把自然数表示成以它的约数为公差的等差数列之和
- 格式:pdf
- 大小:171.25 KB
- 文档页数:3
等差数列的性质和求和公式等差数列是数学中常见且重要的数列类型之一。
它的性质和求和公式在数学和实际应用中具有广泛的应用。
本文将介绍等差数列的性质,讨论其求和公式,并举例说明。
1. 等差数列的定义和性质等差数列是指数列中相邻两项之间的差值恒定的数列。
以$a_1$表示首项,$d$表示公差,$n$表示项数,则等差数列可以表示为:$$a_1, a_1 + d, a_1 + 2d, ..., a_1 + (n-1)d$$其中,$a_k$表示第$k$项。
等差数列具有以下性质:(1) 首项:$a_1$(2) 公差:$d$(3) 第$n$项:$a_n = a_1 + (n-1)d$(4) 第$n$项和:$S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$2. 等差数列的求和公式为了求得等差数列的前$n$项和$S_n$,我们可以利用等差数列的性质和求和公式。
首先,我们知道等差数列的第$n$项和$S_n$可以表示为:$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + ... + (a_1 + (n-1)d)$$将等差数列中的各项按照首项与公差的关系进行重排,可以得到:$$S_n = (a_1 + a_1 + (n-1)d) + (a_1 + d + a_1 + (n-2)d) + ... + (a_1 + (n-1)d + a_1)$$将每对括号内的两项相加,可以得到:$$S_n = (2a_1 + (n-1)d) + (2a_1 + (n-1)d) + ... + (2a_1 + (n-1)d)$$由于括号内的每项都相同,因此可以简化为:$$S_n = n(2a_1 + (n-1)d)$$这就是等差数列的求和公式。
3. 求和公式的应用举例接下来,我们通过几个具体的例子来说明等差数列的求和公式的应用。
例1:求等差数列$5, 8, 11, 14, 17$的前$5$项和$S_5$。
第30讲 等差数列的概念及性质知识点概要1.等差数列的概念一般地,如果数列{a n }从第2项起,每一项与它的前一项之差都等于同一个常数d ,即a n +1-a n =d 恒成立,则称{a n }为等差数列,其中d 称为等差数列的公差.拓展:等差数列定义的理解(1)“每一项与它的前一项之差”这一运算要求是指“相邻且后项减去前项”强调了:①作差的顺序;②这两项必须相邻.(2)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差数列的通项公式及其推广若等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d .该式可推广为a n =a m +(n -m )d (其中n ,m ∈N +).思考:等差数列的通项公式a n =a 1+(n -1)d 是什么函数模型? [答案] d ≠0时,一次函数;d =0时,常数函数. 3.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N +)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N +)⇔{a n }为等差数列; (3)通项公式法:a n =an +b (a ,b 是常数,n ∈N +)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法. 4.等差中项如果x ,A ,y 是等差数列,那么称A 为x 与y 的等差中项,且A =x +y2.在一个等差数列中,中间的每一项都是它的前一项与后一项的等差中项. 思考1:在等差数列中,任意两项都有等差中项吗? [答案] 是. 5.等差数列的性质{a n }是公差为d 的等差数列,若正整数s ,t ,p ,q 满足s +t =p +q ,则a s +a t =a p +a q . ①特别地,当p +q =2s (p ,q ,s ∈N +)时,a p +a q =2a s .②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a 2+a n -1=…=a k +a n -k +1=….思考2:在等差数列{a n }中,2a n =a n +1+a n -1(n ≥2)成立吗?2a n =a n +k +a n -k (n >k >0)是否成立?[答案] 令s =t =n ,p =n +1,q =n -1,可知2a n =a n +1+a n -1成立;令s =t =n ,p =n +k ,q =n -k ,可知2a n =a n +k +a n -k 也成立.拓展:(1)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列. (2)若{a n }是公差为d 的等差数列,则①{c +a n }(c 为任一常数)是公差为d 的等差数列; ②{ca n }(c 为任一常数)是公差为cd 的等差数列; ③{a n +a n +k }(k 为常数,k ∈N +)是公差为2d 的等差数列.(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.(4){a n }的公差为d ,则d >0⇔{a n }为递增数列; d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.精选同步练习一、填空题1.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为_____. 【答案】-21 【分析】设这三个数为a d -,a ,a d +,依题意得到方程组,解得,a b ,即可得到这三个数,从而得解; 【解析】解:设这三个数为a d -,a ,a d +,则2229()()59a d a a d a d a a d -+++=⎧⎨-+++=⎩,, 解得34a d =⎧⎨=⎩或34a d =⎧⎨=-⎩∴这三个数为1-,3,7或7,3,1-. ∴它们的积为21-故答案为:21-2.在等差数列{}n a 中,1018a =,3078a =,则25a =______. 