金属线膨胀系数的测定
- 格式:ppt
- 大小:226.00 KB
- 文档页数:15
金属线膨胀系数的测定教学目的:1.掌握用千分表测量微小位移的方法;2.学习测定金属棒线膨胀系数的方法;3.掌握温控仪的使用方法;4.学习PID 调节的原理;5.通过实验了解参数设置对PID 调节过程的影响。
教学内容:1.绝大多数物质具有热胀冷缩特性,在一维情况下,固体受热后长度的增加称为线膨胀。
线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。
2.利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数,测量公式为01L L t α∆=⋅∆。
实验要注意的是:千分表应水平放置,千分表要刚刚接触上金属棒,也不能使接触太紧,否则千分表的读数不会发生变化,一旦开始升温及读数,避免再触动实验仪;为减小系统误差,将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0。
重点难点:1.重点:利用千分表和PID 温控仪来测定铜棒和铝棒的线膨胀系数;2.难点:千分表的放置和读数。
教学设计:1.讲述物质膨胀系数特性的应用(5min )2.讲述线膨胀系数的测量原理(10min )3.介绍千分表和PID 温控仪的使用和使用注意事项(10min )4.讲述实验操作步骤,要特别强调将第1次温度达到平衡时的当前温度T 及千分表读数分别作为t 0和l 0(15min )5.学生自己完成实验,老师辅导(85min )6.检查学生测量的实验数据(10min )作业、实验:写一份完整的实验报告。
实验报告要求:通过测量数据描绘Lt ∆∆的直线图,利用图解法求出线膨胀系数α。
金属线膨胀系数的测定(讲稿)大家都知道绝大多数物质都具有“热胀冷缩”的性质。
这是由于当温度增高时,组成物质的分子间距膨胀增大,这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工中,都必须加以考虑。
否则,将影响结构的稳定性和仪表的精度,甚至会造成工程结构的毁损,仪表的失灵等。
实验四 利用直读式测量仪测定金属的线胀系数【实验目的】利用直读式测量仪测量金属棒的线胀系数; 【实验仪器】DH4608金属热膨胀系数试验仪、不锈钢管、钢卷尺 【实验原理】已知金属的线胀方程为: , 其中 是金属在00C 时的长度。
当温度为 时,当温度为 时, 设金属棒伸长量为 , 则有: 两式相减得: , 其中 为金属的线胀系数。
实验时, 利用DH4608金属热膨胀系数试验仪, 每5℃设定一个控温点, 利用热电偶记录样品上的实测温度和千分尺上的变化值。
根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性, 并利用图形求出斜率, 计算样品(不锈钢管)的线胀系数。
【实验步骤】1.将试验样品(不锈钢管)固定在实验架上, 注意挡板要正对千分尺;2.调节千分尺和挡板的位置, 保证两者无间隙且千分尺有足够的伸长空间;3.打开电源和水泵开关, 每5℃设定一个控温点, 记录样品的实测温度和千分尺上的变化值。
实际操作时, 由于千分尺的指针在不停地转动, 所以在设定的控温点不易准确读数, 从而导致样品加热后的伸长量测量不准确。
具体操作可改为: 在加热过程中, 当观察到千分尺的指针转动匀速时, 在千分尺上设定一个记录起点(比如0格), 记下此时的温度值和数字电压表上的示值作为第一组实验数据。
以后每当千分尺的指针转过50格(或30格)记录一组温度值和数字电压表上的示值, 填入设计的记录表中。
实验结束后再根据铜—康铜热电偶分度表将数字电压表上的示值转换为温度值作为试验样品的实际温度。
4、根据数据 和 , 画出 (作y 轴)- (作x 轴)的曲线图, 观察其线型性。
5、利用图形求出斜率, 计算样品的线胀系数( , 为斜率, 近似为室温下金属棒的有效长度)。
【数据记录举例】固体线胀系数测定数据记录表测量样品: 紫铜管φ10mm ×593mm i温度计读数实测温度ti千分尺读数l i30.0 ℃ 1.17mV ( 29.5℃ ) 0.000 593.0001、电热偶安装座;2、待测样品;3、挡板;4、千分尺 )1(10at l l +=附录:。
金属线膨胀系数的测定实验报告一、实验目的。
本实验旨在通过测定金属线的膨胀系数,探究金属在受热作用下的膨胀规律,并验证线性膨胀系数的概念。
