池截面积:)(16010162'm lb S i =⨯==(3) 设计反应器总高m H 5.7=,其中超高0.5m单池总容积:)(1120)5.05.7(160'3'm H S V i i =-⨯=⨯=单池有效反应容积:)(96061603'm h S V i i =⨯=⨯=有效单个反应器实际尺寸:m m m H b l 5.71016⨯⨯=⨯⨯反应器总池面积:)(48031602'm n S S i =⨯=⨯=反应器总容积:)(336031120'3m n V V i =⨯=⨯=总有效反应容积:332856)(28803960m m n V V i >=⨯=⨯=有效有效符合有机负荷要求。
UASB 反应器体积有效系数:%7.8510033602880=⨯% 在70%-90%之间符合要求。
UASB反应器
(1) 设计说明
本工程所处理工业废水属高浓度有机废水,生物降解性好,UASB 反器作为处理工艺的主体,拟按下列参数设计。
设计流量1200 m³/d =50m³/h
进水浓度CODcr=5000mg/L COD去除率为87.5%
容积负荷Nv=6.5kgCOD/(m³•d)
产气率r=0.4m³/kgCOD
污泥产率X=0.15kg/kgCOD
(2)UASB反应器工艺构造设计计算
① UASB总容积计算
UASB总容积:
V = QSr/Nv = 1200×5×87.5%/6.5 = 807.7 m³(3-1)
选用两座反应器,则每座反应器的容积Viˊ= V/2 = 404 m³设UASB的体积有效系数为87%,则每座反应器的实需容积
Vi = 404/87%= 464m³
若选用截面为8m×8m 的反应器两座,则水力负荷约为
0.3m³/(m²•h)<1.0m³/(m²•h)符合要求
求得反应器高为8m,其中有效高度7.5m,保护高0.5m.
② 三相分离器的设计
UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。
对污泥床的正常运行和获得良好的出水水质起十分重要的作用,根据已有的研究和工程经验,三相分离器应满足以下几点要求:
a.液进入沉淀区之前,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响
沉淀效果。
b. 沉淀区的表面水力负荷应在0.7m³/(m²•h)以下,进入沉淀区前,通过沉淀槽底缝隙的流速不大于2.0m/h。
c. 沉淀斜板倾角不小于50°,使沉泥不在斜板积累,尽快回落入反应区内。
d.出水堰前设置挡板以防止上浮污泥流失,某些情况下应设置浮渣清除装置。
三相分离器设计需确定三相分离器数量,大小斜板尺寸、倾角和相互关系。
三相分离器由上下两组重叠的高度不同的三角形集气罩组成。
本设计采用上集气罩为大集气罩,下集气罩为小集气罩。
大集气罩由钢板制成,起集气作用,小集气罩为实心钢筋混凝土结构,实起支撑作用。
取上下三角形集气罩斜面的水平倾角为θ=55°,h2=0.5m
根据图b所示几何关系可得:
b1=h2/tgθ=0.5/tg55°=0.35m
(3-2)
b2=b-2
b1=2.67-2×0.35=1.97m
(3-3)
下三角形集气罩之间污泥回流缝中混合液上升流速v1可用下式计算:
v1 = Q/S1 (3-4)
S1 = b2×l×n = 1.97×8×3 = 47.28 m²(3-5)
= 25/47.28 = 0.53m/h < 2m/h
取CD为0.3m,上三角形集气罩与下三角形集气罩斜面之间回流缝流速v2可用下式计算:
v2 = Q/S2
S2 = CD×l×2n = 0.3×8×2×3 = 14.4 m²
= 25/14.4 = 1.74m/h < 2m/h
满足v1 < v2 < 2.0m/h 的要求
取CE=0.3m,则上三角形集气罩的位置即可确定,且
BC = CE/sin35°= 0.3/sin35°= 0.52m
AB = ( b1-CD)/cos55°= 0.09m
h3 \ = [Abcos55°+(b2-0.5)/2]tg55°
=[0.26cos55°+(1.97-0.5)/2] •tg55°= 1.26m
取水深h1 = 0.8m.
集气罩及各部分的尺寸标注见下图:
气分离效果的校核:
设沼气气泡的直径d=0.008cm, 20℃时,净水的运动粘滞系数υ=0.0101cm2/s,取废水密度ρ1=1.01g/cm³,沼气密度ρ=1.2×10-3g/cm³,碰撞系数β=0.95,动力粘滞系数
µ=υ•ρ=0.0101×1.01=0.0102g/(cm•s)
由于废水的µ一般大于净水,可取废水的µ=0.02g/(cm•s)
则气泡的上升速度vb= βg•(ρ1-ρ) •d²/18µ(3-6)
= 0.95×981×(1.01-1.2×10-3) ×0.008²/(18×0.02)
= 0.167cm/s =6.01m/h
va= Q/S3=25/(0.3×8×6)=1.74m/h
根据以上的计算结果有
BC/AB=0 .52/0.56=2
vb/va =6.01/1.74=3.45
满足vb/va > BC/AB 的要求,则直径大于0.008的气泡均可进入气室.