【答案】63 【分析】应用等差数列的性质:()m na a d m n m n-=≠-以及通项公式,即得解由等差数列的性质,可知公差301078183301020a a d --===-,所以()251025101815363a a d =+-=+⨯=. 故答案为:633.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________. 【答案】18 【分析】由题意,a 4a 7=(a 6-2d )(a 6+d )转化为二次函数的最大值,即得解 【解析】设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18, 即a 4a 7的最大值为18. 故答案为:184.已知b 是a ,c 的等差中项,且a b c >>,若()lg 1a +,()lg 1b -,()lg 1c -成等差数列,15a b c ++=,则a 的值为______.【答案】7 【分析】根据等差中项的性质列出方程组,解方程组即可求出结果. 【解析】由题意,知()()()22lg 1lg 1lg 115b a cb ac a b c a b c=+⎧⎪-=++-⎪⎨++=⎪⎪>>⎩,解得753a b c =⎧⎪=⎨⎪=⎩,故答案为:7.5.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是________. 【答案】2n n +## 【分析】由题中数表知,第n 行中的项满足a 1=n ,d =2n -n =n ,由等差数列的通项公式即得解由题中数表知,第n 行中的项分别为n,2n,3n ,…,组成一等差数列,设为{a n }, 则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n . 故答案为:n 2+n6.在等差数列5-,132-,2-,12-,…的每相邻两项间插入一个数,使之成为一个新的等差数列{}n a ,则新数列的通项公式为n a =________.【答案】32344n -【分析】根据首项和第三项构造方程求得新等差数列的公差d ,利用等差数列通项公式可得结果. 【解析】设{}n a 的公差为d ,则()732522d =---=,解得:34d =,{}n a ∴是以5-为首项,34为公差的等差数列,()332351444n a n n ∴=-+-=-. 故答案为:32344n -.7.已知数列{a n }中,a 1=2,a n +1=22nn a a +(n ∈N *),则数列{a n }的通项公式a n =________. 【答案】2n【分析】根据题意可判断1n a ⎧⎫⎨⎬⎩⎭为等差数列,即可求出通项公式.【解析】 ∵a n +1=22n n a a +,a 1=2,∴a n ≠0,∴11n a +=1n a +12,即11n a +-1n a =12,又a 1=2,则11a =12, ∴1n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列.∴1n a =11a +(n -1)×12=2n ,∴a n =2n.故答案为:2n.8.已知数列{}n a 为等差数列,公差()0d d ≠,且满足344651222024a a a a a a d ++=,则6511a a -=___________. 【答案】1506- 【分析】利用等差数列的基本量法化简得出56506a a d =,进而可求得6511a a -的值. 【解析】()()()()34465124444442228a a a a a a a d a a a d a d a d ++=-+++++()()()22224444445641284324242024a a d d a a d d a d a d a a d =++=++=++==,所以,56506a a d =,因此,566556111506506a a d a a a a d ---===-. 故答案为:1506-. 9.已知数列{}n a 中,135a =,()()111n n na n a n n +=+++,则数列{}n a 的通项公式为______.【答案】225n a n n =-【分析】将()()111n n na n a n n +=+++两边同时除以()1n n +,进而化为111n na a n n+-=+,然后结合等差数列的定义得到答案. 【解析】 由题意,可得111n n a a n n +=++,即111n n a a n n +-=+.又135a =,∴数列n a n ⎧⎫⎨⎬⎩⎭是以1315a =为首项,为1公差的等差数列,∴()32155n a n n n =+-=-,∴225n a n n =-. 故答案为:225n a n n =-.10.在数列{}n a 中,若11a =,212a =,()*12211++=+∈n n n n N a a a ,则该数列的通项为__________. 【答案】1n a n= 【分析】由题设知1{}na 是等差数列,根据等差数列通项公式有1n n a ,即可写出{}n a 的通项.【解析】 ∵()*12211++=+∈n n n n N a a a , ∴数列1{}n a 是等差数列,又21111a a -=且111a ,∴11(1)n n n a =+-=,故1n a n=. 故答案为:1n a n=. 11.已知数列{}n a 满足12123371,2,3,,N n n n na a a a a a n a *++++====∈,下列说法正确的是________. ①49a =;②N ,n n a ∀*∈都是整数; ③21221,,k k k a a a -+成等差数列;④21N ,N ,n n n k n a a ka ∃∀**++∈∈+=.【答案】②③ 【分析】根据12123371,2,3,,N n n n n a a a a a a n a *++++====∈,直接求得4a ,由递推公式1237n n n na a a a ++++=得()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 从而的出数列{}n b 的通项,从而可判断②③④的对错. 