桥梁三维模型图
- 格式:doc
- 大小:9.11 MB
- 文档页数:86
桥梁三维实体有限元模型建立方法梁柱;叶贵如【摘要】提出桥梁三维实体有限元模型的建立方法和基本流程,并编制与之相应的前处理程序.生成模型的步骤包括:横截面定义、平面设计、立面设计、单元生成.最后以一个单箱双室弯梁桥为例说明了模型的建立过程.采用的方法,使得桥梁三维实体有限元模型建立变得方便和容易.【期刊名称】《铁道标准设计》【年(卷),期】2005(000)001【总页数】3页(P60-62)【关键词】桥梁实体模型;截面;腹板;平面;立面【作者】梁柱;叶贵如【作者单位】浙江大学土木系,杭州,310027;浙江大学土木系,杭州,310027【正文语种】中文【中图分类】U442.51 概述随着计算机技术的发展,有限元方法在桥梁计算分析方面的应用已日臻成熟,但是现存的桥梁专用软件大多采用的是平面梁单元或空间梁单元,前者如桥梁博士、GQJS等,后者如韩国的MIDAS。
但是如果要对桥梁进行比较精确的模拟和计算,需要采用三维实体单元,而对于现有的有限元通用程序如ANSYS、SAP、ABAQUS等,由于缺乏专业性,建模比较繁复,而且鉴于桥梁截面的复杂性,单元的网格划分较难控制。
因此,开发了针对桥梁的前处理软件程序[1](图1)。
程序生成的结果文件直接导入到ANSYS中,以ANSYS为平台自动生成桥梁的三维8节点实体单元模型[2]。
本文采用的方法使得桥梁有限元模型建立变得方便和容易。
图1 桥梁三维模型前处理软件2 模型建立过程2.1 桥梁横断面定义程序提供了3种典型的桥梁截面形状:实心截面、空心板梁截面和箱形截面,本文仅给出较为重要的箱形截面(图2)的建模方法。
图2 箱梁横断面定义如图2所示,将箱形截面按腹板分割为3块,分别为边腹板、次边腹板和中腹板,对于不同室的情况,3种腹板的取值各不相同。
例如,单室箱仅存在两个边腹板;双室为两个边腹板和一个次边腹板;三室为两个边腹板、两个次边腹板;四室为两个边腹板、两个次边腹板再加一个中腹板,此后依次类推。
Integrated Solution System for Bridge and Civil Strucutres目录一、剪力-柔性梁格理论1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5)三、采用梁格建模助手生成梁格模型二、单梁、梁格模型多支座反力与实体模型结果比较1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24)四、结合规范进行PSC 设计1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
桥梁博士斜拉桥建模实例我们拟定建立以下模型,见下图:参数说明:桥面长度L1=100M,分100个桥面单元,每单元长度1M,桥塔长度L2=50M,分50个竖直单元,每单元长度1M,拉索单元共48个单元,左右对称,拉索桥面锚固端间隔为2 M,桥塔锚固端间隔为1M。
下面介绍具体建立模型的步骤:步骤一,建立桥面单元。
用快速编译器编辑1-100个桥面单元(具体过程略),参见下图:(注:在实际操作中桥面的截面形状可以自己拟定)步骤二:建立桥塔单元。
用快速编译器编辑101-150个桥塔单元(具体过程略),参见下图:(注:在实际操作中桥面的截面形状可以自己拟定,在分段方向的单选框内,一定要选择“竖直”,起点x=49,y=-20,终点x=49,y=30是定义桥塔的位置,这里我把它设在桥面中部,桥面下20米处,因为我做的桥塔截面为2m×2m的空心矩形,所以此处起点和终点x填49,请读者自己理解)步骤三:拉索的建立。
A、先编辑桥塔左边部分24跟拉索单元。
点击快速编译器的“拉索”按钮,在拉索对话框内的编辑内容复选框选择编辑节点号勾上,编辑单元号:151-174,左节点号:1-48/2;右节点号:152-129;(注意:左节点1-48/2代表拉索在桥面的锚固点间距为2M),如下图:在快速编译器中选择“单元”按钮,在“单元”对话框内的复选框内把“截取坐标”勾上,编辑单元号:151-174,然后确定。
