2016年广州市普通高中毕业班综合测试(二)理科
- 格式:pdf
- 大小:589.97 KB
- 文档页数:18
广州市2016届高中物理毕业综合检测题2(带答案)广州市2016届高中毕业班综合测试(二)理综物理试题第Ⅰ卷二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.图甲是法拉第于1831年发明的人类历史上第一台发电机——圆盘发电机。
图乙为其示意图,铜盘安装在水平的铜轴上,磁感线垂直穿过铜盘;两块铜片M、N分别与铜轴和铜盘边缘接触,匀速转动铜盘,电阻R就有电流通过。
则下列说法正确的是A.回路中恒定电流的大小与铜盘转速无关B.回路中有大小和方向都作周期性变化的涡流C.回路中电流方向不变,从M经导线流进电阻R,再从N 流向铜盘D.铜盘绕铜轴转动时,沿半径方向上的金属“条”切割磁感线,产生电动势15.正在以速度v匀速行驶的汽车,车轮的直径为d,则车轮的转动周期为A.B.C.C.16.如图,以恒定功率行驶的汽车,由水平路面驶上斜坡后,速度逐渐减小,则汽车A.牵引力增大,加速度增大B.牵引力增大,加速度减小C.牵引力减小,加速度增大D.牵引力减小,加速度减小17.如图,足够长的斜面固定在水平地面上,物块B置于斜面上,通过细绳跨过光滑的定滑轮与装有细砂的砂桶A相连接,连接B的一段细绳与斜面平行,开始时B恰好不上滑。
已知B的质量mB=1kg,砂桶A的质量不计,细砂总质量为0.8kg,θ=30°,g=10m/s2。
设A不会碰到滑轮,B与斜面的最大静摩擦力等于滑动摩擦力。
当A 中的细砂缓慢漏出直到漏尽的过程中,B所受摩擦力fB与细砂质量m的关系图象正确的是18.如图,在匀强电场中,场强方向与△abc所在平面平行,,,。
一个电量的正电荷从a移到b,电场力做功为零;同样的电荷从a移到c,电场力做功为。
则该匀强电场的场强大小和方向分别为A.500V/m、沿ab由a指向bB.500V/m、垂直ab向上C.1000V/m、垂直ab向上D.1000V/m、沿ac由a指向c19.如图,水平固定的圆盘a带正电Q,电势为零,从盘心O处释放质量为m、带电量为+q的小球。
2016届广州市普通高中毕业班综合测试(二)物 理第Ⅰ卷二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.图甲是法拉第于1831年发明的人类历史上第一台发电机——圆盘发电机。
图乙为其示意图,铜盘安装在水平的铜轴上,磁感线垂直穿过铜盘;两块铜片M 、N 分别与铜轴和铜盘边缘接触,匀速转动铜盘,电阻R 就有电流通过。
则下列说法正确的是A .回路中恒定电流的大小与铜盘转速无关B .回路中有大小和方向都作周期性变化的涡流C .回路中电流方向不变,从M 经导线流进电阻R ,再从N 流向铜盘D .铜盘绕铜轴转动时,沿半径方向上的金属“条”切割磁感线,产生电动势15.正在以速度v 匀速行驶的汽车,车轮的直径为d ,则车轮的转动周期为A .v dB .v d 2C .v d π C .vd π2 16.如图,以恒定功率行驶的汽车,由水平路面驶上斜坡后,速度逐渐减小,则汽车A .牵引力增大,加速度增大B .牵引力增大,加速度减小C .牵引力减小,加速度增大D .牵引力减小,加速度减小17.如图,足够长的斜面固定在水平地面上,物块B 置于斜面上,通过细绳跨过光滑的定滑轮与装有细砂的砂桶A 相连接,连接B 的一段细绳与斜面平行,开始时B 恰好不上滑。
已知B 的质量m B =1kg ,砂桶A 的质量不计,细砂总质量为0.8kg ,θ=30°,g =10m/s 2。
设A 不会碰到滑轮,B 与斜面的最大静摩擦力等于滑动摩擦力。
当A 中的细砂缓慢漏出直到漏尽的过程中,B 所受摩擦力f B 与细砂质量m 的关系图象正确的是18.如图,在匀强电场中,场强方向与△abc 所在平面平行,bc ac ⊥,60=∠abc ,m 2.0=ac 。
一个电量C 1015-⨯=q 的正电荷从a 移到b ,电场力做功为零;同样的电a bc 60荷从a 移到c ,电场力做功为J 1013-⨯。
2016年广东省广州市高考数学二模试卷(理科)(解析版)DA.﹣4 B.﹣1 C.1 D.46.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.67.已知函数f(x)=sin(2x+φ)0<φ<)的图象的一个对称中心为(,0),则函数f(x)的单调递减区间是()A.[2kπ﹣,2kπ+](k∈Z) B.[2kπ+,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z) D.[kπ+,kπ+](k∈Z)8.已知球O的半径为R,A,B,C三点在球O 的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π9.已知命题p:∀x∈N*,()x≥()x,命题q:∃x∈N *,2x+21﹣x=2,则下列命题中为真命题的是()A.p∧q B.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.4+6πB.8+6πC.4+12πD.8+12π11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ(λ为正常数)上,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为()A.B.C.λD.无法确定12.设函数f(x)的定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为()A.7 B.6 C.3 D.2二.填空题:本大题共4小题,每小题5分.13.曲线f(x)=+3x在点(1,f(1))处的切线方程为______.14.已知平面向量与的夹角为,=(1,),|﹣2|=2.则||=______.15.已知中心在坐标原点的椭圆C的右焦点为F (1,0),点F关于直线y=x的对称点在椭圆C 上,则椭圆C的方程为______.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2﹣cosA)tan=sinA,则△ABC的面积的最大值为______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n是数列{a n}的前n项和,已知a1=3,a n+1=2S n+3(n∈N)(I)求数列{a n}的通项公式;(Ⅱ)令b n=(2n﹣1)a n,求数列{b n}的前n项和T n.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:学生序号1 2 3 4 5 6 7 i数学成60 65 70 75 85 87 90 绩x i物理成70 77 80 85 90 86 93 绩y i(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 52619.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM 所成角的正弦值.20.已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F.(Ⅰ)证明:CF是圆O的切线;(Ⅱ)若BC=4,AE=9,求CF的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.2016年广东省广州市高考数学二模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0}D.M∪N=N【考点】集合的包含关系判断及应用.【分析】N={x|x2<2,x∈Z}={﹣1,0,1},从而解得.【解答】解:N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.已知复数z=,其中i为虚数单位,则|z|=()A.B.1 C.D.2【考点】复数求模.【分析】先根据复数的运算法则化简,再根据计算复数的模即可.【解答】解:z====,∴|z|=1,故选:B.3.已知cos(﹣θ)=,则sin()的值是()A.B. C.﹣D.﹣【考点】三角函数的化简求值.【分析】由已知及诱导公式即可计算求值.【解答】解:cos(﹣θ)=sin[﹣(﹣θ)]=sin ()=,故选:A.4.