【解析】 解:2341713a a a a ⋅+==,故①错误; 因为1237n n n na a a a ++++=,即3127n n n n a a a a +++-= 则41237n n n n a a a a ++++=-,两式相减得:()()32124n n n n n n a a a a a a ++++++=+, 所以()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 又13122a a b a +==,24235a a b a +==, 所以2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以21n n n n a b a a ++=⋅-,又因1231,2,3a a a ===均为整数,所以N ,n n a ∀*∈都是整数,故②正确;当n 为奇数时,则1n +为偶数,2n +为奇数, 212n n n a a a +++=,即212n n n a a a +++=, 即212122k k k a a a -++=,所以21221,,k k k a a a -+成等差数列,故③正确;因为2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以当n 为奇数时,212n n n a a a +++=, 所以当n 为偶数时,215n n n a a a +++=, 故④错误. 故答案为:②③.12.有一列向量{}{}{}1112222:(,),:(,),,:(,)n n n n n a a x y a a x y a a x y ===,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列{}na ,满足13(20,13),(18,15)a a =-=-,那么这列向量{}n a 中模最小的向量的序号n =_______【答案】4或5 【分析】由题意结合等差向量列的定义首先确定向量{}n a 的坐标表示,然后求解向量的模即可确定最小的向量的序号. 【解析】由题意可得:()()()3118,1520,132,2a a -=---=, 则每一项与前一项的差所得的同一个向量为:()1,1, 结合等差向量列的定义和等差数列通项公式可得:()201121n x n n =-+-⨯=-,()131112n y n n =+-⨯=+,即:()21,12n a n n =-+,这列向量{}n a 的模:(n a n =考查二次函数()2218585f x x x =-+,当18942x ==时,二次函数有最小值, 则这列向量{}n a 中模最小的向量的序号n =4或5. 故答案为:4或5. 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、单选题13.已知等差数列{}n a 的公差为2,且15919a a a ++=,则3711a a a ++=( ) A .21 B .25C .31D .35【答案】C 【分析】由题意可得出37111596d a a a a a a ++=+++,即可求得结果. 【解析】设等差数列{}n a 的公差为d ,则2d =,则()37111591592226196231a a a a d a d a d a a a d ++=+++++=+++=+⨯=, 故选:C.14.在等差数列{}n a 中,已知113a =,45163a a +=,33k a =,则k =( )A .50B .49C .48D .47【答案】A 【分析】求出等差数列{}n a 的公差d 的值,利用等差数列的通项公式结合已知条件可求得k 的值. 【解析】设等差数列{}n a 的公差为d ,则45121627733a a a d d +=+=+=,解得23d =,所以,()()121121133333k k k a a k d --=+-=+==,解得50k =. 故选:A.15.已知数列{}n a ,32a =,71a =,若11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则11a =( )A .12B .23C .1D .2【答案】A 【分析】利用等差中项的性质可求得11a 的值. 【解析】由于数列11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则7311211111a a a =++++,所以,117312121211111213a a a =-=-=+++++,解得1112=a .故选:A.16.已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--【答案】B 【分析】依题意,对任意的*n ∈N ,都有6n b b ≥成立,即611n a a ≥,利用数列{}n a 的单调性可得670,0a a <>,即可求解.【解析】 由已知111n n n na b a a +==+, 对任意的*n ∈N ,都有6n b b ≥成立,即61111n a a +≥+,即611n a a ≥, 又数列{}n a 是首项为a ,公差为1的等差数列,1n a a n ∴=+-,且{}n a 是单调递增数列,当n →+∞时,10na →, 670,0a a ∴<>,即5060a a +<⎧⎨+>⎩,解得65a -<<-.故选:B. 【点睛】关键点睛:本题考查等差数列通项公式及数列单调性的应用,解题的关键是要利用数列的单调性结合已知条件得到670,0a a <>.17.数列{}n a 中,115a =,()*1332+=-∈n n a a n N ,则该数列中相邻两项的乘积是负数的是( ) A .2122,a a B .2223,a aC .2324,a aD .2425,a a【答案】C 【分析】由数列中项的递推关系可得4723n n a -=,由相邻两项积为负有(452)(472)09n n --<,即可得n 的值,进而确定符合条件的相邻两项. 【解析】123n n a a +-=-,则247215(1)33-⎛⎫=+--= ⎪⎝⎭n na n .要使10n n a a +<,即(452)(472)09n n --<,可得454722n <<,*n N ∈,∴n =23.则该数列中相邻两项的乘积为负数的项是23a 和24a , 故选:C18.已知各项均大于1的数列{}n a 满足()1 2.71828a e e =≈,{}n a 中任意相邻两项具有差为2的关系.记n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈,下列四个结论:①2A 为单元素集; ②6312S e =+; ③2212n n S S n --=;④若将23n A +中所有元素按照从小到大的顺序排列得到数列{}n b ,则{}n b 是等差数列. 