二、实验原理。
金属在受热作用下会发生线性膨胀,其膨胀量与温度变化呈线性关系。
金属线的膨胀量可用以下公式表示:ΔL = αL0ΔT。
其中,ΔL为金属线的膨胀量,α为线性膨胀系数,L0为金属线的原始长度,ΔT为温度变化量。
三、实验器材。
1. 金属线。
2. 热水槽。
3. 温度计。
4. 尺子。
四、实验步骤。
1. 准备金属线,并测量其原始长度L0。
2. 将金属线固定在支架上。
3. 将热水倒入热水槽中,待温度稳定后,记录水温作为初始温度T1。
4. 将金属线放入热水中,测量金属线的膨胀量ΔL。
5. 记录金属线在热水中的最终温度T2。
6. 根据实验数据计算金属线的线性膨胀系数α。
五、实验数据记录。
1. 金属线原始长度L0 = 1m。
2. 初始温度T1 = 25°C。
3. 最终温度T2 = 75°C。
4. 金属线膨胀量ΔL = 5mm。
六、实验结果分析。
根据实验数据计算得到金属线的线性膨胀系数α为:α = ΔL / (L0ΔT) = 5mm / (1m × 50°C) = 1 × 10^-4 /°C。
七、实验结论。
通过本实验的测定和计算,验证了金属线在受热作用下会发生线性膨胀的规律,并得到了金属线的线性膨胀系数α。
实验结果表明,金属线的膨胀量与温度变化呈线性关系,膨胀系数是一个常数,可用于预测金属在不同温度下的膨胀量。
八、实验注意事项。
1. 在实验过程中要小心热水的温度,避免烫伤。
2. 测量金属线的膨胀量时要注意准确度,避免误差。
九、实验总结。
本实验通过测定金属线的膨胀量,验证了金属在受热作用下的线性膨胀规律,得到了金属线的线性膨胀系数α。
实验结果对于理解金属膨胀规律具有重要意义,也为工程应用提供了重要参考。
以上为金属线膨胀系数的测定实验报告。
金属线胀系数的测量1.引言金属材料在物理环境的变化下会产生热胀冷缩的效应,因此,在工业生产和实验研究中要考虑到材料的热膨胀性能。
其中,线膨胀系数是衡量物质在长度方向上的热膨胀的指标。
本文探讨了金属线胀系数的测量方法及其应用。
2.线膨胀系数的定义和计算公式线膨胀系数是指材料在温度变化下单位长度的变化量,通常用α表示。
线膨胀系数可以根据材料的特性来计算,具体计算公式如下:α=ΔL/(L0×ΔT)其中,ΔL表示线材的长度变化量,L0表示线材的初始长度,ΔT表示温度的变化量。
线膨胀系数的单位通常是m/m °C。
3.1 编织网法编织网法是一种相对简单的测量线膨胀系数的方法。
具体操作如下:①先制作一块编织网,其网孔大小应该适合于线膨胀系数的测量。
编织网可用铜网或不锈钢网制作。
②将待测样品嵌入编织网中,并将两端固定在支架上。
③取一个温度计将其固定在样品的中央位置。
④将样品和温度计放入恒温器中,升温至所需温度,使样品达到稳态。
⑤记录样品的长度变化量和温度变化量。
⑥根据线膨胀系数的计算公式计算材料的线膨胀系数。
3.2 拉伸法拉伸法需要使用精密的仪器和设备,比编织网法的测量精度要高。
具体操作步骤如下:①将待测样品插入到仪器的卡槽中,两端各钳紧一个夹具。
②加热样品,同时保持夹具上下的温度相同。
③在进行加热的同时,由于样品被卡在夹具中,因此在材料的线膨胀系数作用下,样品将在长度方向上扩张。
3.3 差异法①将两根相同的样品A和B固定在两个不同的支架上,相隔一段距离,保证两个试样上下温度相等。
②用导线将两个样品连接到直流稳压源上,将其通过电路连接起来。
③在稳定的电流过程中,对试样进行加热,此时会存在两个样品长度的差异,通过测量差异长度就可以计算出材料的线膨胀系数。
4. 线膨胀系数的应用① 材料选择:根据材料的线膨胀系数,可以选择在升温或降温过程中性能更稳定的材料。
② 构件设计:针对长大膨胀系数较大的构件,在其设计中要考虑到升温对构件的影响。
金属丝线膨胀系数测量
金属丝线的膨胀系数是指在温度变化时,金属丝线长度的改变与温度变化之间的关系。
膨胀系数可以用来计算金属丝线在不同温度下的长度变化情况,从而对材料的应用进行合理设计。
测量金属丝线的膨胀系数通常可以通过实验方法进行,具体步骤如下:
1. 准备金属丝线样品:选择一根长度较长的金属丝线作为样品,并确保其直径均匀。
2. 固定金属丝线样品:将金属丝线固定在两个不同的支架上,使其处于悬挂状态。
3. 测量初始长度:使用一把测量仪器(如游标卡尺)测量金属丝线样品的初始长度。
4. 升温:将金属丝线样品置于一个控制温度的实验设备中,并逐渐升高温度。