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.16【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0.84=0.16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0.84﹣0.16=0.68故选B.5.不等式组的解集记为D,若(a,b)∈D,则z=2a﹣3b的最小值是()A.﹣4 B.﹣1 C.1 D.4【考点】简单线性规划.【分析】由题意作平面区域,从而可得当a=﹣2,b=0时有最小值,从而求得.【解答】解:由题意作平面区域如下,,结合图象可知,当a=﹣2,b=0,即过点A时,z=2a﹣3b有最小值为﹣4,故选:A.6.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.6【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出n与r的关系值,即可求得n 的最小值.【解答】解:(x2+)n(n∈N)展开式的通项公式为T r+1=••x2n﹣5r,令2n﹣5r=0,求得2n=5r,可得含有常数项的n 的最小值是5,故选:C.7.已知函数f(x)=sin(2x+φ)0<φ<)的图象的一个对称中心为(,0),则函数f(x)的单调递减区间是()A.[2kπ﹣,2kπ+](k∈Z) B.[2kπ+,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z) D.[kπ+,kπ+](k∈Z)【考点】正弦函数的图象.【分析】由题意和函数的对称性待定系数可得函数解析式,可得单调递减区间.【解答】解:由题意可得sin(2×+φ)=0,故2×+φ=kπ,解得φ=kπ﹣,k∈Z,由0<φ<可得φ=,∴f(x)=sin(2x+),由2kπ+≤2x+≤2kπ+可得kπ+≤x≤kπ+,∴函数f(x)的单凋递减区间为[kπ+,kπ+],k∈Z.故选:D.8.已知球O的半径为R,A,B,C三点在球O 的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π【考点】球的体积和表面积.【分析】利用余弦定理求出BC的长,进而由正弦定理求出平面ABC截球所得圆的半径,结合球心距,求出球的半径,代入球的表面积公式,可得答案.【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC==2,由正弦定理可得平面ABC截球所得圆的半径(即△ABC的外接圆半径),r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=,∴R2=故球O的表面积S=4πR2=π,故选:D.9.已知命题p:∀x∈N*,()x≥()x,命题q:∃x∈N *,2x+21﹣x=2,则下列命题中为真命题的是()A.p∧q B.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)【考点】复合命题的真假.【分析】命题p:利用指数函数的性质可得:是真命题;命题q:由2x+21﹣x=2,化为:(2x)2﹣2•2x+2=0,解得2x=,∴x=,即可判断出真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:∀x∈N*,()x≥()x,利用指数函数的性质可得:是真命题;命题q:由2x+21﹣x=2,化为:(2x)2﹣2•2x+2=0,解得2x=,∴x=,因此q是假命题.则下列命题中为真命题的是P∧(¬q),故选:C.10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.4+6πB.8+6πC.4+12πD.8+12π【考点】由三视图求面积、体积.【分析】根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.【解答】解:根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V==6π+8,故选:B.11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ(λ为正常数)上,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为()A.B.C.λD.无法确定【考点】双曲线的简单性质.【分析】设M(m,n),即有m2﹣n2=λ,求出双曲线的渐近线为y=±x,运用点到直线的距离公式,结合勾股定理可得|ON|,化简整理计算即可得到所求值.【解答】解:设M(m,n),即有m2﹣n2=λ,双曲线的渐近线为y=±x,可得|MN|=,由勾股定理可得|ON|===,可得|ON|•|MN|=•==.故选:B.12.设函数f(x)的定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3.则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为()A.7 B.6 C.3 D.2【考点】函数零点的判定定理.【分析】根据f(x)的对称性和奇偶性可知f(x)在[﹣,]上共有3条对称轴,x=0,x=1,x=2,根据三角函数的对称性可知y=|cos(πx)|也关于x=0,x=1,x=2对称,故而g(x)在[﹣,]上3条对称轴,根据f(x)和y=|cos(πx)|在[0,1]上的函数图象,判断g(x)在[﹣,]上的零点分布情况,利用函数的对称性得出零点之和.【解答】解:∵f(x)=f(2﹣x),∴f(x)关于x=1对称,∵f(﹣x)=f(x),∴f(x)根与x=0对称,∵f(x)=f(2﹣x)=f(x﹣2),∴f(x)=f(x+2),∴f(x)是以2为周期的函数,∴f(x)在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos(πx)关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g(x)的对称轴.作出y=|cos(πx)|和y=x3在[0,1]上的函数图象如图所示:由图象可知g(x)在(0,)和(,1)上各有1个零点.∴g(x)在[﹣,]上共有6个零点,设这6个零点从小到大依次为x1,x2,x3,…x6,则x1,x2关于x=0对称,x3,x4关于x=1对称,x5,x6关于x=2对称.∴x1+x2=0,x+x4=2,x5+x6=4,∴x1+x2+x+x4+x5+x6=6.故选:B.二.填空题:本大题共4小题,每小题5分.13.曲线f(x)=+3x在点(1,f(1))处的切线方程为y=x+4.【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用导数的几何意义进行求解即可.【解答】解:函数的导数f′(x)=﹣+3,则f′(1)=﹣2+3=1,即切线斜率k=1,∵f(1)=2+3=5,∴切点坐标为(1,5),则切线方程为y﹣5=x﹣1,即y=x+4,故答案为:y=x+414.已知平面向量与的夹角为,=(1,),|﹣2|=2.则||=2.【考点】平面向量数量积的运算.【分析】对|﹣2|=2两边平方得出关于||的方程,即可解出.【解答】解:||=2,=||||cos=||,∵|﹣2|=2,∴()2=,即4||2﹣4||+4=12,解得||=2.故答案为:2.15.已知中心在坐标原点的椭圆C的右焦点为F (1,0),点F关于直线y=x的对称点在椭圆C 上,则椭圆C的方程为+=1.【考点】椭圆的简单性质.【分析】设椭圆的方程为+=1(a>b>0),由题意可得c=1,设点F(1,0)关于直线y=x 的对称点为(m,n),由两直线垂直的条件:斜率之积为﹣1,以及中点坐标公式,解方程可得a,b,进而得到椭圆方程.【解答】解:设椭圆的方程为+=1(a>b>0),由题意可得c=1,即a2﹣b2=1,设点F(1,0)关于直线y=x的对称点为(m,n),可得=﹣2,且n=•,解得m=,n=,即对称点为(,).代入椭圆方程可得+=1,解得a2=,b2=,可得椭圆的方程为+=1.故答案为: +=1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2﹣cosA)tan=sinA,则△ABC的面积的最大值为.