(江西人教)数学中考复习方案【第17课时】直角三角形和勾股定理(17页)
- 格式:ppt
- 大小:1.26 MB
- 文档页数:17
第十八章《勾股定理》复习课教学目标:1、知识与技能目标:(1)理解并掌握勾股定理及逆定理的内容(2)通过对实际问题的分析,使学生进一步体会勾股定理的重要,同时培养学生观察,归纳概括问题的能力2、过程与方法目标:在复习的过程中,让学生更进一步体验从代数表示联想到有关的几何图形,由几何图形联想到有关的代数表示,这有助于学生认识数学的内在联系.有助于学生领悟分类讨论思想,方程思想,展开思想,整体思想,数形结合的思想。
3、情感与态度目标:(1)通过本章内容的小结与复习,感悟数学的科学性和严谨性,培养学生学会归纳,整理所学知识的能力及数学应用意识(2)在与他人合作的过程中,培养学生的团结精神和敢于面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神(3)从学生的生活实际问题出发提出问题,既体现知识的学习过程,又体现知识的应用过程,同时有利于激发学生的学习兴趣,有利于学生养成关注身边的事例,关心他人,培养一种社会的责任感。
重点:勾股定理及逆定理的理解和应用难点:勾股定理及逆定理的理解和应用教材分析:本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念.教学方法和手段:师生互动讲练结合合作探究研讨总结1、基于本章的特点和八年级的学生心理及思维发展的特征,在教学中选择激趣法讨论法总结法相结合,体现“以学生发展为本”的教育理念,发展学生的个性特长,让学生学会学习,采用“自主合作探究交流”的体验式教学,调动学生的主观能动性2、采用多媒体,并与学生建立平等融洽的互动关系,营造合作交流的学习气氛,在引导学生进行观察,抽象概括,练习巩固各个环节中运用多媒体进行演示,增强直观性,提高学生学习的趣味性和积极性,从而提高教学效率教学准备:多媒体教学过程:一、创设情境激情引入1、师生问好:教师:子曰:“学而时习之,不亦乐乎”就是说,经常复习是一件很快乐的事。
八年级数学下册17 勾股定理复习教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册17勾股定理复习教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册17 勾股定理复习教案(新版)新人教版的全部内容。
第17章勾股定理一、复习目标1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。
2、复习直角三角形的有关知识,形成知识体系。
3、运用勾股定理及其逆定理解决问题.二、课时安排1课时三、复习重难点重点:勾股定理以及逆定理.难点:定理的应用.四、教学过程(一)知识梳理1.勾股定理:直角三角形中的平方和等于的平方.即:如果直角三角形的两直角边分别是a、b,斜边为c,那么.2。
勾股定理的逆定理:如果三角形的三边长为a、b、c满足,那么这个三角形是直角三角形.3。
如果一个命题的题设和结论与另一个命题的题设正好相反,那么把这样的两个命题叫做,如果把其中叫做原命题,另一个叫做它的_________。
4。
一般的,如果一个定理的逆命题经过证明是正确的,它也是一个__________,我们称这两个定理为。
5、应用勾股定理和它的逆定理来解决实际问题,在应用定理时,应注意:(1)没有图的要按题意画好图并标上字母;(2)不要用错定理(3)求有关线段长问题,通常要引入未知数,根据有关的定理建立方程,从而解决问题;(4)空间问题要通过它的展开图转化为平面图形来解决(二)题型、技巧归纳考点一勾股定理及逆定理例1、下列说法正确的是( )A。
若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C。
集体备课教案
______三角形, a是此三角形的_____边
2. 已知,如图,Rt△ABC∠C=90°,∠1=∠2,CD=1.5,
BD=2.5, 求AC的长.
3. 如图,已知长方体的长、宽、高分别为4cm、3cm、
12cm,求BD的长。
活动3:针对性练习(13分钟)
判断:1.若一个三角形三边的长度之比是3:4:5,则
这个三角形一定是直角三角形( );
2.有一个三角形,它的两边长分别是3和4,则第三边
的长一定是5( );
3.若一个三角形三边a、b、c满足b2=c2-a2,则这个三角
形一定是直角三角形( );
4.若一个三角形某两边的平方和不等于第三边的平方,
则这个三角形一定不是直角三角形( ).
证明:m2-n2,m2+n2,2mn(m﹥n,m,n都是正整数)是
直角三角形的三条边长.
活动4:课堂小结(2分钟)
谈谈你的收获,由学生自主发表见解。
二、当堂检测: (5分钟)
作业内容:高效课堂复习卷
板书设计
复习第十七章勾股定理及其逆定理
一、勾股定理及其逆定理的作图及符号表述。
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
第十七章 勾股定理17.1 勾股定理1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=勾股定理的证明:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证17.2 勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等bacbac cabcabcb aHG F EDCBAa bccbaE D CBA例、在Rt△ABC中,a=3,b=4,求c.错解由勾股定理,得诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,例、已知Rt△ABC中,∠B=RT∠,,c= b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴例、若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解设第三边长为xcm.由勾股定理,得x2=62+82.=10即第三边长为10cm.诊断这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.正确解法设第三边长为xcm.若第三边长为斜边,由勾股定理,得x=2268+=3664+=10(cm)若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得x=2286-=28=27(cm)因此,第三边的长度是10cm 或者27cm.例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12BC=23AD.又RT △ABC 的周长是(6+23)cm.求AD .错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.∴AC=312(6+23)=33+,AB=412(6+23)=623+,BC=512(6+23)=1553+又∵12AC AB •=12BC AD • ∴AD=AC AB BC •=33623231553++⨯+ =(33)2(33)5(33)+•++=25(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AM=3AD∴3AD 又∵MC=MA,∴CD=MD.∵点C与点M关于AD成轴对称.∴AC=AM,∴∠AMD=60°=∠C.∴∠B=30°,AC=12BC,∴AC+AB+BC=12BC+2BC+BC=6+∴BC=4.∵12AD,∴AD=122BC例、在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.例、已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.,正确证明由读者自己完成.例、已知在△ABC中,三条边长分别为a,b,c,a=n,b=24n-1,c=244n(n是大于2的偶数).求证:△ABC是直角三角形.错证1 ∵n是大于2的偶数,∴取n=4,这时 a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,∴△ABC是直角三角形(勾股定理的逆定理).由勾股定理知△ABC是直角三角形.正解∵a2+b2=n2+(24n-1)2=n2+416n-22n+1=416n+22n+1c2=(244n+)2=(214n+)2=416n+22n+1由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。