如下图:B、建立桥面右半部分的24跟拉索。
在快速编译器中选择“对称”按钮,在“对称”对话框中的编辑内容4个复选框都勾上。
模板单元组:151-174;生成单元组:198-175;左节点号:55-101/2;右节点号:129-152;对称轴x=50,然后确定。
见下图:这样,我们就建好了拉索单元的模型。
现在让我们来看一看整个模型的三维效果图:。
目录概要1桥梁基本数据/ 2荷载/ 2设定建模环境/ 3定义材料和截面的特性值/ 4成桥阶段分析6结构建模/ 7生成二维模型/ 8建立索塔模型/ 10建立三维模型/ 13建立主梁横向系梁/ 15建立索塔横梁/ 17生成索塔上的主梁支座/ 19生成桥墩上的主梁支座/ 23输入边界条件/ 25计算拉索初拉力/ 28输入荷载条件/ 29输入荷载/ 30运行结构分析/ 33建立荷载组合/ 34计算未知荷载系数/ 35查看成桥阶段分析结果39查看变形形状/ 39施工阶段分析40施工阶段分类/ 41逆施工阶段分类/ 42逆施工阶段分析/ 42输入拉索初拉力/ 45定义施工阶段/ 49定义结构群/ 50指定边界群/ 53指定荷载群/ 56建立施工阶段/ 59输入施工阶段分析数据/ 61运行结构分析/ 61查看施工阶段分析结果62查看变形形状/ 62查看弯矩/ 63查看轴力/ 64施工阶段分析变化图形/ 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。
斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。
在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。
为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。
在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。
本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。
图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。
一、桥梁博士连续梁建模步骤一、Dr.Bridge系统概述Dr.Bridge系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。
该系统适用于钢筋混凝土及预应力混凝土连续梁、刚构、连续拱、桁架梁、斜拉桥等多种桥梁形式的设计与计算分析,不仅能用于直线桥梁的计算,同时还能进行斜、弯和异型桥梁的计算,以及基础、截面、横向系数等的计算。
在设计过程中充分发挥了程序实用性强、可操作性好、自动化程度较高等特点,对于提高桥梁设计能力起到了很好的作用。
利用本系统进行设计计算一般需要经过:离散结构划分单元,施工分析,荷载分析,建立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、使用阶段信息以及输入优化阶段信息(索结构),进行项目计算,输出计算结果等几个步骤。
二、离散结构与划分单元1、在进行结构计算之前,首先要根据桥梁结构方案和施工方案,划分单元并对单元和节点编号,对于单元的划分一般遵从以下原则:(1)对于所关心截面设定单元分界线,即编制节点号;(2)构件的起点和终点以及变截面的起点和终点编制节点号;(3)不同构件的交点或同一构件的折点处编制节点号;(4)施工分界线设定单元分界线,即编制节点号;(5)当施工分界线的两侧位移不同时,应设置两个不同的节点,利用主从约束关系考虑该节点处的连接方式;(6)边界或支承处应设置节点;(7)不同号单元的同号节点的坐标可以不同,节点不重合系统形成刚臂;(8)对桥面单元的划分不宜太长或太短,应根据施工荷载的设定并考虑活载的计算精度统筹兼顾。
