高考高一新课标数学基础知识归纳课后练习答案
- 格式:doc
- 大小:411.00 KB
- 文档页数:6
高中数学新人教版必修一知识讲解及练习附答案《函数》全章复习与巩固【巩固练习】1.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有( )。
A.函数()f x 是先增后减 B. 函数()f x 是先减后增C.函数()f x 在R 上是增函数D. 函数()f x 在R 上是减函数2.二次函数2y ax bx c =++中,0ac <,则函数零点个数是( )。
A. 1个B. 2个C. 0个D. 无法确定3.当(]0,5x ∈时,函数2()34f x x x c =-+的值域为( )。
A. [](0),(5)f fB. 2(0),()3f f ⎡⎤⎢⎥⎣⎦C. 2(),(5)3f f ⎡⎤⎢⎥⎣⎦ D. [],(5)c f4.函数1y x =的定义域为( )A.[]4,1- B . [)4,0- C. (]0,1 D. [)(]4,00,1-5.设集合{}{}|06,|02A x x B y y =≤≤=≤≤,则从A 到B 的对应法则f 是映射的是()A.:3f x y x →=B. :f x y x →=C. 1:2f x y x →=D. 1:3f x y x→= 6.设a 为常数,函数2()43f x x x =-+.若()f x a +为偶函数,则a 等于( )A.-2B. 2C. -1D. 17.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A.)2()1()23(f f f <-<- B.)2()23()1(f f f <-<- C.)23()1()2(-<-<f f f D. )1()23()2(-<-<f f f8. 设函数21,0()21,0x x f x x x ⎧->=⎨-+<⎩ ,. 若0()3f x >,则0x 的取值范围是( )A. ()(),21,-∞-+∞B. ()(),12,-∞-+∞C. ()(),21,-∞--+∞D. ()(),12,-∞+∞9.若函数2()f x x ax b =++的零点是2和4-,则a = ,b = .10. 若(2)()()x x m f x x ++=为奇函数,则实数m =______ .11.设221,||1()1,||1x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则f = ,5()2f f ⎡⎤=⎢⎥⎣⎦ .12.函数221y x x =-++在区间[]3,a -上是增函数,则a 的取值范围是 .13. 已知函数f(x)=-x 2+2ax-a 2+1(1)若函数f(x)在区间[0,2]上是单调的,求实数a 取值范围;(2)当x ∈[-1,1]时,求函数f(x)的最大值g(a),并画出最大值函数y=g(a)的图象.14.已知函数[]2()22,5,5f x x ax x =++∈-.① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.15.“依法纳税是每个公民应尽的义务”.2008年3月1日开始实施新的个人所得税方案,国家征收个人所得税是分段计算,总收入不超过2000元,免征个人工资薪金所得税;超过2000元部分征税,设全月纳税所得额为x(1)若应纳税额为()f x ,试用分段函数表示1~3级纳税额()f x 的计算公式;(2)某人2008年10月份工资总收入3200元,试计算这个人10月份应纳税多少元?(3)某人2009年1月份应缴纳此项税款26.78元,则他当月工资总收入介于( ).A .2000~2100元B .2100~2400元C .2400~2700元D .2700~3000元【答案与解析】1.【答案】C【解析】因为()()0f a f b a b ->-,所以有0()()0a b f a f b ->⎧⎨->⎩ 或0()()0a b f a f b -<⎧⎨-<⎩,即()()a b f a f b >⎧⎨>⎩或()()a b f a f b <⎧⎨<⎩,由增函数的定义知,选C 。
高中数学必修1课后习题答案第一章集合与函数概念练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x === (3)3∉B2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <, 所以不等式453x -<的解集为{|2}x x <.练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; 4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ; (2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ; (3)因为4与10的最小公倍数是20,所以AB =.练习(第11页)1解:{3,5,6,8A B == ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B == .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=- .3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð,则(){2,4}U A B = ð,()(){6}U U A B = 痧.习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数. 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{01,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ;{1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥ ,{|34}A B x x =≤< . 7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3B C = ,{3}B C = ,则(){1,2A BC= ,(){1,2,3,4,5,6,7,8}A B C = .9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð得(){|2,10}R A B x x x =≤≥ 或ð, (){|3,7}R A B x x x =<≥ 或ð,(){|23,710}R A B x x x =<<≤< 或ð,(){|2,3710}R A B x x x x =≤≤<≥ 或或ð.B 组1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集. 2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.解:显然{0,1,2,3,4,5,6,7,8,U =,由U A B = ,得U B A ⊆ð,即()U UA B B =痧,而(){1,3,5,7U A B = ð,得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =.练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=; (2)由2()32f x x x=+,得22()3232f a a a a a=⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=. 3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.练习(第23页)1.解:, y ==,且050x <<, 即(050)y x =<<. 2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零; 图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为sin 60=,所以与A 中元素60相对应的B 中的元素是2; 因为sin 452= ,所以与B 中的元素2相对应的A 中元素是45.