【考点】余弦定理;正弦定理.【分析】使用半角公式化简条件式,利用正弦定理得出a,b,c的关系,使用海伦公式和基本不等式得出面积的最大值.【解答】解:在△ABC中,∵(2﹣cosA)tan=sinA,∴(2﹣cosA)=sinA,即2sinB=sinA+sinAcosB+cosAsinB=sinA+sinC,∴2b=a+c=4,∴b=2.∵a+c=4,∴a=4﹣c.∴S==∵(3﹣c)(c﹣1)≤=1,∴S≤.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设S n是数列{a n}的前n项和,已知a1=3,a n+1=2S n+3(n∈N)(I)求数列{a n}的通项公式;(Ⅱ)令b n=(2n﹣1)a n,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用递推关系与等比数列的通项公式即可得出;(II)利用“错位相减法”与等比数列的其前n 项和公式即可得出.【解答】解:(I)∵a n+1=2S n+3,∴当n≥2时,a n=2S n﹣1+3,∴a n+1﹣a n=2(S n﹣S n﹣1)=2a n,化为a n+1=3a n.∴数列{a n}是等比数列,首项为3,公比为3.∴a n=3n.(II)b n=(2n﹣1)a n=(2n﹣1)•3n,∴数列{b n}的前n项和T n=3+3×32+5×33+…+(2n ﹣1)•3n,3T n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1,∴﹣2T n=3+2(32+33+…+3n)﹣(2n﹣1)•3n+1=﹣3﹣(2n﹣1)•3n+1=(2﹣2n)•3n+1﹣6,∴T n=(n﹣1)•3n+1+3.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:学生序号1 2 3 4 5 6 7 i数学成60 65 70 75 85 87 90 绩x i物理成70 77 80 85 90 86 93 绩y i(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 526【考点】离散型随机变量的期望与方差;线性回归方程;离散型随机变量及其分布列.【分析】(Ⅰ)根据分层抽样的定义建立比例关系即可得到结论.(Ⅱ)(i)ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.(ii)根据条件求出线性回归方程,进行求解即可.【解答】(Ⅰ)解:依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为18=3名,故不同的样本的个数为.(Ⅱ)(ⅰ)解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为ξ0 1 2 3PEξ=0×+1×+2×+3×=.(ⅱ)解:∵b=0.65,a==83﹣0.65×75=33.60.∴线性回归方程为=0.65x+33.60当x=96时,=0.65×96+33.60=96.可预测该同学的物理成绩为96分.19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM 所成角的正弦值.【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(I)取CD的中点O,连接OB,OM,则可证OM∥AB,由CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;(II)以O为原点建立空间直角坐标系,求出和平面BDM的法向量,则直线AM与平面BDM所成角的正弦值为|cos<>|.【解答】(Ⅰ)证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB⊂平面OMAB,OM⊂平面OMAB,∴CD⊥平面OMAB.∵AM⊂平面OMAB,∴CD⊥AM.(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM中,.∵△CMD是等腰直角三角形,∠CMD=90°,∴.∴AB=AN+NB=AN+OM=2.以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M(0,0,1),,D(﹣1,0,0),.∴,,.设平面BDM的法向量为=(x,y,z),由n•,n•,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,则==.∴直线AM与平面BDM所成角的正弦值为.20.已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)点P到点F(1,0)的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,由此能求出曲线C的方程.(Ⅱ)设P(x0,y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的内切圆的方程为x2+y2=1,圆心(0,0)到直线PM的距离为1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理,,由此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出的取值范围.【解答】解:(Ⅰ)∵点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,∴点P到点F(1,0)的距离等于它到直线l1的距离,∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,∴曲线C的方程为y2=4x.(Ⅱ)设P(x0,y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为:y﹣m=(x+1),化简,得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m (x0+1)=0,∵△PMN的内切圆的方程为x2+y2=1,∴圆心(0,0)到直线PM的距离为1,即=1,∴=,由题意得x0>1,∴上式化简,得(x0﹣1)m2+2y0m ﹣(x0+1)=0,同理,有,∴m,n是关于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的两根,∴m+n=,mn=,∴|MN|=|m﹣n|==,∵,|y 0|=2,∴|MN|==2,直线PF的斜率,则k=||=,∴==,∵函数y=x﹣在(1,+∞)上单调递增,∴,∴,∴0<<.∴的取值范围是(0,).21.已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(Ⅱ)得到e x+ax+ln(x+1)﹣1≥0.(*)令g (x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;(Ⅲ)令a=2,得到,从而证出结论.【解答】解:(Ⅰ)当a=﹣1时,f(x)=e﹣x+x,则.…1分令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.…2分∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f (0)=1.…3分(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,则.①若a≥﹣2,由(Ⅰ)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x.∴.…4分∴函数g(x)在区间[0,+∞)上单调递增.∴g(x)≥g(0)=0.∴(*)式成立.…5分②若a<﹣2,令,则.∴函数φ(x)在区间[0,+∞)上单调递增.由于φ(0)=2+a<0,.…6分故∃x0∈(0,﹣a),使得φ(x0)=0.…7分则当0<x<x0时,φ(x)<φ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减.