因为活载的计算是根据桥面单元的划分,记录桥面节点处位移影响线,进而得到各单元的内力影响线经动态规划加载计算其最值效应。
对于索单元一根索应只设置一个单元。
2、本例为3x30m的三跨连续梁,截面在支座处加大以抵抗较大建立,同时利于端部锚固区的受力,所以该变截面点处取为单元节点,端点也应取为节点,每跨跨中是取为节点,其余节点是根据计算的精度要求定取。
桥梁结构电算桥梁结构计算的特点结构形式多样大型桥梁超静定次数高荷载形式复杂最终受力状态与施工方法和施工过程有关结构力学的研究内容研究结构的组成和合理形式,确定合理的计算简图研究结构内力和变形的计算方法研究结构的稳定性和动力效应结构分析的基本特点运用计算机和有限元方法进行结构内力、位移、稳定性和动力特性的研究。
方法:有限元工具:计算机本课程的基本内容1 桥梁结构受力特征及分析方法;2 重力影响的计算方法;3 活载影响的计算方法;4 其它荷载影响的计算方法;5 软件BSAS的原理和使用方法。
第一部分基本原理和方法1 1 概概述本课程的性质、特点、基本内容(1)本课程性质、特点:本课程属于专业课,旨在把学过的计算机语言、程序设计、桥梁、力学等知识结构起来,用于桥梁结构分析。
特点是既强调基本概念,又重视实际操作,基本原理与软件使用结合(结合软件“桥梁结构分析系统BSAS”教学版的使用)。
本课程的性质、特点、基本内容(2)基本内容:基本原理部分:(a)桥梁结构受力特征及分析方法;(b)重力影响的计算方法;(c)活载影响的计算方法;(d)其它荷载影响的计算方法;(e)软件BSAS的原理和使用方法。
上机操作部分(约占60%课时)主要讲解和练习软件“桥梁结构分析系统BSAS forWindows”教学版的原理和使用方法。
本课程所要求的先修课程和知识1.算法语言和程序设计(C、C++、或Fortran);2.材料力学、结构力学、结构设计原理; 3.桥梁结构工程;4.微机操作。
第一部分基本原理和方法2 结构分析的基本方法分析方法(1)解析法建立精确的数学-物理模型,通过数学方程求解。
是一种对于模型精确求解的方法。
(2)数值法基于解析法的一种近似分析方法,包括:有限元,有限差分法,有限体积法,边界元法等有限元分析的基本概念有限元属于力学分析中的数值法,起源于航空工程中的矩阵分析,它是把一个连续的介质(或构件)看成是由有限数目的单元组成的集合体,在各单元内假定具有一定的理想化的位移和应力分布模式,各单元间通过节点相连接,并藉以实现应力的传递,各单元之间的交接面要求位移协调,通过力的平衡条件,建立一套线性方程组,求解这些方程组,便可得到各单元和结点的位移、应力。
斜拉桥的模型分析第一章建模综述1.1 Midas Civil 简介本次建模分析采纳Midas Civil软件,Midas Civil是个通用的空间有限元分析软件,可适用于桥梁结构、地下结构、工业建筑、飞机场、大坝、港口等结构的分析与设计。
特殊是针对桥梁结构,MidaSCiviI结合国内的法律规范与习惯,在建模、分析、后处理、设计等方面供应了很多的便利的功能,目前已为各大大路、铁路部门的设计院所采纳。
1.2 斜拉桥简介斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且依据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,简洁与周边环境融合,是符合环境设计理念的桥梁形式之一。
1.3 建模基本步骤(1)采用斜拉桥建模助手生成斜拉桥二维索塔模型,并扩建为三维模型;(2)建立主梁横向系,并生成索塔与桥墩上的主梁支座;(3)输入边界条件;(4)输入荷载及荷载条件;(5)采用未知荷载系数功能计算拉索初拉力;(6)施工阶段分析计算;进行分析计算图1桥梁模型建立流程图其次章斜拉桥模型基本参数选取2.1 斜拉桥基本数据图1斜拉桥示意图2.2 2斜拉桥材料特性值对斜拉桥不同部位材料参数基本信息进行选取。