习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且. 2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (2)2()f x x =的定义域为R ,而4())g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (3)2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞ ,值域是(,0)(0,)-∞+∞ ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2()32)(2)852f =⨯--++即(8f =+; 同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++; 22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++; 22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-; (3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程2x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c=-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8. 7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x =>,10(0)x y y=>, 由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,x y dx y==+,得20)l =,即0)l d => 9.解:依题意,有2()2dx vt π=,即24vx t dπ=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个. 分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x和点(5,)y不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)步行的路程为12x -,得1235xt -=+,(012)x ≤≤,即125x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x +=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2) 函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->, 即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0xx x x >-<,得12()()0f x f x -<, 即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-, 当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当16240502()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+, 即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上增函数, 所以2min ()(2)2220g x g ==-⨯=. 2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =, 即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->, 因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等 即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B = ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭ ,即A C =∅ ; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭ ;则39()(){(0,0),(,)}55A B B C =- . 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞ .7.解:(1)因为1()1x f x x -=+,所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x -=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=; (2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x =-. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤. 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x = 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8A B = , 集合A B 里除去()U A B ð,得集合B , 所以集合{5,6,7,8,9}B =. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)因为()f x axb =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++得22121212121()(2)()242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++, 2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+,所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-, 又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数. 7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
高中数学新人教版必修一知识讲解及练习附答案《函数》全章复习与巩固编稿:审稿:【学习目标】1.会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.2.能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;3.求简单分段函数的解析式;了解分段函数及其简单应用;4.理解函数的单调性、最大(小)值及其几何意义;结合具体函数了解奇偶性的含义;5.理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系;6.能运用函数的图象理解和研究函数的性质.【知识网络】【要点梳理】要点一:关于函数的概念1.两个函数相等的条件用集合与对应的语言刻画函数,与初中的“用变量的观点描述函数”实质上是一致的.函数有三要素——定义域、值域、对应关系,它们是不可分割的一个整体.当且仅当两个函数的三要素完全相同时,这两个函数相等.2.函数的常用表示方法函数的常用表示方法有:图象法、列表法、解析法.注意领会在实际情境中根据不同的需要选择恰当的方法表示函数.3.映射设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x(原f x(象)与之对应,那么就称对应f:A→B为从集合A到集象),在集合B中都有唯一确定的元素()合B的一个映射.由映射定义知,函数是一种特殊的映射,即函数是两个非空的数集间的映射.4.函数的定义域函数的定义域是自变量x 的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约.