∴g(x0)<g(0)=0,即(*)式不恒成立. (8)分综上所述,实数a的取值范围是[﹣2,+∞). (9)分(Ⅲ)证明:由(Ⅱ)知,当a=﹣2时,g(x)=e x﹣2x+ln(x+1)﹣1在[0,+∞)上单调递增.则,即.…10分∴.…11分∴,即.…12分.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F.(Ⅰ)证明:CF是圆O的切线;(Ⅱ)若BC=4,AE=9,求CF的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】(Ⅰ)连接OC,AC,证明:AE∥OC,利用CF⊥AE,可得CF⊥OC,即可证明CF是圆O的切线;(Ⅱ)由割线定理:EC•EB=ED•EA,且AE=9,得,利用勾股定理求CF的长.【解答】(Ⅰ)证明:连接OC,AC,∵BC=CD,∴∠CAB=∠CAD.…1分∵AB是圆O的直径,∴OC=OA.∴∠CAB=∠ACO.…2分∴∠CAD=∠ACO.∴AE∥OC.…3分∵CF⊥AE,∴CF⊥OC.…4分∴CF是圆O的切线.…5分(Ⅱ)解:∵AB是圆O的直径,∴∠ACB=90°,即AC⊥BE.∵∠CAB=∠CAD,∴点C为BE的中点.∴BC=CE=CD=4.…6分由割线定理:EC•EB=ED•EA,且AE=9. (7)分得.…8分在△CDE中,CD=CE,CF⊥DE,则F为DE 的中点.∴.…9分在Rt△CFD中,. (10)分∴CF的长为.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)由曲线C的参数方程为(θ为参数)利用cos2θ+sin2θ=1可得曲线C的直角坐标方程.由ρsin(θ+=,得,(II)解法1:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q到直线l的距离为d=.利用三角函数的单调性值域即可得出.解法2:设与直线l平行的直线l'的方程为x+y=m,与椭圆方程联立消去y得4x2﹣6mx+3m2﹣3=0,令△=0,解得m即可得出.【解答】解:(Ⅰ)解:由曲线C的参数方程为(θ为参数)可得,∴曲线C的直角坐标方程为.由ρsin(θ+=,得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.(Ⅱ)解法1:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q到直线l的距离为=.当时,.∴点Q到直线l的距离的最大值为.解法2:设与直线l平行的直线l'的方程为x+y=m,由,消去y得4x2﹣6mx+3m2﹣3=0,令△=(6m)2﹣4×4×(3m2﹣3)=0,解得m=±2.∴直线l'的方程为x+y=﹣2,即x+y+2=0.∴两条平行直线l与l'之间的距离为.∴点Q到直线l的距离的最大值为.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.【考点】对数函数的图象与性质;其他不等式的解法.【分析】(Ⅰ)a=7时便可得出x满足:|x+1|+|x ﹣2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f(x)的定义域;(Ⅱ)由f(x)≥3即可得出|x+1|+|x﹣2|≥a+8恒成立,而可求出|x+1|+|x﹣2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.【解答】解:(Ⅰ)由题设知:|x+1|+|x﹣2|>7;①当x>2时,得x+1+x﹣2>7,解得x>4;②当1≤x≤2时,得x+1+2﹣x>7,无解;③当x<﹣1时,得﹣x﹣1﹣x+2>7,解得x<﹣3;∴函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞);(Ⅱ)解:不等式f(x)≥3,即|x+1|+|x﹣2|≥a+8;∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x ﹣2)|=3;又不等式|x+1|+|x﹣2|≥a+8解集是R;∴a+8≤3,即a≤﹣5;∴a的最大值为﹣5.2016年10月6日。
2016年广州市普通高中毕业班模拟考试理科综合物理能力测试2016.01注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Cr-52 Fe-56 Br-80第Ⅰ卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.历史上,伽利略在斜面实验中分别从倾角不同、阻力很小的斜面上静止释放小球,他通过实验观察和逻辑推理,得到的正确结论有A .倾角一定时,小球在斜面上的位移与时间的平方成正比B .倾角一定时,小球在斜面上的速度与时间的平方成正比C .斜面长度一定时,小球从顶端滚到底端时的速度与倾角无关D .斜面长度一定时,小球从顶端滚到底端所需的时间与倾角无关15.正、负点电荷周围的电场线分布如图,P 、Q 为其中两点,则带正电的试探电荷A .由P 静止释放后会运动到QB .从P 移动到Q ,电场力做正功C .在P 的电势能小于在Q 的电势能D .在P 所受电场力小于在Q 所受电场力16.如图为洛伦兹力演示仪的结构图。
励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。
电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节。
2016届广州市普通高中毕业班综合测试(一)理科综合注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。
2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 回答第II卷时,将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 S-32 Fe-56 Cu-64第I卷一、选择题:本题包括13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一个选项符合题目要求。
7.下列叙述正确的是A.顺-2 -丁烯和反-2-丁烯的加氢产物不同B.甲醛、氯乙烯和乙二醇均可作为合成聚合物的单体C.ABS树脂、光导纤维及碳纤维都是有机高分子材料D.酸性条件下,C2H5CO18OC2H5的水解产物是C2H5CO18OH和C2H5OH8.设N A为阿伏加德罗常数,下列叙述中正确的是A.78 g Na2O2中存在的共价键总数为N A原子中含中子数为B.9038C.氢氧燃料电池负极消耗2. 24 L气体时,电路中转移的电子数为D.mol氯化铁溶于1L水中,所得溶液中Fe3+的数目为0. 1N A9.三聚磷酸可视为三个磷酸分子(磷酸结构式见右图)之间脱去两个水分子的产物,三聚磷酸钠(俗称“五钠”)是常用的水处理剂。
下列说法错误..的是A.三聚磷酸中P的化合价为+5B.三聚磷酸钠的化学式为Na3P3O10C.以磷酸钠为原料通过化合反应也能生成三聚磷酸钠D.多聚磷酸的结构可表示为10.W、X、Y、Z均为短周期主族元素,原子序数依次增加,且互不同族,其中只有两种为金属元素,W原子的最外层电子数与次外层电子数相等,W与Z、X与Y这两对原子的最外层电子数之和均为9,单质X与Z都可与NaOH溶液反应。
2016年广州市普通高中毕业班综合测试(二)数 学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合}{11M x x =-<<,{22,N x x =<x ∈Z },则(A) M N ⊆ (B) N M ⊆ (C) {}0M N = (D) M N N = 答案:C解析:解一元二次不等式:2x <2,得:x <x Z ∈,所以,N ={}1,0,1-,所以,{}0M N = 。