本次模型分析主要选取拉索、桥梁主塔、桥梁索塔、主梁横系梁、索塔横梁、加劲梁等部位纳入分析体系。
选取材料的弹性模量、泊松比、容重等参数,如表2。
在材料对话框中输入如下参数。
2. 3斜拉桥截面特性值在截面特性对话框下输入如下参数。
2.4荷载作用荷载作用可以分为可变作用和永久作用,在建立模型中需要分别进行设定。
1.1 .1永久作用对于斜拉桥,永久作用主要指桥梁自重。
自重系数选取K二期恒载包括桥面上路缘石、防撞护栏、栏杆、灯柱、泄水管、桥面铺装等。
人行道荷载设为恒载。
其中二期恒载为18.6KN∕m,人行道荷载为6. 2KN∕m02.4 . 2可变作用桥梁模型设为双车道,采纳中国城市桥梁荷载(CJJ77・98),车轮间距1.8m,采纳大路I级车道荷载,取值依据JTGD60-2004《大路桥涵设计通用法律规范》规定选取。
工程技术研究2021年第7期210箱梁三面倒角的作图方法李 新,代少力湖北省城建设计院股份有限公司,湖北 武汉 430051摘 要:箱梁是桥梁结构中广泛使用的主要受力构件,为减小应力集中,箱梁的顶底板、腹板、横隔板三者两两之间在箱室内必须采用倒角连接,在支点附近横隔板与腹板及顶底板在箱室内构成三面倒角或四面倒角,四面倒角三视图很容易绘制,但三面倒角的画法常使空间想象力不够的设计师为难。
对此,文章通过一个长方体模型的顶面、前侧面与右侧面两两之间倒角构成的三面倒角的AUTOCAD 三维作图,总结了箱梁三面倒角的二维作图方法,为相关设计人员绘制箱梁三面倒角三视图提供了便利。
关键词:箱梁;三面倒角;作图方法中图分类号:TP391.7文献标志码:A文章编号:2096-2789(2021)07-0210-031 三面倒角作图方法长方体模型的三面约定及相关尺寸如图1所示。
以带倒角的长方体模型模拟箱梁的三面倒角,在此模型的三面倒角中,顶面与前侧面的倒角称为前倒角,顶面与右侧面的倒角称为右倒角,前侧面与右侧面的倒角称为竖倒角,三面倒角如图2所示。
该模型中约定3个面及倒角名称是为了便于文字表达而命名,只要3个面两两正交且有唯一交点,完全可以自行命名。
(1)前倒角与右倒角相等,且倒角的高度与宽度尺寸均相等。
假设前倒角与右倒角尺寸均为50cm×50cm,则三视图及三维图如图3所示。
图1 长方体模型(单位:cm)图2 三面倒角示意图3004005002 俯视图中投影AB 分析三面倒角作法的关键是先确定前倒角与右倒角的共面线在俯视图中的投影AB ,其中A 点为前倒角与右倒角在顶面的交点,B 为待求点。
三视图中的“俯视图”“主视图”“左视图”是针对长方体模型中约定的3个面而言的,是Auto-CAD 三维图中的固定名称,实际作图时,完全可以称为“立面”“平面”“侧面”等。
下面分6种情形介绍俯视图中B 点的求法。
图3 情形1三视图及三维图A B(2)前倒角与右倒角不相等,前倒角的宽度小于右倒角的宽度,但倒角的高度尺寸相等。
简支T梁施工过程之一——主梁的浇筑T梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
多数T梁在梁内部设置通长的预应力钢束。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
T梁施工过程之二——穿束简支T梁施工过程之二——穿束预应力筋穿入孔道的方法有先穿束法和后穿束法两种。
先穿束法即在浇注混凝土之前穿束。
这种穿束法较省力,但束端保护不当易生锈。
后穿束法即在混凝土浇筑之后穿束。
穿束可在混凝土养护期内进行,不占工期,便于用通孔器或高压水通孔,穿束后及时张拉,易于防锈,但穿束较为费力。
后穿束法可用人工穿束、卷扬机穿束和穿束机穿束。
穿束前应全面检查孔道是否完整无缺T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之二——穿束T梁施工过程之三——张拉预应力T梁一般采用后张法(先浇筑混凝土,后张拉预应力钢筋)。