其题型主要有以下几种类型:(1)已知()f x 得函数表达式,求定义域; (2)已知()f x 的定义域,求[]()f x ϕ的定义域,其实质是由()x ϕ的取值范围,求出x 的取值范围;(3)已知[]()fx ϕ的定义域,求()f x 的定义域,其实质是由x 的取值范围,求()x ϕ的取值范围.5.函数的值域由函数的定义知,自变量x 在对应法则f 下取值的集合叫做函数的值域. 函数值域的求法:(1)与二次函数有关的函数,可用配方法(注意定义域);(2)形如y ax b =+t =,转化成二次函数再求值域(注意0t ≥);(3)形如(0)ax by c cx d+=≠+的函数可借助反比例函数求其值域,若用变量分离法求值域,这种函数的值域为|a y y c ⎧⎫≠⎨⎬⎩⎭; (4)形如22ax bx cy mx nx p++=++(,a m 中至少有一个不为零)的函数求值域,可用判别式求值域. 6.函数的解析式函数的解析式是函数的一种表示方法,求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是求出函数的定义域.求函数解析式的主要方法:已知函数解析式的类型时,可用待定系数法;已知复合函数[]()f g x 的表达式时,可用换元法,此时要注意“元”的取值范围;若已知抽象函数表达式,则常用解方程组、消参的方法求出()f x .要点二:函数的单调性(1)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数.(2)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.(3)若函数()f x 在某个区间上总是递增(或递减)的,则该区间是函数的一个单调增(或减)区间.若函数()f x 在整个定义域上总是递增(或递减)的,则称该函数为单调增(或减)函数. 与函数单调性有关的问题主要有:由函数单调性定义判断或证明某一个函数在一个区间的单调性;通过图象或运用复合函数的单调性原理求函数的单调区间;应用函数的单调性证明不等式、比较数的大小、判断某些超越方程根的个数等.要点三:函数的奇偶性(1)若一个函数具有奇偶性,则它的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,那么它就失去了是奇函数或是偶函数的条件,即这个函数既不是奇函数也不是偶函数.(2)若奇函数()y f x =的定义域内有零,则由奇函数定义知(0)(0)f f -=-,即(0)(0)f f =-,所以(0)0f =.(3)奇、偶性图象的特点如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则它的图象是以y 轴为对称轴的对称图形;反之,如果一个函数的图象是y 轴为对称轴的轴对称图形,则这个函数是偶函数.要点四:图象的作法与平移(1)根据函数表达式列表、描点、连光滑曲线; (2)利用熟知函数图象的平移、翻转、伸缩变换; (3)利用函数的奇偶性,图象的对称性描绘函数图象. 要点五:一次函数和二次函数 1.一次函数(0)y kx b k =+≠,其中y k x∆=∆. 2.二次函数二次函数2(0)y ax bx c a =++≠,通过配方可以得到2(),y a x h k a =-+决定了二次函数图象的开口大小及方向.顶点坐标为(),h k ,对称轴方程为x h =.对于二次函数2224()()24b ac b f x ax bx c a x a a-=++=++. 当0a >时,()f x 的图象开口向上;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递减的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递增的;当2b x a =-时,函数取得最小值244ac b a-. 当0a <时,()f x 的图象开口向下;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递增的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递减的;当2b x a =-时,函数取得最大值244ac b a-. 要点六:函数的应用举例(实际问题的解法)(1)审题:弄清题意、分清条件和结论、理顺数量关系;(2)建模:将文字语言转化成数学语言,利用相应的数学知识模型; (3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论,还原为实际问题的意义. 求解函数应用问题的思路和方法,我们可以用示意图表示为:要点七:函数与方程(1)对于函数()()y f x x D =∈,我们把使()0f x =得实数x 叫做函数()()y f x x D =∈的零点. (2)确定函数()y f x =的零点,就是求方程()0f x =的实数根.(3)一般地,如果函数()y f x =在区间[],a b 上的图象是连续不间断的一条曲线,并且()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内有零点,即存在()0,x a b ∈,使得0()0f x =,这个0x 也就是方程()0f x =的根.(4)一般地,对于不能用公式法求根的方法()0f x =来说,我们可以将它与函数()y f x =联系起来,并利用函数的性质找出零点或零点所在的区间,从而求出方程的根,或者用二分法求出方程的近似解.判断函数在某区间有零点的依据:对于一些比较简单的方程,我们可以通过公式等方法进行解决,对于不能用公式解决的方程,我们可以把这些方程()0f x =与函数()y f x =联系起来,并利用函数的图象和性质找零点,从而求出方程的根.对于如何判断函数在某区间内是否是零点的问题,最关键的是要把握两条:其一,函数的图象在某区间是否是连续不间断的一条曲线;其二,该函数是否满足在上述区间的两个端点处,函数值之积小于0.(5)在实数范围内,二次函数2(0)y ax bx c a =++≠的零点与二次方程20(0)ax bx c a ++=≠的根之间有密切关系.①0∆>,方程20(0)ax bx c a ++=≠有两个实根,其对应二次函数有两个零点; ②0∆=,方程20(0)ax bx c a ++=≠有一个二重根,其对应二次函数有一个二重零点; ③0∆<,方程20(0)ax bx c a ++=≠无根,其对应二次函数无零点. 【典型例题】类型一:映射例1.设集合{(,)|,}A B x y x y ==∈∈R R ,f 是A 到B 的映射,并满足:(,)(,)f x y xy x y →--. (1)求B 中元素(3,-4)在A 中的原象; (2)试探索B 中有哪些元素在A 中存在原象;(3)求B 中元素(a ,b )在A 中有且只有一个原象时,a ,b 所满足的关系式.【思路点拨】本例是一道与方程综合的题目,关键是将题目转化为我们所熟悉的映射的知识. 【解析】(1)设(x ,y )是(3,-4)在A 中的原象, 于是34xy x y -=⎧⎨-=-⎩,解得13x y =-⎧⎨=⎩或31x y =-⎧⎨=⎩,∴(―3,4)在A 中的原象是(―1,3)或(―3,1). (2)设任意(a ,b )∈B 在A 中有原象(x ,y ), 应满足 xy a x y b -=⎧⎨-=⎩①②由②可得y=x ―b ,代入①得x 2―bx+a=0. ③ 当且仅当Δ=b 2―4a ≥0时,方程③有实根.∴只有当B 中元素满足b 2-4a ≥0时,才在A 中有原象.(3)由以上(2)的解题过程知,只有当B 中元素满足b 2=4a 时,它在A 中有且只有一个原象. 【总结升华】高考对映射考查较少,考查时只涉及映射的概念,因此我们必须准确地把握映射的概念,并灵活地运用它解决有关问题.举一反三:【变式1】 已知a ,b 为两个不相等的实数,集合2{4,1}M a a =--,2{41,2}N b b =-+-,:f x x →表示把M 中的元素x 映射到集合N 中仍为x ,则a+b 等于( )A .1B .2C .3D .4 【答案】 D【解析】 由已知可得M=N ,故222242420411420a a a a b b b b ⎧⎧-=--+=⎪⎪⇒⎨⎨-+=--+=⎪⎪⎩⎩,a 、b 是方程x 2-4x+2=0的两根,故a+b=4.类型二:函数的概念及性质【高清课堂:集合与函数性质综合377492 例2】例2.设定义在R 上的函数y = f (x )是偶函数,且f (x )在(-∞,0)为增函数.