(2)已知复数z =1i +,其中i 为虚数单位, 则z =(A) 12(B) 12 答案:B解析:因为z=()2i1i +12==,所以,||z = 1 (3)已知cos 1123πθ⎛⎫-=⎪⎝⎭, 则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 (A) 13(C)13-(D) 答案:A解析:5sin 12πθ⎛⎫+⎪⎝⎭=sin ()212ππθ⎛⎫-- ⎪⎝⎭=cos 1123πθ⎛⎫-= ⎪⎝⎭(4)已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<=(A) 0.84 (B) 0.68 (C) 0.32 (D) 0.16 答案:B解析:由于随机变量X 服从正态分布()23,N σ,又()40.84P X ≤=,所以,(4)(2)0.16P X P X ≥=≤=,()24P X <<=1-0.32=0.68(5)不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(),a b D ∈, 则23z a b =-的最小值是(A) 4- (B) 1- (C) 1 (D) 4 答案:A解析:画出不等式组表示的平面区域,如图三角形ABC 为所示,当23z a b =-过A (-2,0)时取得最上值为-4(6)使231(2nx n x ⎛⎫+∈ ⎪⎝⎭N *)展开式中含有常数项的n 的最小值是(A) 3 (B) 4 (C) 5 (D) 6答案:C解析:2251311()()22kn kk k n k k n nk T C x C x x --+==,令25n k -=0,得52n k =,所以n 的最小值是5 (7)已知函数()()(sin 20f x x ϕϕ=+<<)2π的图象的一个对称中心为3,08π⎛⎫⎪⎝⎭, 则函数 ()f x 的单调递减区间是(A) 32,2(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ) (B) 52,2(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) (C) 3,(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ) (D) 5,(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) 答案:D 解析:3sin(2)8πϕ⨯+=0,得:4πϕ=,所以,()sin 24f x x π⎛⎫=+ ⎪⎝⎭,由3222242k x k πππππ+≤+≤+,得()f x 的单调递减区间是5,(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) (8)已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 (A) 169π (B) 163π (C)649π (D) 643π 答案:D解析:由余弦定理,得:BCABC 外接圆半径为r ,由正弦定理:2120r sin =︒,得r =2,又22144R R =+,所以,2R =163,表面积为:24R π=643π (9)已知命题p :x ∀∈N *, 1123xx⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,命题q :x ∃∈N *,122x x-+=则下列命题中为真命题的是(A) p q ∧ (B) ()p q ⌝∧ (C) ()p q ∧⌝ (D) ()()p q ⌝∧⌝ 答案:C解析:因为n y x =(n 为正整数)是增函数,又1123>所以,x ∀∈N *, 1123x x⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭成立,p 正确;122x x -+≥=122x x -=所以()p q ∧⌝为真命题。
2016年广东省广州市高考数学二模试卷(理科)(解析版)2016年广东省广州市高考数学二模试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则A.M?N B.N?M C.M∩N={0} D.M∪N=N 2.已知复数z=,其中i为虚数单位,则|z|= A.B.1 C.D.2 )的值是3.已知cos=,则sin ,且P=,则P=A.B.C.D.5.不等式组b)的解集记为D,若A.﹣4 B.﹣1 C.1 6.使n展开式中含有常数项的n 的最小值是C.5 D.6 )的图象的一个对称中心为,则函7.已知函数f=sin0<φ<数f的单调递减区间是A.[2kπ﹣C.[kπ﹣,2kπ+,kπ+] B.[2kπ+,2kπ+] ]D.[kπ+,kπ+] 8.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O 的表面积为A.π B.π C.π D.π ,则下列命题9.已知命题p:?x∈N*,x≥x,命题q:?x∈N*,2x+21﹣x=2中为真命题的是A.p∧q B.C.p∧D.∧q ∧10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是第1页A.4+6π B.8+6π C.4+12π D.8+12π 11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ上,过点M作双曲线C 的某一条渐近线的垂线,垂足为N,则|ON|?|MN|的值为A.B.C.λ D.无法确定12.设函数f的定义域为R,f=f,f=f,当x∈[0,1]时,f =x3.则函数g=|cos|﹣f在区间[﹣,]上的所有零点的和为A.7 B.6 C.3 D.2 二.填空题:本大题共4小题,每小题5分.13.曲线f=+3x在点)处的切线方程为______.14.已知平面向量与的夹角为,=,|﹣2|=2.则||=______.15.已知中心在坐标原点的椭圆C的右焦点为F,点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为______.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,tan=sinA,则△ABC 的面积的最大值为______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3 求数列{an}的通项公式;令bn=an,求数列{bn}的前n项和Tn.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.如果按照性别比例分层抽样,可以得到多少个不同的样本?如果随机抽取的7名同学的数学,物理成绩对应如表: 2 3 4 5 6 7学生序号i 1 数学成绩60 65 70 75 85 87 90 xi 物理成绩70 77 80 85 90 86 93 yi 若规定85分以上为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;第2页根据上表数据,求物理成绩y关于数学成绩x的线性回归方程;若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 526 19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB ⊥平面BCD.求证:CD⊥AM;若AM=BC=2,求直线AM与平面BDM所成角的正弦值.20.已知点F,点A是直线l1:x=﹣1上的动点,过A 作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.求点P的轨迹C的方程;若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.已知函数f=e﹣x ﹣ax.当a=﹣1时,求函数f的最小值;若x≥0时,f+ln≥1,求实数a的取值范围;求证:.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲] 22.如图,四边形ABCD是圆O的内接四边形,AB是圆O 的直径,BC=CD,AD的延长线与BC 的延长线交于点E,过C作CF⊥AE,垂足为点F.证明:CF是圆O的切线;若BC=4,AE=9,求CF的长.第3页[选修4-4:坐标系与参数方程] 23.在直角坐标系xOy 中,曲线C的参数方程为.以点O 为极=.点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin将曲线C和直线l化为直角坐标方程;设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.[选修4-5:不等式选讲] 24.已知函数f=log2.