后张法是利用构件自身作为加力台座进行预应力筋的张拉,并用锚夹具将张拉完毕的预应力筋锚固在构件的两端,再在预应力筋的管道内压入水泥浆,使预应力筋与混凝土粘结成整体。
后张法主要是靠锚夹具来传递和保持预加应力的。
斜拉桥模型制作设计图、模型概况斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。
斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。
模型全长18.2米,高3.46米,桥面宽0.55米,索96根。
斜拉桥模型三维图见图1、2。
图2斜拉桥模型桥塔三维图二、材料全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用①4钢筋,桥墩以及基础为钢筋混凝土结构。
有机玻璃主要材料性能初步假设为:弹性模量E=3.6 x 103 N/mm 2。
斜拉索采用①4钢筋(Q235),强度标准值f yk=235N/mm 2,弹性模量E=2.1 x i05N/mm 2。
三、模型结构图1、斜拉桥模型立面布置斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。
该桥为对称结构,以主梁跨中点为中心左右对称。
图3 斜拉桥模型布置图(单位:mm)注:以后图表中尺寸均采用毫米为单位。
2、主梁主梁全长18.2米,横截面见图43、塔塔高3. 16米,详细尺寸见图5〜7。
塔与梁4250 丄9700 丄425018200“.....H^lvrr.'——. O6§0032边墩混凝土桥墩边墩不直接连接,依靠拉索连接。
梁底距离塔横梁20毫米。
塔墩高0.65米,地面以上0.4米,地面以下开挖0.25米。
为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。
塔与墩连接处还要加钢板锚固。
塔与墩连接的详细构造见图15〜17立面图I梁1001251500320」295混凝土墩158.6172.5125 210混凝土墩地坪+1:1 、1•%V.<n*卫*A r-IIII屮1ft115'01110】I15匚0 —57PO1TO1.0XOQ^^^Z^Q//i+q1W55nA3A357图5塔立面立剖面图图索塔塔面剖面图面图1--------------------------------- ^7170I ;『。
基于RebarSmart的桥梁结构三维钢筋设计摘要:为了达到在三维桥梁结构中构建钢筋信息目的,探索基于3DE系统的RebarSmart 软件在桥梁工程钢筋设计中的应用。
以某桥梁工程的上部结构T梁为例,通过工程实践应用,该软件在三维桥梁结构工程的结构配筋设计中有较强的适应性,具有直观快速的优点。
关键词:T梁,RebarSmart,钢筋图引言随着近年来BIM(Building Information Modeling)技术的发展,桥梁工程BIM建模技术逐渐完善。
国际通用三大平台在交通领域争夺市场,欧特克A平台继续推行Civil3D加Infraworks、revit等BIM系列产品,奔特力B平台将原道路产品Powercivil软件升级到CSD产品,达索C平台的3DE软件。
这几款软件均能进行桥梁建模。
然而在BIM模型里进行钢筋布设,仍然困扰着广大的BIM设计工程师,严重制约了BIM技术的推广与应用。
以3DE系统为例,该系统自带的钢筋布置程序,需要工程人员进行大量的常规钢筋类型库的建立,且工作繁琐,钢筋建立效率低下,对于工程人员来说难以实现大批量钢筋模型的建立。
桥梁BIM工程设计人员急需一种更加直观简洁的钢筋制图软件,能够在三维模型上完成钢筋图的绘制、计量、出图工作。
中国电建成勘院基于3DE开发的RebarSmart软件,能快速精确地建立三维钢筋模型,故基于该软件进行研究,探寻桥梁工程中的三维钢筋解决方案。