若对于120x x <<,且120x x +>,则有 ( )A .12(||)(||)f x f x <B .21()()f x f x ->-C .12()()f x f x <-D .12()()f x f x -> 【答案】D【解析】因为120x x <<,且120x x +>,所以21||||x x >,画出y = f (x )的图象,数形结合知,只有选项D 正确.【总结升华】对函数性质的综合考查是高考命题热点问题.这类问题往往涉及函数单调性、奇偶性、函数图象的对称性,以及题目中给出的函数性质.解决这类问题的关键在于“各个击破”,也就是涉及哪个性质,就利用该性质来分析解决问题.举一反三:【变式1】下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =-C .1y x=D .||y x x =【答案】D【解析】奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 【变式2】 定义在R 上的偶函数f (x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有2121()()0f x f x x x -<-,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 【答案】A【解析】由题知,()f x 为偶函数,故(2)(2)f f =-,又知x ∈[0,+∞)时,()f x 为减函数,且3>2>1,∴(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<.故选A .例3.设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=( ) A .{x|x <-2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|x <-2或x >2} 【答案】 B【解析】 当x <0时,-x >0,∴33()()88f x x x -=--=--, 又()f x 是偶函数,∴3()()8f x f x x =-=--,∴338, 0()8, 0x x f x x x ⎧-≥⎪=⎨--<⎪⎩,∴33(2)8, 0(2)(2)8, 0x x f x x x ⎧--≥⎪-=⎨---<⎪⎩,30(2)80x x ≥⎧⎨-->⎩或30(2)80x x <⎧⎨--->⎩. 解得x >4或x <0,故选B .例4.设函数()0)f x a =<的定义域为D ,若所有点(,())s f t (,)s t D ∈构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定 【答案】 B【解析】 依题意,设关于x 的不等式ax 2+bx+c ≥0(a <0)的解集是[x 1,x 2](x 1<x 2),且12()()0f x f x ==,22140)x x b ac a-=->-,()f x =的最大值是=s ∈[x 1,x 2]的取值一定时,()f t 取遍⎡⎢⎢⎣中的每一个组,相应的图形是一条线段;当s 取遍[x 1,x 2]中的每一个值时,所形成的图形是一个正方形区域(即相当于将前面所得到的线段在坐标平面内平移所得),因此有0a =>-,a -=a <0,因此a=-4,选B 项.举一反三:【变式1】若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1) 【答案】 B【解析】 要使()g x 有意义,则02210x x ≤≤⎧⎨-≠⎩,解得0≤x <1,故定义域为[0,1),选B .例5.已知函数y =M ,最小值为m ,则mM的值为( )A .14 B .12C .22D .32【答案】 C【解析】 函数的定义域为[-3,1].又22242(1)(3)4223424(1)y x x x x x =+-+=+--+=+-+. 而204(1)2x ≤-+≤,∴4≤y 2≤8.又y >0,∴222y ≤≤.∴22M =,m=2.∴22m M =.故选C 项. 举一反三:【变式1】函数221x y x =+(x ∈R )的值域是________.【答案】[0,1) 【解析】(1)注意到x 2≥0,故可以先解出x 2,再利用函数的有界性求出函数值域.由221x y x =+,得21y x y=-,∴01y y ≥-,解之得0≤y <1.故填[0,1).例6.设函数()|24|1f x x =-+. (1)画出函数()y f x =的图象;(2)若不等式()f x ax ≤的解集非空,求a 的取值范围.【解析】 (1)由于25, 2()23, 3x x f x x x -+<⎧=⎨-≥⎩,则函数()y f x =的图象如图所示.(2)由函数()y f x =与函数y=ax 的图象可知,当且仅当12a ≥或a <―2时,函数()y f x =与函数y=ax 的图象有交点.故不等式()f x ax ≤的解集非空时,a 的取值范围为1(,2)[,)2-∞-+∞.举一反三:【变式1】 直线y=1与曲线y=x 2-|x|+a 有四个交点,则a 的取值范围是________. 【答案】 514a <<【解析】 如图,作出y=x 2-|x|+a 的图象,若要使y=1与其有四个交点,则需满足114a a -<<,解得514a <<.类型三:函数的零点问题例7.若函数()y f x =在区间(-2,2)上的图象是连续的,且方程()0f x =在(-2,2)上仅有一个实根0,则(1)(1)f f -⋅的值( )A .大于0B .小于0C .等于0D .无法确定 【答案】D【解析】根据连续函数零点的性质,若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,即方程()0f x =在(-1,1)内有根;反之,若方程()0f x =在(-2,2)内有实根,不一定有(1)(1)0f f -⋅<,也有可能(1)(1)0f f -⋅>.【总结升华】若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,但当()f x 在(-1,1)内有零点时,却不一定总有(1)(1)0f f -⋅<.举一反三:【变式1】若函数2()f x x ax b =++的零点是2和4-,则a = ,b = . 【答案】2,8a b ==-【变式2】若函数()0f x ax b =+=有一个零点是2,那么函数2()g x bx ax =-的零点是 . 【答案】10,2-类型四:函数性质的综合应用 例8. 已知函数2()af x x x=+(x ≠0,常数a ∈R ). (1)讨论函数()f x 的奇偶性,并说明理由;(2)若函数()f x 在x ∈[2,+∞)上为增函数,求a 的取值范围.【思路点拨】(1)对a 进行分类讨论,然后利用奇函数的定义去证明即可.(2)由题意知,任取2≤x 1<x 2,则有12()()0f x f x -<恒成立,即可得a 的取值范围.【解析】 (1)当a=0时,2()f x x =,对任意x ∈(-∞,0)∪(0,+∞),22()()()f x x x f x -=-==,∴()f x 为偶函数.当a ≠0时,2()af x x x=+(a ≠0,x ≠0), 取x=±1,得(1)(1)20f f -+=≠, ∴(1)(1)f f -≠-,(1)(1)f f -≠,∴函数(1)(1)f f -≠既不是奇函数,也不是偶函数. (2)解法一:设2≤x 1<x 2,2212121212121212()()[()]x x a a f x f x x x x x x x a x x x x --=+--=⋅+-,要使函数()f x 在x ∈[2,+∞)上为增函数,必须12()()0f x f x -<恒成立.∵x 1-x 2<0,x 1 x 2>4,即a <x 1 x 2 (x 1+ x 2)恒成立.又∵x 1+ x 2>4,∴x 1x2(x 1+ x 2)>16. ∴a 的取值范围是(-∞,16].解法二:当a=0时,2()f x x =,显然在[2,+∞)上为增函数. 当a <0时,反比例函数ax在[2,+∞)上为增函数, ∴2()af x x x=+在[2,+∞)上为增函数. 当a >0时,同解法一.【总结升华】 函数的奇偶性与单调性是函数的重要性质,因而也是高考命题的热点.应运用研究函数的奇偶性与单调性的基本方法,来分析解决问题.