其中所有正确结论的编号为( ) A .①② B .①③C .①③④D .②③④【答案】C 【分析】由各项均大于1且{}n a 中任意相邻两项具有差为2的关系,分别列举出数列{}n a 的前几项,并由n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈分别检验得出答案. 【解析】 由题意12345678121481046810,2,,,4,6,,,24622e e e e e e e e a e a e a a a e a e a a e e e e e e e e ++⎧⎧++⎧⎧⎪⎪++++⎧⎧⎪⎪⎪⎪==+===+=+==⎨⎨⎨⎨⎨⎨+++⎩⎩⎪⎪⎪⎪+⎩⎩⎪⎪+⎩⎩①2a 的所有可能值构成的集合为{}22A e =+为单元素集,正确;②6A 中所有元素之和为61062318e e e e S =+++++=+,错误;③由归纳关系,2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,故2212n n S S n --=,正确;④23n A +为23n a +可能值构成的集合,从小到大排列为以e 为首项,公差为4的等差数列,正确; 故选:C【点睛】关键点点睛:本题考查归纳推理,考查数列的应用,解决本题的关键点是归纳出数列的前几项,并得到2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,以及每项的可能值构成的集合,从小到大排列为公差为4的等差数列,结合题目得出选项,考查学生逻辑推理能力,属于中档题.三、解答题19.已知等差数列{a n },a 6=5,a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .【答案】(1)a n =5n -25(n ∈N +);(2)10n -30(n ∈N +).【分析】(1)结合等差数列的通项公式的公式求出首项和公差,进而求出结果;(2)结合(1)的结果,将2n -1代入即可求出结果.【解析】(1)设{a n }的首项是a 1,公差为d ,依题意得1155295a d a d +=⎧⎨+=⎩,∴1205a d =-⎧⎨=⎩, ∴a n =5n -25(n ∈N +).(2)由(1)知,a n =5n -25,∴b n =a 2n -1=5(2n -1)-25=10n -30,∴b n =10n -30(n ∈N +).20.已知等差数列{}n a 中,112220,86a a ==.(1)求数列{}n a 的公差d 和1a ;(2)满足10150n a <<的共有几项.【答案】(1)1406a d =-⎧⎨=⎩;(2)23. 【分析】(1)用基本量1a ,d 表示题设条件,联立即得解;(2)写出{}n a 通项公式646n a n =-,解不等式,结合n 为整数,即得解.【解析】(1)设首项为1a ,公差为d ,由已知得111020,2186.a d a d +=⎧⎨+=⎩ 解方程组,得140,6.a d =-⎧⎨=⎩ (2)由(1)知140,6.a d =-⎧⎨=⎩1(1)40(1)6646n a a n d n n ∴=+-=-+-⋅=-由10150n a <<,又646n a n =-,10646150n ∴<-<.解不等式,得289833n <<, 取整数共有23项.21.已知f (x )=22x x +,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1n x }是等差数列,并求x 95的值.【答案】说明见解析,x 95=150. 【分析】 首先利用递推关系,变形求得1n x -11n x -=12(n ≥2),根据数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求通项公式,即可求得95x .【解析】因为当n ≥2时,x n =f (x n -1),所以x n =1122n n x x --+(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得1122n n n n x x x x ---=1(n ≥2),即1n x -11n x -=12(n ≥2).又11x =3,所以数列{1nx }是以3为首项,12为公差的等差数列, 所以1n x =3+(n -1)×12=52n +,所以x n =25n +,所以x 95=2955+=150.22.甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 甲 乙请你根据提供的信息回答问题.(1)第2年养鸡场的个数及全县出产鸡的总只数;(2)到第6年这个县的养鸡业规模比第1年是扩大了还是缩小了?请说明理由.【答案】(1)第2年养鸡场有26个,全县出产鸡31.2万只;(2)缩小了,理由见解析.【分析】从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },从第1年到第6年的养鸡场个数也成等差数列,记为{b n },由图易得通项公式,n n a b ,从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)计算2c 即得;(2)计算6c 与1c 比较可得.【解析】由题图可知,从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },公差为d 1,且a 1=1,a 6=2;从第1年到第6年的养鸡场个数也成等差数列,记为{b n },公差为d 2,且b 1=30,b 6=10;从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)由a 1=1,a 6=2,得1111,52,a a d =⎧⎨+=⎩∴111,0.2,a d =⎧⎨=⎩得a 2=1.2; 由b 1=30,b 6=10,得11230,510,b b d =⎧⎨+=⎩∴1230,4,b d =⎧⎨=-⎩得b 2=26. ∴c 2=a 2b 2=1.2×26=31.2,即第2年养鸡场有26个,全县出产鸡31.2万只.(2)∵c 6=a 6b 6=2×10=20<c 1=a 1b 1=30,∴到第6年这个县的养鸡业规模比第1年缩小了. 23.已知数列{a n }满足a 1=2,a n +1=22n n a a +. (1)数列1n a ⎧⎫⎨⎬⎩⎭是否为等差数列?