当a=7时,求函数f的定义域;若关于x的不等式f≥3的解集是R,求实数a的最大值.第4页2016年广东省广州市高考数学二模试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则A.M?N B.N?M C.M∩N={0} D.M ∪N=N 【考点】集合的包含关系判断及应用.【分析】N={x|x2<2,x∈Z}={﹣1,0,1},从而解得.【解答】解:N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.已知复数z=,其中i为虚数单位,则|z|= A.B.1 C.D.2 【考点】复数求模.【分析】先根据复数的运算法则化简,再根据计算复数的模即可.【解答】解:z=∴|z|=1,故选:B.3.已知cos=,则sin的值是===,【考点】三角函数的化简求值.【分析】已知及诱导公式即可计算求值.【解答】解:cos=sin[﹣]=sin=,故选:A.4.已知随机变量x服从正态分布N ,且P=,则P=A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,P=的概率可求出P=P=,即可求出P.【解答】解:∵P=,第5页∴P=1﹣= ∴P=P=,∴P=P﹣P=﹣= 故选B.5.不等式组b)的解集记为D,若A.﹣4 B.﹣1 C.1 D.4 【考点】简单线性规划.【分析】题意作平面区域,从而可得当a=﹣2,b=0时有最小值,从而求得.【解答】解:题意作平面区域如下,,结合图象可知,当a=﹣2,b=0,即过点A时,z=2a﹣3b 有最小值为﹣4,故选:A.6.使n 展开式中含有常数项的n的最小值是C.5 D.6 【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出n与r的关系值,即可求得n的最小值.【解答】解:n展开式的通项公式为Tr+1=??x2n﹣5r,令2n ﹣5r=0,求得2n=5r,可得含有常数项的n的最小值是5,故选:C.第6页7.已知函数f=sin0<φ<数f的单调递减区间是A.[2kπ﹣C.[kπ﹣,2kπ+,kπ+] B.[2kπ+,2kπ+] )的图象的一个对称中心为,则函] D.[kπ+,kπ+] 【考点】正弦函数的图象.【分析】题意和函数的对称性待定系数可得函数解析式,可得单调递减区间.【解答】解:题意可得sin,≤2kπ+可得kπ+≤x≤kπ+,+φ)=0,故2×可得φ=,+φ=kπ,∴f=sin的单凋递减区间为[kπ+故选:D.,kπ+],k∈Z.8.已知球O的半径为R,A,B,C三点在球O 的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O 的表面积为A.π B.π C.π D.π 【考点】球的体积和表面积.【分析】利用余弦定理求出BC的长,进而正弦定理求出平面ABC 截球所得圆的半径,结合球心距,求出球的半径,代入球的表面积公式,可得答案.【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC= =2,正弦定理可得平面ABC 截球所得圆的半径,r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=∴R2=第7页,故球O的表面积S=4πR2=故选:D.π,9.已知命题p:?x∈N*,x≥x,命题q:?x∈N*,2x+21﹣x=2,则下列命题中为真命题的是A.p∧q B.C.p∧D.∧q ∧【考点】复合命题的真假.【分析】命题p:利用指数函数的性质可得:是真命题;命题q:2x+21﹣x=22﹣2?2x+2=0,解得2x=,化为:,∴x=,即可判断出真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:?x ∈N*,x≥x,利用指数函数的性质可得:是真命题;命题q:2x+21﹣x=2,化为:2﹣2?2x+2=0,解得2x=,∴x=,因此q是假命题.则下列命题中为真命题的是P∧,故选:C.10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是A.4+6π B.8+6π C.4+12π D.8+12π 【考点】三视图求面积、体积.【分析】根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.【解答】解:根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V==6π+8,故选:B.11.已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ上,过点M 作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|?|MN|的值为A.B.C.λ D.无法确定第8页【考点】双曲线的简单性质.【分析】设M,即有m2﹣n2=λ,求出双曲线的渐近线为y=±x,运用点到直线的距离公式,结合勾股定理可得|ON|,化简整理计算即可得到所求值.【解答】解:设M,即有m2﹣n2=λ,双曲线的渐近线为y=±x,可得|MN|=,勾股定理可得|ON|===,可得|ON|?|MN|=?==.故选:B.12.设函数f的定义域为R,f=f,f=f,当x∈[0,1]时,f =x3.则函数g=|cos|﹣f在区间[﹣,]上的所有零点的和为A.7 D.2 【考点】函数零点的判定定理.【分析】根据f的对称性和奇偶性可知f在[﹣,]上共有3条对称轴,x=0,x=1,x=2,根据三角函数的对称性可知y=|cos|也关于x=0,x=1,x=2对称,故而g在[﹣,]上3条对称轴,根据f和y=|cos|在[0,1]上的函数图象,判断g在[﹣,]上的零点分布情况,利用函数的对称性得出零点之和.【解答】解:∵f=f,∴f关于x=1对称,∵f=f,∴f根与x=0对称,∵f=f=f,∴f=f,∴f是以2为周期的函数,∴f在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g的对称轴.作出y=|cos|和y=x3在[0,1]上的函数图象如图所示:B.6 C.3 第9页图象可知g在和上各有1个零点.∴g在[﹣,]上共有6个零点,设这6个零点从小到大依次为x1,x2,x3,…x6,则x1,x2关于x=0对称,x3,x4关于x=1对称,x5,x6关于x=2对称.∴x1+x2=0,x∴x1+x2+x+x4=2,x5+x6=4,+x4+x5+x6=6.故选:B.二.填空题:本大题共4小题,每小题5分.13.曲线f=+3x在点)处的切线方程为y=x+4 .【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用导数的几何意义进行求解即可.【解答】解:函数的导数f′=﹣+3,则f′=﹣2+3=1,即切线斜率k=1,∵f=2+3=5,∴切点坐标为,则切线方程为y﹣5=x﹣1,即y=x+4,故答案为:y=x+4 14.已知平面向量与的夹角为,=,|﹣2|=2.则||= 2 .【考点】平面向量数量积的运算.【分析】对|﹣2|=2两边平方得出关于||的方程,即可解出.【解答】解:||=2,∵|﹣2|=2,∴2=第10页=||,,即4||2﹣4||+4=12,解得||=2.故答案为:2.15.已知中心在坐标原点的椭圆C的右焦点为F,点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为【考点】椭圆的简单性质.【分析】设椭圆的方程为++=1 .=1,题意可得c=1,设点F关于直线y=x的对称点为,两直线垂直的条件:斜率之积为﹣1,以及中点坐标公式,解方程可得a,b,进而得到椭圆方程.【解答】解:设椭圆的方程为题意可得c=1,即a2﹣b2=1,设点F关于直线y=x的对称点为,可得=﹣2,且n=?,+=1,解得m=,n=,即对称点为.代入椭圆方程可得解得a2=,b2=,+=1,可得椭圆的方程为+=1.故答案为:+=1.16.在△ABC中,a,b,c 分别为内角A,B,C的对边,a+c=4,tan=sinA,则△ABC的面积的最大值为.【考点】余弦定理;正弦定理.【分析】使用半角公式化简条件式,利用正弦定理得出a,b,c的关系,使用海伦公式和基本不等式得出面积的最大值.