举一反三:【高清课堂:集合与函数性质综合377492 例5】 【变式1】已知函数1()f x kx x=-,且f (1)=1. (1)求实数k 的值及函数的定义域;(2)判断函数在(0,+∞)上的单调性,并用定义加以证明. 【解析】(1)(1)1,11,2f k k =∴-=∴=,1()2f x x x∴=-,定义域为:()(),00,-∞+∞.(2)在(0,+∞)上任取1212,,x x x x <且,则12121211()()22f x f x x x x x -=--+=12121()(2)x x x x -+1212121,0,20x x x x x x <∴-<+> 12()()f x f x ∴<所以函数1(2)2f x x=-在()0,+∞上单调递增. 类型五:函数的实际应用例9.某桶装水经营部每天的房租、人员工资等固定资本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表:请根据以上数据作出分析,这个经营部怎样定价能获得最大利润? 【答案】11.5 1490【思路点拨】 由题目可获取以下主要信息:(1)已知固定成本200元/天,水进价5元/桶;(2)用表格体现出了售价与日销售量的关系;(3)解决利润最大问题.解决本题可先分析表格,从中找到单价每增加1元,则日销售量就减少40桶,然后设出有关未知量,建立函数模型,进而解决问题. 【解析】 设每桶水在原来的基础上上涨x 元,利润为y 元,由表格中的数据可以得到:价格每上涨1元,日销售量就减少40桶,所以涨价x 元后,日销售的桶数为:480-40(x -1)=520-40x >0,所以0<x <13,则利润:213(52040)2004014902y x x x ⎛⎫=--=--+ ⎪⎝⎭.(0<x <13)故当x =6.5时,利润最大,即当水的价格为11.5元时,利润最大值为1490元.【总结升华】列表法是给出函数关系的一个重要形式,通过“利润=收入-支出”这一实际意义建立变量之间的关系.运用二次函数模型,常解决一些最大(小)值问题,对生产生活等问题进行优化.举一反三:【变式1】某公司每年需购买某种元件8000个用于组装生产,每年分n 次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?【思路点拨】本题的关键是根据题意列出函数关系式,然后利用配方法求函数的最大值. 【答案】4【解析】设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入,设为c 元,则 8000150022y n c n =+⨯⨯+ 800016500500()n c n c n n=++=++ 24000c =++,=,即n=4时,y取得最小值且y min=4000+c.所以分4次进货可使得每年购买和贮存元件总费用最低.【总结升华】题中用了配方法求最值,技巧性高,另外本题还可利用函数16y xx=+在(0,+∞)上的单调性求最值.。
高中数学必修1基础知识过关100题带答案1.方程组3x=6,x+2y=6的解构成的集合是{2}。
2.不同于另外三个集合的是C.{x=1}。
3.若函数f(x)=ax^2-x-1有且仅有一个零点,则实数a的值为1/4.4.是空集的是C.{x|x^2<0}。
5.能使A⊇B成立的实数a的取值范围是B.{a|3<a<4}。
6.若B⊆A,则实数m=4.7.M∪N={3,5,6,7,8}。
8.A∩B={x|x>-1}。
9.M∩N={0}。
10.A∩B={x|-1<x≤3}。
11.A∩(∁B U)=C.{3}。
12.集合C={x|x≥1/2}。
则f(x)=2x+1,x>2或x<-427.若f(x)=ax+b,且f(1)=2,f(2)=3,则a=(),b=().28.已知函数f(x)=x2-4x+3,g(x)=2x-1,则f(g(x))=()A.4x2-12xB.4x2-8x-1C.4x2-4x-1D.4x2-4x+129.已知函数f(x)=x2-x+1,g(x)=x+1,则f(g(x))=() A.x2+2xB.x2+x+1C.x2+2x+1D.x2-2x+130.已知函数f(x)=x3+1,g(x)=x-1,则f(g(x))=()A.x3-x2+xB.x3-3x2+3xC.x3-3xD.x3-2x2+x31.已知函数f(x)=x+1,g(x)=2x-1,则f(g(x))=()A.2xB.2x+1C.2x+2D.2x-132.已知函数f(x)=2x-1,g(x)=x2,则f(g(x))=()A.2x2-1B.2x4-1C.2x2-2D.2x4-2x+133.已知函数f(x)=x2-1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+2x-1D.x2+x34.已知函数f(x)=x+1,g(x)=x2,则f(g(x))=()A.x2+xB.x2+x+1C.x2+2xD.x2+2x+135.已知函数f(x)=x2+1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+x+2D.x2+2x+236.已知函数f(x)=|x|,g(x)=x2,则f(g(x))=()A.|x2|B.x2C.x2+1D.|x2|+137.已知函数f(x)=x2,g(x)=|x|,则f(g(x))=()A.x4B.x2C.|x|2D.|x|27.已知函数f(x) = {2x。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
高一数学知识点和题目及答案数学是一门抽象而又具有逻辑性的学科,对于高中生来说,数学无疑是他们学习中的一大主角。
尤其是高一阶段,数学知识点的学习和理解对于建立起扎实的数学基础至关重要。
本文将从数学基本概念、函数与方程、几何等方面介绍高一数学的知识点,并提供一些典型题目及答案。
一、数学基本概念在高中数学中,数学基本概念是起点,也是整个数学学习过程中的基础。
在高一阶段,学生需要掌握和理解的数学基本概念有数的分类、数的整除与倍数、数的比较、有理数与无理数等。
例如,下列是一道关于数的分类的题目:题目:将以下数按从小到大的顺序排列:-3, -5/2, -1/4 ,1,√2答案:-5/2, -3, -1/4 ,√2, 1二、函数与方程函数与方程是高一数学中的重要内容,它们是我们描述自然界和社会现象的有力工具。
在高一阶段,学生需要学习函数的概念与性质、函数的表示与应用、一次函数、二次函数等知识点。
下面是一个关于二次函数的示例题目:题目:已知二次函数f(x)的图象经过点(-1,2),并且在点(2,-3)处的切线方程为y = 3x - 9,求函数f(x)的解析式。
答案:f(x) = -x² + x + 1三、几何几何作为数学的一个重要分支,不仅培养了学生的空间想象力,还锻炼了学生的逻辑思维和证明能力。
高一阶段的几何学习内容主要包括平面几何中的基本概念与性质、相似三角形、勾股定理、平行线与垂直线等。
下面是一个关于相似三角形的题目:题目:如图,在△ABC中,AD是BC边上的高,E是AB边上的中点,若AD = 6 cm,BC = 10 cm,求BE的长度。
A/\/ \D C| || | 10 cm|____|B答案:BE = 2 cm综上所述,高一数学的知识点涵盖广泛,需要学生在学习过程中进行逐一掌握和理解。
通过对数学基本概念、函数与方程、几何等方面的学习,学生能够建立起扎实的数学基础,并在将来的学习和应用中发挥重要作用。
高中数学新人教版必修一知识讲解及练习附答案一次函数和二次函数 撰稿: 审稿:【学习目标】1.掌握一次函数的图象和性质,二次函数的图象和性质,会判断函数的单调性; 2.会求函数的最大值、最小值,能利用配方法解决二次函数的问题; 3.了解待定系数法的概念,会用待定系数法求函数的解析式。