说明理由. (2)求a n .【答案】(1)是等差数列,理由见解析;(2)a n =2n.【分析】(1)由已知得11n a +-1n a =12,根据等差数列的定义可得证; (2)根据等差数列的通项公式可求得答案.【解析】解:(1)数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,理由如下: ∵a 1=2,a n +1=22n n a a +,∴11n a +=22n na a +=12+1n a ,∴11n a +-1n a =12, 所以数列1n a ⎧⎫⎨⎬⎩⎭是以首项为11a =12,公差为d =12的等差数列. (2)由(1)可知,1n a =11a +(n -1)d =2n ,∴a n =2n. 24.已知数列{a n }中,a 1=12,a n +1=112n n a a ++(n ∈N *). (1)求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列; (2)求数列{a n }的通项公式.【答案】(1)证明见解析;(2)a n =1n n +. 【分析】(1)由已知求得a n +1=12na -,然后由等差数列的定义作差可证; (2)利用(1)的结论先求出11n a -,然后可得结论. 【解析】(1)证明:因为对于n ∈N *,a n +1=112n n a a ++,所以a n +1=12n a -, 所以111n a +--11n a -=1112n a ---11n a -=211n n a a ---=-1. 所以数列11n a ⎧⎫⎨⎬-⎩⎭是首项为111a -=-2,公差为-1的等差数列. (2)由(1)知11n a -=-2+(n -1)(-1)=-(n +1),所以a n -1=-11n +,即a n =1n n +. 25.已知数列{a n }满足a 1a 2…a n =1-a n .(1)求证数列{11n a -}是等差数列,并求数列{a n }的通项公式; (2)设T n =a 1a 2……a n ,b n =a n 2T n 2,证明:b 1+b 2+…+b n <25. 【答案】(1)证明见解析,a n =1n n +;(2)证明见解析. 【分析】(1)由题设得112n na a +=-,进而构造11n a -与111n a +-的关系式,利用等差数列的定义证明结论,然后求a 1,即可得a n ;(2)由(1)求得T n 与b n ,再利用放缩法与裂项相消法证明结论.【解析】(1)∵a 1a 2…a n =1-a n ①,则a 1a 2…a n +1=1-a n +1②, ∴两式相除得:1111n n n a a a ++-=-,整理得112n n a a +=-, ∴1111122n n n n a a a a +--=-=--,则12111111n n n n a a a a +-==----, ∴111111n n a a +-=---,又n =1时有a 1=1-a 1,解得:112a =, ∴1121a =--, ∴数列{11n a -}是以2-为首项,1-为公差的等差数列, ∴12(1)11n n n a =---=---,即1n n a n =+. (2)由(1)得:T n =a 1a 2...a n =121 (2311)n n n ⨯⨯⨯=++, ∴b n =2222221111()()()1351121(2)(2)()()22n n n n n n n n n n n ⨯==<<=+++++++++1135()()22n n -++, ∴b 1+b 2+...+b n <222222222 (577923255255)n n n -+-++-=-<+++,得证. 26.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,N n *∈. (1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(N )n n a a n *≥∈,求证:数列{}n b 的第0n 项是最大项;(3)设130a λ=<,()N n n b n λ*=∈,求λ的取值范围,使得对任意m ,*N n ∈,0n a ≠,且1,66mn a a ⎛⎫∈ ⎪⎝⎭.【答案】(1)65n a n =-;(2)证明见解析;(3)1(,0)4-.【分析】(1)由题知{}n a 是等差数列,即求;(2)由题得{}2n n a b -为常数列,可证;(3)由()N n n b n λ*=∈可得2nn a λλ=+,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,结合条件即得.【解析】(1)因为112()n n n n a a b b ++-=-,35n b n =+, 所以112()2(3835)6n n n n a a b b n n ++-=-=+--=, 所以{}n a 是等差数列,首项为11a =,公差为6, ∴65n a n =-.(2)由()112n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-. 所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-. 因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥. 故{}n b 的第0n 项是最大项.(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ ()()()11222223n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+ 2n λλ=+.当1n =时,13a λ=,符合上式.所以2nn a λλ=+.因为130a λ=<,且对任意*N n ∈,11(,6)6na a ∈,故0n a <,特别地2220a λλ=+<,于是1(,0)2λ∈-, 此时对任意*N n ∈,0n a ≠, 当102λ-<<时,222||n n a λλλ=+>,21212||n n a λλλ--=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,∴m n a a 的最大值及最小值分别是12321a a λ=+及21213a a λ+=, 由21136λ+>及3621λ<+,解得104,综上所述,λ的取值范围是1(,0)4-.。