【解答】解:在△ABC 中,∵tan=sinA,∴第11页=sinA,即2sinB=sinA+sinAcosB+cosAsinB=sinA+s inC,∴2b=a+c=4,∴b=2.∵a+c=4,∴a=4﹣c.∴S=∵≤==1,∴S≤.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3 求数列{an}的通项公式;令bn=an,求数列{bn}的前n项和Tn.【考点】数列的求和;数列递推式.【分析】利用递推关系与等比数列的通项公式即可得出;利用“错位相减法”与等比数列的其前n项和公式即可得出.【解答】解:∵an+1=2Sn+3,∴当n≥2时,an=2Sn﹣1+3,∴an+1﹣an=2=2an,化为an+1=3an.∴数列{an}是等比数列,首项为3,公比为3.∴an=3n.bn=an=?3n,∴数列{bn}的前n项和Tn=3+3×32+5×33+…+?3n,3Tn=32+3×33+…+?3n+?3n+1,∴﹣2Tn=3+2﹣?3n+1=2n)?3n+1﹣6,∴Tn=?3n+1+3.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.如果按照性别比例分层抽样,可以得到多少个不同的样本?如果随机抽取的7名同学的数学,物理成绩对应如表: 2 3 4 5 6 7 学生序号i 1 数学成绩60 65 70 75 85 87 90 xi 物理成绩70 77 80 85 90 86 93 yi 若规定85分以上为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;根据上表数据,求物理成绩y关于数学成绩x的线性回归方程;若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?第12页﹣3﹣?3n+1=根据分层抽样的定义建立比例关系即可得到结论.ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.根据条件求出线性回归方程,进行求解即可.【解答】解:依据分层抽样的方法,24名女同学中应抽取的人数为18名男同学中应抽取的人数为故不同的样本的个数为.18=3名,名,解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P==,P==,P==,P==,∴ξ的分布列为ξ 0 1 2 P Eξ=0×+1× 3 +3×,a==.=83﹣×75=.+2×解:∵b=∴线性回归方程为=+ 当x=96时,=×96+=96.可预测该同学的物理成绩为96分.19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB ⊥平面BCD.求证:CD⊥AM;若AM=BC=2,求直线AM与平面BDM所成角的正弦值.第13页【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】取CD的中点O,连接OB,OM,则可证OM∥AB,CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;以O为原点建立空间直角坐标系,求出和平面BDM的法向量,则直线AM与平面BDM所成角的正弦值为|cos<>|.【解答】证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM ⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM?平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB?平面OMAB,OM?平面OMAB,∴CD⊥平面OMAB.∵AM?平面OMAB,∴CD⊥AM.作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM 中,∵△CMD是等腰直角三角形,∠CMD=90°,∴..∴AB=AN+NB=AN+OM=2.以点O 为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M,,D,.∴,,.设平面BDM的法向量为=,n?,n?,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,第14页则==.∴直线AM与平面BDM所成角的正弦值为.20.已知点F,点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.求点P的轨迹C的方程;若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】点P到点F的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,此能求出曲线C的方程.设P,点M,点N,直线PM的方程为x﹣y++m=0,△PMN的内切圆的方程为x2+y2=1,圆心到直线PM的距离为1,x0>1,得m2+2y0m﹣=0,同理,,此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出的取值范围.【解答】解:∵点F,点A是直线l1:x=﹣1上的动点,过A 作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,∴点P到点F的距离等于它到直线l1的距离,∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,∴曲线C的方程为y2=4x.设P,点M,点N,直线PM的方程为:y﹣m=,化简,得x﹣y++m=0,∵△PMN的内切圆的方程为x2+y2=1,∴圆心到直线PM的距离为1,即=1,∴=第15页,题意得x0>1,∴上式化简,得m2+2y0m﹣=0,同理,有∴m,n是关于t的方程t2+2y∴m+n=,mn=,,t﹣=0的两根,∴|MN|=|m﹣n|==,∵,|y0|=2,∴|MN|==2,直线PF的斜率,则k=||=,∴==,∵函数y=x﹣在上单调递增,∴,∴,∴0<∴<.的取值范围是.21.已知函数f=e﹣x﹣ax.当a=﹣1时,求函数f的最小值;若x≥0时,f+ln≥1,求实数a 的取值范围;求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;得到ex+ax+ln﹣1≥0.令g=ex+ax+ln﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;第16页令a=2,得到,从而证出结论.【解答】解:当a=﹣1时,f=e ﹣x+x,则.…1分令f’=0,得x=0.当x<0时,f’<0;当x >0时,f’>0.…2分∴函数f在区间上单调递减,在区间上单调递增.∴当x=0时,函数f取得最小值,其值为f=1.…3分若x≥0时,f+ln≥1,即ex+ax+ln﹣1≥0.令g=ex+ax+ln﹣1,则.①若a≥﹣2,知e﹣x+x≥1,即e﹣x≥1﹣x,故ex≥1+x.∴∴函数g在区间[0,+∞)上单调递增.∴g≥g=0.∴式成立.…5分②若a<﹣2,令,.…4分则∴函数φ在区间[0,+∞)上单调递增.于φ=2+a<0,..…6分故?x0∈,使得φ=0.…7分则当0<x<x0时,φ<φ=0,即g’<0.∴函数g在区间上单调递减.∴g<g=0,即式不恒成立.…8分综上所述,实数a的取值范围是[﹣2,+∞)....9分证明:知,当a=﹣2时,g=ex﹣2x+ln ﹣1在[0,+∞)上单调递增.则,即....10分∴∴. (11)分,即.…12分.第17页四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲] 22.如图,四边形ABCD是圆O的内接四边形,AB是圆O 的直径,BC=CD,AD的延长线与BC 的延长线交于点E,过C作CF⊥AE,垂足为点F.证明:CF是圆O的切线;若BC=4,AE=9,求CF的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】连接OC,AC,证明:AE∥OC,利用CF⊥AE,可得CF⊥OC,即可证明CF是圆O的切线;割线定理:EC?EB=ED?EA,且AE=9,得【解答】证明:连接OC,AC,∵BC=CD,∴∠CAB=∠CAD.…1分∵AB是圆O的直径,∴OC=OA.∴∠CAB=∠ACO....2分∴∠CAD=∠ACO.