【要点梳理】要点一、一次函数的性质与图象 1.一次函数的概念(1)深刻理解斜率这个概念.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中k 叫做该直线的斜率.②用运动的观点理解斜率k .函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .③从对图象的单调性的影响上理解斜率k .当k >0时,一次函数是增函数;当k <0时,一次函数是减函数. (2)深刻理解截距b 的含义.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中b 叫做该直线在y 轴上的截距.②b 的取值范围:b ∈R .③b 的几何意义:直线y =kx+b 与y 轴的交点的纵坐标.④点(0,b )是直线y =kx+b 与y 轴的交点.当b >0时,此交点在y 轴的正半轴上;当b <0时,此交点在y 轴的负半轴上;当b =0时,此交点在原点,此时的一次函数就是正比例函数.一次函数(0)y kx b k =+≠图象性质单调性奇偶性k >0b =0增函数 奇函数b ≠0增函数 非奇非偶函数k <0 b =0减函数 奇函数b ≠0减函数 非奇非偶函数.(2)图象的画出:因为两点确定一条直线,所以画一次函数的图象时,只要先描出两个点,再连成直线即可.(3)图象的特点:①正比例函数y =kx 的图象是经过原点(0,0)的一条直线.②一次函数y =kx+b 的图象是经过y 轴上点(0,b )的一条直线. (4)画法技巧:①画正比例函数y =kx 的图象,通常取(0,0)、(1,k )两点连线.②画一次函数y =kx+b 的图象,通常取它与坐标轴的交点(0,b )、,0b k ⎛⎫-⎪⎝⎭两点连线,原因是上述两点在坐标轴上,描点较准确.但由于b k -多数情况下是分数,故在描点时,我们也可以取x 和y 都是整数的情形.3.一次函数性质的应用(1)函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .(2)当k >0时,一次函数是增函数;当k <0时,一次函数是减函数.(3)当b =0时,一次函数变为正比例函数,是奇函数;当b ≠0时,它既不是奇函数,也不是偶函数. (4)直线y =kx+b 与x 轴的交点为,0b k ⎛⎫-⎪⎝⎭,与y 轴的交点为(0,b ). 要点诠释:一次函数y =kx+b (k ≠0)的性质可从两方面来理解: ①图象与坐标轴的交点,大家知道x 轴、y 轴上的点的纵坐标、横坐标都分别为0,所以在解析式y =kx+b 中分别令x =0,y =0,得y =b ,b x k =-,从而得出直线y =kx+b 与x 轴、y 轴的交点分别是,0b A k ⎛⎫- ⎪⎝⎭、B (0,b ),这是要熟记的,另外还要知道y =kx+b 与正比例函数y =kx 的图象的平行关系.②函数的增减性,也就是:当k >0时,y 随x 增大而增大;当k <0时,y 随x 的增大而减小.其含义是:当k >0时,如果x 越来越大,那么y 的值也越来越大;当k <0时,如果x 越来越大,那么y 的值越来越小. 对于直线y =kx+b (k ≠0)而言:当k >0,b >0时,直线经过一、二、三象限;当k >0,b <0时,直线经过一、三、四象限;当k <0,b >0时,直线经过一、二、四象限;当k <0,b <0时,直线经过二、三、四象限.4.一次函数的最值问题求一次函数y =kx+b (k ≠0)在某一区间[a ,c ]上的值域的方法是:由于一次函数在某一区间[a ,c ]上是单调的,所以它在区间的两个端点上取得最值,当k >0时,它的值域为[f (a ),f (c )],当k <0时,它的值域为[f (c ),f (a )].5.一次函数的保号性及应用性质1:已知函数()f x kx b =+,如果有()0(0)f α><,()0(0)f β><,则对任意(,)x αβ∈都有()0(()0)f x f x ><.这个性质称为函数()f x kx b =+在区间(,)αβ上的保号性.同样,()f x kx b =+在区间[,]αβ,[,)αβ,(,]αβ上也具有保号性.性质2:若一次函数()f x kx b =+在区间(,)αβ上有()()0f f αβ<,则在(,)αβ内必存在一点x 0使0()0f x =.要点二:二次函数的性质与图象 1.函数2(0)y ax a =≠的图象和性质关于二次函数2(0)y ax a =≠的性质,主要从抛物线的开口方向、顶点坐标、对称轴、函数值的增减性以及函数的最大值或最小值几个方面来研究,下面结合图象将其性质列表归纳如下:函数图象开口方向顶点坐标对称轴单调性最大(小)值y =ax 2(a >0)向上 (0,0) y 轴在区间(,0]-∞上是减函数,在区间[0,)+∞上是增函数当x =0时,min 0y =y =ax 2(a <0)向下 (0,0) y 轴在区间(,0]-∞上是增函数,在区间[0,)+∞上是减函数当x =0时,max 0y =要点诠释:函数2(0)y ax a =≠中的系数a 对函数图象的影响:(1)当a >0时,开口向上,a 越小,开口越大,在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a <0时,开口向下,a 的绝对值越小,开口越大,在(-∞,0)上单调递增,在(0,+∞)单调递减.2.二次函数2(0)y ax bx c a =++≠的图象和性质 (1)二次函数2(0)y ax bx c a =++≠的图象和性质如下表: 函数 二次函数2(0)y ax bx c a =++≠图象a >0a <0性质抛物线开口向上,并向上无限延伸 抛物线开口向上,并向下无限延伸 对称轴是直线2b x a =-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭对称轴是直线2b x a=-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭在区间,2b a ⎛⎤-∞-⎥⎝⎦上是减函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是增函数 在区间,2b a ⎛⎤-∞-⎥⎝⎦上是增函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是减函数 抛物线有最低点,当2bx a=-时, y 有最小值,2min44ac b y a-=抛物线有最高点,当2bx a=-时, y 有最大值,2max44ac b y a-=(2)配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数幂和的形式.通过配方解决数学问题的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明不等式和等式、求函数最值和解析式等方面都经常用到它.对任何二次函数2()(0)y f x ax bx c a ==++≠都可通过配方化为:2224()24b ac b y a x a x h k a a -⎛⎫=++=-+ ⎪⎝⎭.其中2bh a=-,244ac b k a -=.(3)关于配方法要注意两点:①要把二次项系数化为1,方法是提取二次项的系数; ②找准一次项的系数,加上它的一半的平方(目的是配成完全平方式),再减去这个平方数(目的是保持恒等).3.二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠.(2)顶点式:2()()(0)f x a x h k a =-+≠,顶点(h ,k ). (3)交点式:12()()()(0)f x a x x x x a =--≠,x 1,x 2为二次函数的图象与x 轴两个交点的横坐标.求二次函数解析式的方法,应根据已知条件的特点,灵活地运用解析式的形式,选取最佳方案,利用待定系数法求之.要点诠释:①若已知条件是图象上的三个点,则设所求二次函数为一般式2y ax bx c =++,a 、b 、c 为常数,a ≠0的形式.②若已知二次函数图象的顶点坐标或对称轴方程与最大(小)值,则设所求二次函数为顶点式2()y a x h k =-+,其中顶点为(h ,k ),a 为常数,且a ≠0.③若已知二次函数的图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),则设所求二次函数为交点式12()()y a x x x x =--,a 为常数,且a ≠0.4.二次函数的图象画法与平移(1)二次函数2y ax bx c =++的图象的画法:因为二次函数的图象是一条抛物线,它的基本特征:①有顶点;②有对称轴;③有开口方向.所以,画二次函数的图象通常采用简化了的描点法——五点法,其步骤如下:(i )先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点时,并用虚线画出对称轴; (ii )求抛物线2y ax bx c =++与坐标轴的交点.当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 的对称点D .将这五个点按从左到右的顺序连起来,并向上或向下延伸,就得到二次函数的图象.