5. 测量变化长度:在每个温度点,使用测量仪器测量金属丝线的长度变化。
可以通过将测量仪器的一端固定在支架上,另一端轻轻触碰金属丝线来进行测量。
6. 计算膨胀系数:根据测量的数据,可以使用下列公式计算膨胀系数:
α = (ΔL/L0) / ΔT
其中,α为膨胀系数,ΔL为长度变化量(终态长度减去初始长度),L0为初始长度,ΔT为温度变化量。
通过上述测量方法,可以得到金属丝线在不同温度下的长度变化情况,并进一步计算出膨胀系数。
不同金属的膨胀系数不同,因此可以对比不同金属的膨胀性能,选择合适的金属材料进行应用。
测量金属线膨胀系数的方法金属的膨胀系数是指在单位温度变化下,金属材料单位长度的线膨胀量。
测量金属线膨胀系数的方法有多种,下面将介绍其中几种常用的方法。
1. 热胀冷缩法热胀冷缩法是一种常用的测量金属线膨胀系数的方法。
该方法利用热胀冷缩的原理,通过测量金属材料在不同温度下的长度变化来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将装置置于恒温箱中,并将温度控制在不同的温度下,如20℃、30℃、40℃等。
(3)测量每个温度下金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
2. 拉伸法拉伸法也是一种常用的测量金属线膨胀系数的方法。
该方法通过施加不同的拉力来测量金属材料在不同温度下的长度变化,进而计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在拉伸装置上。
(2)然后,通过拉伸装置施加不同的拉力,使金属线逐渐延长。
(3)同时,利用测量装置测量金属线的长度,并记录下来。
(4)根据测得的数据,计算金属线膨胀系数的值。
公式为:膨胀系数 = (L2 - L1)/(L1 × ΔT),其中L1为初始长度,L2为不同温度下的长度变化,ΔT为温度变化。
3. 光栅法光栅法是一种利用光栅原理测量金属线膨胀系数的方法。
该方法利用光栅装置对金属线进行光学测量,通过测量金属线在不同温度下的光栅位移来计算金属线膨胀系数。
具体操作步骤如下:(1)首先,选择一段金属线材料,并将其固定在测量装置上。
(2)然后,将光栅装置对准金属线,使光栅的光束垂直射向金属线。
(3)随后,通过调整光栅装置,使光栅与金属线的光斑重合。
(4)测量不同温度下的光栅位移,并记录下来。
(5)根据测得的数据,计算金属线膨胀系数的值。
金属线膨胀系数的测定实验数据金属线膨胀系数的测定实验数据,这可是个大学物理实验中的重头戏啊!今天,我就来给大家讲讲这个实验的一些趣事。
咱们得了解一下什么是金属线膨胀系数。
简单来说,就是金属线在高温下膨胀的程度。
这个系数可是关系到很多领域哦,比如航空航天、汽车制造等等。
所以,学会测定金属线膨胀系数,对于我们的日常生活和工作都是非常有帮助的。
那么,接下来我就带大家一步一步地来看看这个实验的过程吧。
我们需要准备一些材料,比如金属线、千分尺、温度计、烤箱等等。
然后,我们就可以开始测量了。
第一步,我们要先测量一下金属线的初始长度。
这一步可不能马虎哦,因为后面的测量结果都是基于这个初始长度的。
接着,我们要把金属线放入烤箱中进行加热。
这里的加热温度可不是随便设定的,得根据实验要求来定。
不过,不用担心,一般来说,我们都是在标准温度下进行的。
第二步,等到金属线达到预定温度后,我们就可以开始测量它的长度了。
这一步也是非常重要的,因为它直接关系到金属线膨胀后的长度。
我们可以用千分尺来测量金属线的长度,然后记录下来。
第三步,等金属线冷却下来后,我们再次用千分尺测量它的长度。
这时候,你可能会问:“两次测量的结果不一样怎么办?”别着急,这个问题其实很简单。
因为金属线在加热过程中是会发生膨胀的,所以第二次测量的结果会比第一次长一些。
这就是金属线膨胀系数的含义所在。
最后一步,我们就可以计算出金属线的膨胀系数了。
这个系数的计算公式很简单:(膨胀后长度初始长度) / 初始长度 * 1000。
当然啦,具体的计算过程还得根据实验数据来确定。
好了,经过这么一番折腾,我们终于得到了金属线的膨胀系数。
是不是感觉很有成就感呢?不过,这个实验也有一些小插曲哦。
比如说,有一次我在测量金属线的长度时,手一抖就把千分尺弄坏了。
当时我可真是心急如焚啊!好在最后还是想出了解决办法,才顺利完成了实验。
还有一次,我在加热金属线时,不小心把它烧焦了。
当时我可是傻眼了,不知道该怎么办才好。