1RebarSmart软件简介RebarSmart 钢筋数字化设计系统是基于达索三维设计3DExperience系统环境的开发软件,提供了土木工程钢筋数字化设计的完整解决方案。
可满足多专业、各种大型复杂结构的钢筋设计系统和数据管理,提升土木工程钢筋设计和成果管理的效率和质量、缩短设计周期和降低设计成本,提升钢筋设计手段和水平。
图 1 RebarSmart 钢筋三维设计工具1.1传统二维钢筋图设计桥梁工程设计中需要完成大量的钢筋图,钢筋图是工程设计人员的重要设计成果,也是承包商进行钢筋制作安装的依据。
简支T梁施工过程之一——主梁的浇筑
T梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
梁内部设置普通钢筋,形成钢筋骨架,完成部分构造功能。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
在T梁两端,为适应内部预应力束的抬高,要将马蹄抬高。
后张法预应力T梁施工,在主梁浇筑完毕,穿束完成后,要进行预应力张拉。
所以要在张拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
后张法预应力T梁施工,在主梁浇筑完毕,穿束完成后,要进行预应力张拉。
所以要在张拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
后张法预应力T梁施工,在主梁浇筑完毕,穿束完成后,要进行预应力张拉。
所以要在张拉端设置锚头构件预留张拉位置。
锚头可设置在梁端、梁顶等位置。
多数T梁在梁内部设置通长的预应力钢束。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
由于梁的两端剪力较大,所以要将预应力钢束在两端抬起。
这和钢筋混凝土梁很相似。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
预应力钢束要套波纹管,在锚头处要加锚垫板,以克服由于局部受力所引起的应力集中。
T梁施工过程之二——穿束
简支T梁施工过程之二——穿束
预应力筋穿入孔道的方法有先穿束法和后穿束法两种。
先穿束法即在浇注混凝土之前穿束。
这种穿束法较省力,但束端保护不当易生锈。
后穿束法即在混凝土浇筑之后穿束。
穿束可在混凝土养护期内进行,不占工期,便于用通孔器或高压水通孔,穿束后及时张拉,易于防锈,但穿束较为费力。
后穿束法可用人工穿束、卷扬机穿束和穿束机穿束。
穿束前应全面检查孔道是否完整无缺
T梁施工过程之二——穿束
T梁施工过程之二——穿束
精选文库T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之二——穿束
T梁施工过程之三——张拉
预应力T梁一般采用后张法(先浇筑混凝土,后张拉预应力钢筋)。
后张法是利用构件自身作为加力台座进行预应力筋的张拉,并用锚夹具将张拉完毕的预应力筋锚固在构件的两端,再在预应力筋的管道内压入水泥浆,使预应力筋与混凝土粘结成整体。
后张法主要是靠锚夹具来传递和保持预加应力的。
预应力筋张拉时的混凝土强度直接影响构件的安全度、锚固区的局部承压、徐变引起的损失等,是施加预应力成败的关键。
施加预应力的方法很多,除常用的一端张拉、两端张拉、对称张拉、超张拉等以外,还有分批张拉、分段张拉、分阶段张拉、补偿张拉等。
T梁施工过程之三——张拉
T梁施工过程之三——张拉
T梁施工过程之三——张拉
T梁施工过程之三——张拉
预应力筋张拉时的混凝土强度直接影响构件的安全度、锚固区的局部承压、徐变引起的损失等,是施加预应力成败的关键。
施加预应力的方法很多,除常用的一端张拉、两端张拉、对称张拉、超张拉等以外,还有分批张拉、分段张拉、分阶段张拉、补偿张拉等。
T梁施工过程之三——张拉
T梁施工过程之四——截断