当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D .由C 、M 、D 三点可粗略地画出二次函数的草图.如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后连线,画出二次函数的图象.(2)二次函数的平移规律.任意抛物线2y ax bx c =++都可转化为2()y a x h k =-+的形式,都可由2y ax =的图象经过适当的平移得到,具体平移方法,如图所示.即上述平移规律“h 值正、负,右、左移”,亦即“加时左移,减时右移”;“k 值正、负,上、下移”,即“加时上移,减时下移”. 5.二次函数的最值求解二次函数的最大值与最小值,可以从函数解析式的变形和函数的图象两方面去理解.(1)从函数的解析式来研究,对于2y ax bx c =++,通过配方可化为2()y a x h k =-+的形式,再对2()y a x h k =-+进行研究.一般地,对于二次函数2y ax bx c =++,当a >0时,y 有最小值2442ac b b x a a -⎛⎫=- ⎪⎝⎭;当a <0时,y 有最大值2442ac b b x a a -⎛⎫=- ⎪⎝⎭.(2)从函数的图象来研究,二次函数的图象是抛物线,又称抛物线2y ax bx c =++,一般描出五个点可画出图象.二次函数2y ax bx c =++的图象如图所示.当a >0时,抛物线开口向上,它的顶点恰是抛物线的最低点,显然纵坐标y 有最小值,最小值是244ac b a -;当a <0时,抛物线开口向下,它的顶点恰是抛物线的最高点,显然纵坐标y 有最大值,最大值是244ac b a-.6.二次函数的对称轴及其应用根据教材中例题知道对称轴为x =-4,由此推导出(4)(4)f h f h --=-+.反过来,如果已知(4)(4)f h f h -+=--,则可得该函数的对称轴为x =-4.现总结如下:(1)若某函数(不一定是二次函数)满足()()f a x f a x +=-(a 为常数),则该函数的对称轴为x =a . (2)若某函数(不一定是二次函数)满足()(2)f x f a x =-(a 为常数),则该函数的对称轴为x =a . (3)若某函数(不一定是二次函数)满足()()f a x f b x -=+(a b ≠且a ,b 为常数),则该函数的对称轴为2a bx +=. 实际上(2)与(1)是等价的,在(1)中令a+x =t ,则x =t -a ,∴ ()[()]f t f a t a =--,∴ ()(2)f t f a t =-,即()(2)f x f a x =-.要点三、待定系数法 1.待定系数法的定义(1)一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系的方法叫做待定系数法.(2)根据题设求待定系数的方法——列方程组 ①用特殊值法列方程组;②根据多项式恒等定理列方程组; ③利用定义本身的属性列方程(组); ④利用几何条件列方程(组)。
人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。
高一数学练习册详细答案及解答以下是为大家整理的关于《高一数学练习册详细答案及解答》,供大家学习参考!高中新课程作业本数学答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4}, B={3,4}.11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈綂 UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂 UB,与条件A∩綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k <12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b <0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.f(4)=4× 1 3=5.2,f(5.5)=5× 1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.值域为[22,+∞).若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.图象关于y轴对称.9.(1)a=3,b=-3.当x=2时,y有最小值0;当x=4时,y有最大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a<1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4) 2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)1时,00.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x >lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为,是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.a=2.设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178. 18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1, 2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴×(-4)≤0,解得m≤-23.10.在,,(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间内有零点,且只有一个.所以方程3x=2-xx+1在内必有一个实数根.3 1 2用二分法求方程的近似解1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在内,再取出2 25,计算f(2 25)=-0 4375,则零点在内.以此类推,最后零点在内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 1250,x2∈(-05,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298 3 12用二分法求方程的近似解1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在,内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a >134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1 .012≈15.9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c, 33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1.11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0,∴f(4)=-005×42+0 35×4+0=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=31.2.故第二年的养鸡规模最大,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0 17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-12002+100,∴当t=300时,h(t)取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.当t=150时,西红柿种植成本最低为Q=100.综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和.18.-2.19.由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a <x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)( x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有最大值105万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x <4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)= -(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.。