等差数列的性质及应用等差数列是指数列中相邻项之间的差值保持不变的数列。
它是数学中常见且重要的数列类型之一,在数学及其他领域都有着广泛的应用。
本文将探讨等差数列的性质及其在实际问题中的应用。
一、等差数列的定义与性质1. 定义:等差数列可以定义为一个数列,其中每一项与它的前一项之差等于一个常数d,称为等差数列的公差。
2. 通项公式:假设等差数列的首项为a₁,公差为d,则第n项可以表示为an = a₁ + (n-1)d。
3. 求和公式:假设等差数列的首项为a₁,末项为an,项数为n,则等差数列的和可以表示为Sn = (a₁ + an) * n / 2。
二、等差数列的应用1. 数学问题中的应用:等差数列在数学问题中经常出现。
例如,找出等差数列中的特定项、求等差数列的和等都可以通过等差数列的性质与公式进行解决。
2. 自然科学中的应用:等差数列在自然科学中也有着广泛的应用。
例如,物理学中的匀速直线运动、化学中的反应速率等都可以建立在等差数列的基础上,通过分析数值变化的规律来求解实际问题。
3. 经济学与金融学中的应用:等差数列在经济学与金融学中也有着重要的应用。
例如,研究某种商品价格的变化、计算贷款利息等都可以运用等差数列的概念。
三、实际问题中的等差数列应用举例1. 降雨量分析:假设某地区每年的降雨量以等差数列的形式增长,首年降雨量为100毫米,公差为10毫米。
求第5年的降雨量。
解答:根据等差数列的通项公式,第5年的降雨量可以表示为a₅ = a₁ + (5-1)d = 100 + 4*10 = 140毫米。
2. 平均成绩计算:某学生连续4次数学考试的成绩构成等差数列,首次考试得了80分,公差为4分。
求这4次考试的平均分。
解答:根据等差数列的求和公式,这4次考试的总分为S₄ = (80 +a₄) * 4 / 2,其中a₄为最后一次考试的成绩。
平均分可以表示为S₄ / 4,即(80 + a₄) * 2。
由此可得,平均分为(80 + a₄) * 2 / 4。
等差数列的性质与计算等差数列是指数列中相邻两项之差相等的数列。
在数学中,等差数列是一种常见且重要的数列形式。
本文将探讨等差数列的性质以及如何进行计算。
一、等差数列的性质1. 公差(公共差值):等差数列中相邻两项之差称为公差,用d表示。
2. 首项:等差数列中的第一项,记作a1。
3. 通项公式:等差数列的通项公式用来表示任意一项的值,通常用an表示第n项。
通项公式可表示为:an = a1 + (n-1)d。
其中,n表示项数。
4. 数列求和公式:等差数列的前n项和可以通过求和公式来计算。
求和公式为:Sn = (n/2)(a1 + an)。
其中,Sn表示前n项和。
二、等差数列的计算1. 已知两项求公差:若已知等差数列中的两项a和b,则可以通过计算差值得到公差。
公差d = b - a。
2. 已知首项和公差求任意项:若已知等差数列的首项a1和公差d,可以通过通项公式计算任意一项的值。
an = a1 + (n-1)d。
3. 已知首项和公差求前n项和:若已知等差数列的首项a1、公差d和项数n,可以通过求和公式计算前n项和。
Sn = (n/2)(a1 + an)。
三、示例1. 已知等差数列的首项为5,公差为3,求该数列的第10项的值。
根据通项公式,an = a1 + (n-1)d,代入已知条件得到an = 5 + (10-1)3,计算得到an = 5 + 27 = 32。
因此,该数列的第10项的值为32。
2. 已知等差数列的首项为2,公差为4,求该数列的前5项和。
根据求和公式,Sn = (n/2)(a1 + an),代入已知条件得到Sn = (5/2)(2+ 2 + (5-1)4),计算得到Sn = 5(2 + 10) = 60。
因此,该数列的前5项和为60。
总结:本文介绍了等差数列的性质与计算方法。
通过学习等差数列的公差、首项、通项公式以及求和公式,我们可以准确地计算等差数列中任意一项的值以及前n项的和。
等差数列在数学和实际生活中都具有很高的应用价值,希望本文能对读者有所帮助。
等差数列的性质及应用证明等差数列是数学中重要的概念之一,在许多数学和科学领域中都有广泛的应用。
在这篇文章中,我将介绍等差数列的性质,并对其应用进行证明。
首先,让我们回顾一下等差数列的定义。
等差数列是一个数列,其中每个相邻的两个数之间的差都是一个常数,这个常数被称为公差。
用数学符号表示就是:对于一个等差数列a1, a2, a3, ...,满足a2 - a1 = a3 - a2 = ... = d ,其中d为公差。
举个例子,1, 3, 5, 7, 9就是一个公差为2的等差数列。
现在让我们来看一下等差数列的一些性质。
首先,等差数列的第n项可以用一个公式来表示:an = a1 + (n - 1)d。
这个公式可以方便地用来求等差数列的任意一项。
另外,等差数列的前n项和也有一个简单的公式:Sn = (a1 + an)*n/2。
这个公式可以用来求等差数列的前n项和,这在实际问题中经常会被用到。
另外,等差数列的性质还包括:任意等差数列中任意三项的和都是一个算术平均数,这个性质在证明中也非常重要,我们将在后面的内容中对其进行详细解释。
现在让我们来看一下等差数列的应用证明。
其中一个使用等差数列的经典问题就是求等差数列的前n项和。
我们将用上面提到的公式Sn = (a1 + an)*n/2来证明这个问题。
假设我们有一个等差数列1, 3, 5, 7, 9,我们将用这个数列的前4项来进行证明。
首先,我们计算出数列的第4项an=1 + (4 - 1)*2 = 7。
接着,我们将公式Sn = (a1 + an)*n/2带入计算,得到Sn = (1 + 7)*4/2 = 16。
这个结果等于1 + 3 + 5 + 7 = 16,验证了我们的公式。
下面我们来证明等差数列的性质:任意等差数列中任意三项的和都是一个算术平均数。
我们可以用数学归纳法来证明这个结论。
首先,当n=3时,等差数列的前三项和就是这三项的算术平均数。
接着,我们假设当n=k时结论成立,即等差数列的前k项和是k倍前面的k项的算术平均数。
能表为数列中连续项之和的自然数
刘华珂;王天芹
【期刊名称】《华北水利水电学院学报》
【年(卷),期】2013(034)005
【摘要】通过对能表为自然数列中2个或2个以上连续项之和的自然数N的性质的讨论,分别给出能表为自然数列、算术数列和平方数列中2个或2个以上连续项之和的整数的确切形式.