∴AE∥OC....3分∵CF⊥AE,∴CF⊥OC....4分∴CF是圆O的切线....5分解:∵AB是圆O的直径,∴∠ACB=90°,即AC⊥BE.∵∠CAB=∠CAD,∴点C为BE的中点.∴BC=CE=CD=4....6分割线定理:EC?EB=ED?EA,且AE=9. (7)分得.…8分,利用勾股定理求CF的长.在△CDE中,CD=CE,CF⊥DE,则F为DE的中点.∴.…9分在Rt△CFD 中,.…10分第18页∴CF的长为.[选修4-4:坐标系与参数方程] 23.在直角坐标系xOy中,曲线C的参数方程为.以点O为极=.点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin将曲线C和直线l化为直角坐标方程;设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】曲线C的参数方程为曲线C的直角坐标方程.ρsin利用cos2θ+sin2θ=1可得,,点解法1:于点Q是曲线C上的点,则可设点Q的坐标为Q到直线l的距离为d=.利用三角函数的单调性值域即可得出.解法2:设与直线l平行的直线l’的方程为x+y=m,与椭圆方程联立消去y得4x2﹣6mx+3m2﹣3=0,令△=0,解得m即可得出.【解答】解:解:曲线C的参数方程为∴曲线C 的直角坐标方程为ρsin可得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.解法1:于点Q是曲线C上的点,则可设点Q的坐标为点Q到直线l的距离为=.,当时,.第19页∴点Q 到直线l的距离的最大值为.解法2:设与直线l平行的直线l’的方程为x+y=m,,消去y得4x2﹣6mx+3m2﹣3=0,令△=2﹣4×4×=0,解得m=±2.∴直线l’的方程为x+y=﹣2,即x+y+2=0.∴两条平行直线l与l’之间的距离为∴点Q到直线l的距离的最大值为[选修4-5:不等式选讲] ..24.已知函数f=log2.当a=7时,求函数f的定义域;若关于x的不等式f≥3的解集是R,求实数a的最大值.【考点】对数函数的图象与性质;其他不等式的解法.【分析】a=7时便可得出x满足:|x+1|+|x﹣2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f的定义域;f≥3即可得出|x+1|+|x﹣2|≥a+8恒成立,而可求出|x+1|+|x﹣2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.【解答】解:题设知:|x+1|+|x﹣2|>7;①当x>2时,得x+1+x﹣2>7,解得x>4;②当1≤x≤2时,得x+1+2﹣x>7,无解;③当x<﹣1时,得﹣x﹣1﹣x+2>7,解得x<﹣3;∴函数f的定义域为∪;解:不等式f≥3,即|x+1|+|x﹣2|≥a+8;∵x∈R时,恒有|x+1|+|x﹣2|≥|﹣|=3;又不等式|x+1|+|x ﹣2|≥a+8解集是R;∴a+8≤3,即a≤﹣5;∴a的最大值为﹣5.第20页2016年10月6日第21页。
2016年广州市普通高中毕业班综合测试(二)数 学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合}{11M x x =-<<,{22,N x x =<x ∈Z },则(A) M N ⊆ (B) N M ⊆ (C) {}0M N = (D) MN N =(2)已知复数z =1i +i 为虚数单位, 则z =(A)12(B) 1(C) (D) 2 (3)已知cos 1123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是(A)13(B) 3 (C)13-(D) 3- (4)已知随机变量X 服从正态分布()23,N σ, 且()40.84P X ≤=, 则()24P X <<=(A) 0.84 (B) 0.68 (C) 0.32 (D) 0.16(5)不等式组0,2,22x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩的解集记为D , 若(),a b D ∈, 则23z a b =-的最小值是(A) 4- (B) 1- (C) 1 (D) 4(6)使231(2nx n x ⎛⎫+∈ ⎪⎝⎭N *)展开式中含有常数项的n 的最小值是(A) 3 (B) 4 (C) 5 (D) 6(7)已知函数()()(sin 20f x x ϕϕ=+<<)2π的图象的一个对称中心为3,08π⎛⎫⎪⎝⎭, 则函数()f x 的单调递减区间是(A) 32,2(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ) (B) 52,2(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ) (C) 3,(88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ) (D) 5,(88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z )(8)已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 (A) 169π (B) 163π (C) 649π (D) 643π (9)已知命题p :x ∀∈N *, 1123x x⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,命题q :x ∃∈N *,122x x-+=则下列命题中为真命题的是(A) p q ∧ (B) ()p q ⌝∧ (C) ()p q ∧⌝ (D) ()()p q ⌝∧⌝(10)如图, 网格纸上的小正方形的边长为1, 的是某几何体的三视图, 则该几何体的体积是 (A) 46+π (B) 86+π (C) 412+π (D) 812+π(11)已知点O 为坐标原点,点M 在双曲线C 双曲线C 的某一条渐近线的垂线,垂足为N (A)4λ (B) 2λ (12)设函数()f x 的定义域为R , ()f x f -=()3f x x =, 则函数()()()cos g x x f x π=-在区间15,22⎡⎤-⎢⎥⎣⎦上的所有零点的和为(A) 7 (B) 6(C) 3 (D)2第Ⅱ卷本卷包括必考题和选考题两部分。
市2016届高中毕业班综合测试(二)理综物理试题第I卷二、选择题:本题共8小题,每小题6分。
在每小鹿给出的四个选项中,第14〜18题只有一项符合跳目要求,第19〜21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分.有选错的得0分。
14.图甲是法拉第于1831年发明的人类历史上第一台发电机—--圆盘发电机。
图乙为其示意图,铜盘安装在水平的铜轴上,磁感线垂直穿过铜盘;两块铜片M、N分别与铜轴和铜盘边缘接触,1匀速转动铜盘,电阻#就有电流通过。
则下列说确的是.A.回路中恒定电流的大小与铜盘转速无关甲,乙,B.回路中有大小和方向都作周期性变化的涡流C.回路中电流方向不变,从V经导线.流进电阻乩再从N流向铜盘D.钥盘完铜轴转动时,沿半径方向上的金属“条”切割融感线,产生电动势15.正在以速度『勾速行驶的汽车,车轮的直径为比则车轮的转动周期为d d制Imi16.如图,以恒定功率行驶的汽车,由水平路面驶上斜坡后,速度逐渐减小,则汽车A.牵引力增大,加速度增大B.牵引力增大,加速度减小C.牵引力减小,加速度增大fsmd.牵引力减小,加速度减小17.如图,足够长的斜面固定在水平地面上,物块8置于斜面上,通过细绳跨过光滑的定滑轮与装有细砂的砂桶[相连接,连接3的一段细绳与斜面平行,开始时2恰好不上滑。
已知8的质量凤二lkg,砂桶4的质量不计,细砂总质量为0.8kg,『=30°,碎lOmUsL设不会碰到滑轮,g与斜面的最大静摩擦力等于滑动犀擦力。
当4中的细砂缓慢漏出直到漏尽的过程中,8所受庠擦力#与细砂质量〃,的关系图象正确的是ojqxo.6cs-.tg:04050?a L ai0^0603^18.如图,在匀强电场中,场强方向与所在平面平行,acA.bc,Zabc=60e,态=0.2m。
一个电量(7=1x IO-5C的正电荷从a移到灰电场力做功为家;同样的电荷从〃移到C,电场力做功为1 X10-3J 。