课后练习参考答案: 第一部分1.解析:选D. 在集合U 中,去掉1,5,7,剩下的元素构成.U C A2.解析:本题考查集合的基本运算 由交集定义得{x-1≤x ≤2}∩{xx <1}={x -1≤x <1}3.解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题5.【答案】C 4.C【方法总结】先求集合A 、B ,然后求交集,可以直接得结论,也可以借助数轴得交集. 【解析】(1,),(,3)A B =+∞=-∞,(1,3)A B =- ,故选C. 第二部分:1.解析:04147lg )47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数 02lg )2(>=f 知0x 属于区间(1.75,2) 2.解析:本题考查幂的运算性质)()()(y x f a a a y f x f y x y x +===+3.解析:选A.211log 2log 5log 102,10,m m m m a b+=+==∴=又0,m m >∴4.解析:[)40,0164160,4xx>∴≤-<5.解析:α+1=2,故α=1,选B ,本题主要考察了对数函数概念及其运算性质,属容易题6.答案:A7.答案:A8.答案:B9.【答案】C答案:C10.解析:本题考查对数函数的图象和基本性质.11.所以B 正确. 12.【答案】B【解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==,第三部分:1.解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角 2.【解析】B :本题考查了二倍角公式及诱导公式,∵ SINA=2/3,∴21cos(2)cos 2(12sin )9πααα-=-=--=-3.【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将sin(2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.4.解析:本题考查三角函数的性质f (x )=2sin x cos x=sin2x ,周期为π的奇函数 5.【答案】D 【解析】由T=|212π|=4π,故D 正确. 6.【答案】A【解析】原式=1sin (43-13)=sin 30=2,故选A 。
第四部分: 6.答案:C 2.答案:D3.答案:C4.5.答案.C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯= 第五部分:1.解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题1..A2.第六部分: 1..D【解析】11(,)22--a b =,()0a b b -=,所以-a b 与b 垂直. 【规律总结】根据向量是坐标运算,直接代入求解,判断即可得出结论 2.解析:2a b -=22844)2(222==+⋅-=-b b a a b a3.解析:由2BC =16,得|BC |=4AB AC AB AC BC ∣+∣=∣-∣=|| =4而AB AC AM ∣+∣=2∣∣ 故AM ∣∣= 2答案:C4. D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--或3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ [来源:Z 。
xx 。
]2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2s i n ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,[来源:]()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥ [来源:学科网]5.第七部分:1.解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式 可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题2.【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== 3.解析:选B. 两式相减得, 3433a a a =-,44334,4a a a q a =∴==. 4.【解析】C :本题考查了数列的基础知识。
()()22210110111001,,2PA PB x x y x x y x x x x y ∙=-⋅--=-+-∵ 34512a a a ++=,∴ 44a =12717417()7282a a a a a a +++=⨯⨯+==5.【答案】C【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。
显然q ≠1,所以3639(1q )1-=121-q 1q q q q-⇒+⇒=-,所以1{}n a 是首项为1,公比为12的等比数列, 前5项和5511()31211612T -==-. 第八部分:1.【解析】C :本题考查了线性规划的知识。
∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =2.【解析】A :本题考查了不等式的解法∵ 302x x -<+,∴ 23x -<<,故选A3.【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。
4.【答案】B【解析】本题主要考查目标函数最值的求法,属于容易题,做出可行域,如图由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时z 取得最大值10. 5.解析:考察均值不等式2228)2(82⎪⎭⎫ ⎝⎛+-≥⋅-=+y x y x y x ,整理得()()0322422≥-+++y x y x即()()08242≥++-+y x y x ,又02>+y x ,42≥+∴y x6.解析:不等式组表示的平面区域如图所示 当直线过点B (3,0)的时候,z 取得最大值6 第九部分:1.【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题1.【解析】记两个零件中恰好有一个一等品的事件为A ,则P(A)=P(A1)+ P(A2)=211335+=43412⨯⨯2.答案:D3.第十部分:1.解析:选A,本题主要考察了程序框图的结构,以及与数列有关的简单运算,属容易题2.解析:本题考查算法S=S*x n3.解析:选B.13456360.p=⨯⨯⨯⨯=4.【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k=1,p=1,p=n-m+1;第二次循环:k=2,p=(n-m+1)(n-m+2);[来源:Z#xx#]第三次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3)……第m次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n此时结束循环,输出p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n=mnA5.【答案】B【解析】本题主要考查条件语句与循环语句的基本应用,属于容易题。
第一次运行程序时i=1,s=3;第二次运行程序时,i=2,s=2;第三次运行程序时,i=3,s=1;第四次运行程序时,i=4,s=0,此时执行i=i+1后i=5,推出循环输出s=0.【温馨提示】涉及循环语句的问题通常可以采用一次执行循环体的方式解决。