【总页数】3页(P113-115)
【作者】刘华珂;王天芹
【作者单位】华北水利水电大学数学与信息科学学院,河南郑州450045;华北水利水电大学信息工程学院,河南郑州450045
【正文语种】中文
【中图分类】O156.4
【相关文献】
1.自然数分拆成若干个连续奇数之和的分拆种数 [J], 王明建
2.非2幂的自然数分拆成若干个连续自然数之和的分拆种数及对项数n的估值 [J], 王明建;袁咸春
3.巧用连续自然数之和的性质解竞赛题 [J], 周士藩
4.也谈把自然数分拆成若干个连续自然数之和 [J], 吴六零
5.把自然数表示成以它的约数为公差的等差数列之和 [J], 吴六零
因版权原因,仅展示原文概要,查看原文内容请购买。
等差数列的性质与求和等差数列是数学中的重要概念之一,它的性质和求和公式在数学和实际问题中具有广泛的应用。
本文将介绍等差数列的性质,探讨其求和公式的推导,并结合实例进行说明。
一、等差数列的性质等差数列是指数列中相邻两项之间的差值保持不变的数列。
设等差数列的首项为a,公差为d,则数列的通项公式可以表示为:an = a + (n-1)d,其中n为项数根据等差数列的性质,我们可以得出以下几个重要的结论:1. 第n项与首项的关系第n项可以通过首项与公差相乘再加上n-1乘以公差来求得。
2. 公差与项数的关系项数n可以通过首项与第n项的差值再除以公差加1来求得。
3. 项数与和的关系项数n与等差数列的和Sn之间存在如下关系:Sn = (a + an) × n / 2这个公式是等差数列求和的基本公式,可以通过将首项与尾项相加再乘以项数的一半得到。
通过以上性质,我们可以更好地理解等差数列的规律,并在解决问题时运用这些性质。
二、等差数列求和公式的推导为了得到等差数列求和的公式,我们可以利用数列的性质和一些数学推导。
设等差数列的首项为a,公差为d,项数为n,数列的和为Sn。
首先,我们可以通过数列的性质得到:Sn = (a + an) × n / 2将an替换为a + (n-1)d得到:Sn = (a + (a + (n-1)d)) × n / 2化简后得:Sn = (2a + (n-1)d) × n / 2进一步化简可得:Sn = (2a + (n-1)d) × (n/2)Sn = (2a × n + (n-1)d × n) / 2Sn = (2an + dn^2 - dn) / 2Sn = an + dn^2/2 - dn/2注意到等差数列的首项为a,最后一项为an,将其替换进去得:Sn = a + (n-1)d + dn^2/2 - dn/2Sn = a + dn(n-1)/2这就是等差数列求和的公式。
等差数列的求和公式与性质等差数列是数学中的重要概念之一,它在各个领域都有广泛的应用。
等差数列的求和公式是一种重要的工具,用于求解等差数列的各项和。
本文将介绍等差数列的求和公式及其性质,帮助读者更好地理解和应用等差数列。
一、等差数列的定义和性质等差数列是指具有相同公差的数列,其中公差是指数列中相邻两项的差值。
一般来说,等差数列可以用以下形式表示:an = a1 + (n-1)d其中,an表示等差数列中的第n项,a1表示第一项,d表示公差。
根据等差数列的定义,我们可以总结出等差数列的性质:1. 每一项与它的前一项之差都等于公差d。
2. 每一项与它的后一项之差也等于公差d。
3. 第n项与第m项之差等于(m-n)d。
这些性质对于理解等差数列的求和公式有很大的帮助,下面将进一步介绍等差数列的求和公式及其推导过程。
二、等差数列的求和公式等差数列的求和公式是一种通过已知数列的首项、末项和项数来求解数列和的公式。
下面将介绍两种求和公式:算术平均数法和通项公式法。
1. 算术平均数法算术平均数法是一种通过求出数列的项数及其平均值来计算数列和的方法。
假设等差数列的首项为a1,末项为an,项数为n,公差为d,则数列的平均值为:平均值 = (a1 + an) / 2根据等差数列的性质,我们知道每一项与平均值的差值等于公差d。
所以,数列的和可以通过平均值乘以项数来求解:数列和 = 平均值 ×项数 = (a1 + an) / 2 × n2. 通项公式法通过等差数列的通项公式也可以求解数列的和。
等差数列的通项公式为:an = a1 + (n-1)d。
根据等差数列的性质,我们知道第n项与第一项之间有(n-1)个公差d。