③ 布水系统的设计
两池共用一根DN150的进水干管,采用穿孔管配水。
每座反应器设4根DN150长6.7m的穿孔管,每两根管之间的中心距为2m,配水孔径采用7φ14mm,孔距为2m,即每根管上设4个配水孔,每个孔的服务面积2m×2m=4m2,孔口向下,穿孔管距反应器底0.20m.
每座反应器共有16个配水孔,若采用连续进水,则每个孔的孔口流
2.11m/s > 2m/s ,符合要求.
估算布水系统的水头损失为0.7m,UASB的水头损失为0.8m,则废水在UASB反应器中的总水头损失为1.5m.
管道布置见图10:
水面低0.6m.
④出水渠的设计计算
每座UASB反应器设四条出水渠,出水渠保持水平,四条出水渠的出水汇入集水渠,再经出水管排出.
a.出水渠: 采用锯齿形出水渠,钢结构.渠宽取0.2m,渠深取
0.3m.
b.三角堰设计计算
每座UASB反应器处理水量7L/s,溢流负荷为1~2L/(m•s)
设计溢流负荷取f=2L/(m•s),则堰上水面总长L= q/f= 7/2= 3.5m (3-7)
设计90°三角堰,堰高 H=50mm,堰口宽 B=100mm,堰上水头h=25mm,则堰口水面宽 b=50mm,三角堰数量 n=L/b=3.5/0.05=70个.设计堰板长为8-0.3=7.7m,共6块,每块堰10个100mm堰口,10
个670mm间隙.堰上水头校核:则每个堰出流率q=0.007/70=1×10-4m³/s
三角堰按90°
计算公式q=1.43h5/2
(3-8)
则堰上水头为h=(q/1.43)0.4=(1×10-4/1.43)
0.4=0.022m
c. 集水渠: 集水渠宽取0.3m, 集水渠底比反应器内
d. 出水管: 取DN150的铸铁管,出水管在集水渠中心底部.出水管中的水再汇入位于走道下的DN200的排水总管.
e.浮渣挡板:为防止浮渣进入曝气池,在出水渠外侧0.3m处设浮渣挡板.挡板深入水面下0.2m,水面上0.025m.
⑤ 排泥管的设计计算
a.排泥量的设计计算
每座UASB的设计流量Q=600m³/d,进水COD浓度为5000mg/L,COD 去除率为87.5%,产泥系数为R=0.15kg干泥/kgCOD,则产泥量
Q=600×5000÷1000×0.875×0.15=394kg干泥/d
设UASB排泥含水率为98%,湿污泥密度为1000kg/m³,则每日产生的湿污泥量Q=394/(1000×2%)=19.7m³/d
则两座UASB的总产泥量
Q0=2×19.7=39.4m³/d
⑥ 沼气管道系统设计计算
a.产气量计算
每座UASB设计流量 Q=25m ³/h
进水CODcr S0=5000mg/L=5kg/m³
COD去除率 E=87.5%
产气率r=0.4 m³/kgCOD
则产气量Gi=Q•S0•Er
(3-9)
=25×5×0.875×0.4=43.75 m ³/h
两座UASB产气量共为G=87.5 m ³/h
b.沼气管道的设计
c.出气管: 根据三相分离器的特点,每一个集气罩分别引一根
出气管,管径为DN100
d.水封罐: 本设计选用D=500mm的水封罐.
e.水封高度 H=H1-HM
f.H1—大集气罩内的压力水头,取为1mH2O
g.HM—沼气柜的压力水头,取为0.4mH2O
h.则H=H1-HM=1-0.4=0.6mH2O
i.取水封罐高度Hˊ=1.0m ,其中超高为0.4m
在水封罐上设有一根进水管,一根放空管,在外面设一液位计以观察罐内水位情况.
气水分离器: 气水分离器起到对沼气干燥作用,选φ500mm×H1800mm.
沼气柜: 根据设计规范要求,沼气柜的容积一般按6―10h的平均产量来计算,本设计选用6h产气量计算,则6h的产气量为W=87.5×6=525m³所以选用550m³的沼气柜 .。