由于预应力筋要设置工作区而预留长度(70cm),在预应力筋张拉后钢筋又被拉长,从而在端部产生多余的钢筋长度为。
便于封锚,必须将这部分截断。
以下为截断后的T梁:
T梁施工过程之四——截断
T梁施工过程之四——截断
T梁施工过程之四——截断
T梁施工过程之五——封堵
钢筋张拉完成后即可进行孔道灌浆。
孔道灌浆用的水泥标号不应低于425号普通硅酸盐水泥。
灌浆后,应用人工再从泌水管内徐徐补入水泥浆,并用细铁丝不断插捣,直至密实。
对于埋置在梁体内的锚具,在预加应力完毕后,应先在其周围设置钢筋网,然后浇筑混凝土。
混凝土的标号不宜低于构件本身标号的80%,亦不宜低于构件本身标号的80%,亦不低于30号。
T梁施工过程之五——封堵
T梁施工过程之五——封堵
精选文库
T梁施工过程之五——封堵
T梁施工过程之五——封堵
精选文库T梁施工过程之五——封堵
T梁施工过程之五——封堵
T梁施工过程之五——封堵
精选文库
梁施工过程之六——成型
以下即为成桥后的预应力简支T梁的外部和内部构造图。
从图中可以看出,它的特点是外形简单,制造方便,横向藉横隔梁联结,整体性也较好。
从受力来看,对钢筋混凝土结构而言,T形截面顶板宽翼缘受压,下部开裂后不参与工作,只要能有布置钢筋的足够面积即可,有利于承受正弯矩。
在承受负弯矩时,顶上翼缘处于受拉区,而肋部处于受压区,要提高抗负弯矩的能力,必须加大底部成马蹄形。
显然,T形截面在钢筋混凝土结构中,T形截面重心位置偏上,核心距虽较大,但因上核心离顶面距离远远小于下核心离底面的距离。
它标志承受正弯矩能力的力臂距远远大于承受负弯矩的力臂矩。
所以,它也是有利于承受正弯矩。
总之,无论是钢筋混凝土或预应力混凝土结构,T形截面有利于承受单向弯矩(正弯矩),不利于承受双向弯矩(正、负弯矩)。
因而在简支梁式桥中,跨径从13~50m,大多数的横截面型式布置成多T梁截面型式。
精选文库T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
T梁施工过程之六——成型
波纹管详图
预应力筋的预留管道可采用金属波纹管预埋的方法。
波纹管的接长可采用大一号同型波纹管作为接头管。
接头管的长度为200~300cm。
接头管的两端用密封胶带或塑料热缩管封裹,以防接缝处漏浆。
波纹管在安装就位的过程中应尽量避免反复弯曲,以防管壁开裂。
同时,还应防止电焊火花烧伤管壁。
发现管壁破损,应及时用粘胶带修补。
波纹管详图
波纹管详图
波纹管详图
波纹管详图
波纹管详图
简支T梁成桥过程桥墩浇筑
桥墩浇筑
支座安装
板式橡胶支座
支座位置
支座位置
精选文库中部T梁的吊装
中部T梁的吊装
中部T梁的吊装
精选文库
中部T梁的吊装
边梁吊装
精选文库边梁吊装
边梁横移就位
边梁横移就位
精选文库
边梁吊装完成
边梁吊装完成
精选文库边梁吊装完成
边梁吊装完成
桥面板现浇
精选文库
桥面板现浇
防撞护栏浇筑
精选文库防撞护栏浇筑
桥面铺装
桥面铺装
精选文库
栏杆安装
栏杆安装
精选文库沥青路面
沥青路面
细部观察
精选文库
细部观察
细部观察
精选文库简支空心板梁
简支空心板梁——边梁
简支空心板梁——边梁
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
简支空心板梁——边梁配筋
精选文库简支空心板梁——预应力筋布置
简支空心板梁——箍筋
简支空心板梁——盖梁配筋
简支空心板梁——桥墩配筋
简支空心板梁——桥墩
简支空心板梁——桥墩与盖梁的连接
简支空心板梁——桥墩与盖梁的连接
精选文库简支空心板梁——桥台
简支空心板梁施工过程——原始地形
简支空心板梁施工过程——设置桥台
精选文库
简支空心板梁施工过程——设置桥墩
简支空心板梁施工过程——浇注盖梁
精选文库简支空心板梁施工过程——边梁架设
简支空心板梁施工过程——铺设中部梁板
简支空心板梁施工过程——桥面铺装
精选文库
简支空心板梁施工过程——两岸施工
简支空心板梁施工过程——中部合龙。