假设等差数列的首项为a1,末项为an,项数为n,公差为d,则数列的和可以分解为n个等差数列的和:数列和 = a1 + (a1 + d) + (a1 + 2d) + ... + (a1 + (n-1)d)通过将每一项与首项的差值相加,得到数列和的通项公式:数列和 = n / 2 * (a1 + an)三、等差数列求和公式的应用等差数列的求和公式在实际问题中有许多应用,下面将介绍两个常见的应用。
等差数列的基本性质与求和公式等差数列是一种常见的数列,其中每个数与它的前一个数之间的差值是恒定的。
学习等差数列的基本性质以及求和公式对于数学的学习和应用都具有重要意义。
本文将介绍等差数列的基本概念、性质和求和公式,并通过例题来帮助读者更好地理解和应用这些知识。
一、等差数列的定义和特点等差数列是指数列中相邻两项之差恒为一个常数的数列。
该常数称为等差数列的公差,用字母d表示。
一般来说,等差数列的通项公式可以表示为an = a1 + (n - 1)d,其中a1为首项,n为项数。
等差数列的基本特点有以下几个方面:1. 公差d确定了等差数列的增量。
2. 任意相邻两项之间的差值都是公差d。
3. 等差数列的首项a1和公差d唯一决定了整个数列。
二、等差数列的求和公式求等差数列的和是常见的数学问题,可以通过等差数列的求和公式来解决。
等差数列的求和公式如下:Sn = (a1 + an) × n / 2其中Sn表示前n项和,a1为首项,an为末项,n为项数。
三、等差数列求和公式的推导等差数列的求和公式并不是凭空给出的,它可以通过数学推导得到。
以下是等差数列求和公式的推导过程:1. 设等差数列的首项为a1,公差为d,前n项和为Sn。
2. 可以将Sn分为两个部分:从a1开始的前n项和与从an开始的前n项和。
这两个部分的和恰好等于整个数列的和。
3. 根据等差数列的通项公式,可以写出an = a1 + (n - 1)d。
4. 将前n项和相加,并利用等差数列首项和末项之间的关系,得到Sn = (a1 + an) × n / 2。
四、例题解析为了更好地理解等差数列的基本性质和求和公式,我们来看几个例题。
1. 求等差数列2, 5, 8, 11, ...的前6项和。
首项a1 = 2,公差d = 3,项数n = 6。
代入求和公式Sn = (a1 + an) ×n / 2,得到Sn = (2 + 2 + (6 - 1) × 3) × 6 / 2 = 72。
初中数学知识归纳等差数列的性质与应用等差数列是初中数学中常见的数列形式之一,它拥有一系列独特的性质和应用。
本文将对等差数列的性质和应用进行归纳,帮助读者深入理解和应用这一数学概念。
1. 等差数列的定义与性质等差数列是指数列中相邻两项之差保持恒定的数列。
常用的表示方式是:an= a1+ (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列的性质有:1.1 公差与项数的关系:由等差数列的定义可知,公差d等于任意两项之差。
公差与项数n的关系为d = (an - a1) / (n-1)。
1.2 通项公式:通过观察等差数列可以发现,第n项等于首项a1加上公差与项数差的乘积。
因此,等差数列的通项公式为an = a1 + (n-1)d。
1.3 首项与末项的关系:根据等差数列的定义可知,首项与项数之间的关系为a1 = an - (n-1)d。
2. 等差数列的求和公式等差数列的求和公式是在数列中求和时使用的重要公式。
根据等差数列的性质和数学推导可得:2.1 首项与末项求和:等差数列的首项与末项的和等于所有项的和。
求和公式为S = (n/2)(a1 + an),其中S表示和, n表示项数。
2.2 公式推导:为了证明等差数列首项与末项的和等于所有项的和,我们可以通过分组的方式进行推导。
将数列按对称性进行分组,将首项与末项相加,次首项与末一次的相加,以此类推。
可以发现,每一组的和均等于首项与末项之和。
而共有n/2个这样的对称组。
因此,得出等差数列的求和公式。
3. 等差数列的应用等差数列的性质和应用广泛存在于数学和实际生活中。
下面是一些常见的等差数列应用案例:3.1 时段距离计算:在物理学中,等差数列可用于计算速度恒定的运动在不同时间段的总距离。
通过将等差数列的通项公式与求和公式应用于时间与距离,可以精确计算出总距离。
3.2 平均数计算:等差数列中的任意三项都能够构成一个等差数列,其中中间项为这三项的平均数。