人教版七年级下数学一元一次不等式练习题.docx
- 格式:docx
- 大小:67.91 KB
- 文档页数:5
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
9.2 一元一次不等式 同步练习一、单选题A .B .C .D .23(2)mx ≤-的解集为的值有几个( ) ,并且满足等式2n ⎡⎤+⎢⎥⎣⎦,则满足等式的正整数的个数为(A .2 B .3 C .12 D .16二、填空题三、解答题(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?19.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x(千克),所需费用为y(元).(1)若客户按方式1购买,请写出y(元)与x(千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?20.我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线换成中巴车.该公司计划购买10台中巴车,现有甲、乙两种型号,已知购买一台甲型车比购买一台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元.(1)问购买一台甲型车和一台乙型车分别需要多少万元?(2)经了解,每台甲型车每年节省费用2.3万元,每台乙型车每年节省费用2.1万元,若要使购买的这批中巴车每年至少能节省21.8万,则购买甲型车至少多少台?参考答案:。
2022-2023学年人教版数学七年级下册 一元一次不等式 训练试题一、选择题1.下列说法正确的是 ( )A. x=0是不等式2- x 的解集B.x=-2是不等式2- x 的一个解C. x=0是不等式2- x 的一个解D. 不等式2- x 的解是x=-22.若不等式(3a -2)x +2<3的解集是x <2,那么a 必须满足( )A .a =B .a >C .a <D .a =- 3.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-14.若关于x 的方程332x k +=的解是正数,则k 为( )A 、23k <B 、23k > C 、k 为任何实数 D 、0k > 5.小聪同学准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( ) A.3045300x -≥B.3045300x +≥ C.3045300x -≤ D.3045300x +≤二、 填空题6.已知a ,b 为常数,若0>+b ax 的解集为3<x ,则0<+a bx 的解集为 。
7.若关于x 的不等式(2n -3)x <5的解集为x >-,则n = . 8.三个连续正奇数之和小于16,则这三个正奇数是_____________________9.写出一个解为3x ≥的一元一次不等式:_____________10.已知关于x 的方程3134x m x m ++-=的解是非负数,则m 的取值范围为 .三、解答题 11.解下列不等式,并在数轴上表示解集:(1) 5x+15>4x-1 (2) 2(x+5)≤3(x-5) 5656561231(3) 71-x<352+x(4)145261+-≥+xx12.求不等式3(1-x)<2(x+9)的负整数解。
七年级下数学一元一次不等式练习题1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ;2.下列各式中,是一元一次不等式的是( )A.5+4>8B.2x -1C.2x ≤5D.1x-3x ≥0 3. 下列各式中,是一元一次不等式的是( )(1)2x<y (2) 错误!未找到引用源。
(3)错误!未找到引用源。
(4)错误!未找到引用源。
4.用“>”或“<”号填空.若a>b,且c 错误!未找到引用源。
,则:(1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b;(4)c-a_____c-b (5)错误!未找到引用源。
; (6)错误!未找到引用源。
5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.二、填空题(每题4分,共20分)1、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 . 2、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 . 三. 解下列不等式,并在数轴上表示出它们的解集.(1) 7)1(68)2(5+-<+-x x (2))2(3)]2(2[3-->--x x x x(3)1215312≤+--x x (4) 215329323+≤---x x x(5)11(1)223x x -<- (6) 41328)1(3--<++x x三、解不等式组,并在数轴上表示它的解集 1.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x2. -5<6-2x <3.3.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 4.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x5.532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩ 6.⎪⎩⎪⎨⎧≥--+.052,1372x x x φ7.⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x πφ 8.14321<--<-x四.变式练习1不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1(D)m ≥11.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.2..已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.3.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.4. 适当选择a 的取值范围,使1.7<x <a 的整数解(1) x 只有一个整数解;(2) x 一个整数解也没有.5. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.6.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.7.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.8.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.9.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.10. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.11. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?12. 已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.初中数学试卷桑水出品13.。
一元一次不等式(组)练习题一、选择题1.不等式6(x +1)-3x >3x +3的解集为( )A 、x >1B 、无解C 、x >-1D 、任意数2.不等式4x -7≥5(x -1)的解集是( )A 、x ≥ 2B 、x ≥-2C 、x ≤-2D 、x ≤23、不等式027≥-x 的正整数解有( )A、1个 B、2个 C、3个 D、无数个4、若x x -=-44,则x 的取值范围是( )A、4πx B、4≤x C、4φx D、4≥x5、若n m >,则下列不等式中成立的是( )(A)b n a m +<+ (B)nb ma < (C)22na ma > (D)n a m a -<-6、不等式组⎩⎨⎧<-≤-321x x 的解集是( )(A)1-≥x (B)5<x (C)51<≤-x (D)51<-≤或x x7.一个数x 的31与-4的差不小于这个数的2倍加上5所得的和,则可列不等式是() A.52431+>--x x B.52431+>+x x C.52431+≥-x x D.52431+≥+-x x8、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( )A 、0B 、-1C 、-2D 、19、满足不等式-1<312-x ≤2的非负整数解的个数是( )A .5B .4C .3D .无数个10.如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( )A 、9 ≤m <12B 、9 <m ≤12C 、m <12D 、m ≥ 9二填空1.如果b a <,则a 321- b 321-(用“>”或“<”填空).2.当x 时,式子53-x 的值大于35+x 的值.3.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥--->-xx x 211221的整数解为 .4.不等式x x ->+2541的负整数解是 . 5.某足协举办了一次足球比赛,计分规则为:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场后的积7分,则甲队平 场.6、当x ________时,代数式61523--+x x 的值是非负数. 7.尚明要到离家5千米的某地开会,若他6时出发,计划8时前赶到,那么他每小时至少走 千米.三、解答题1.求下列不等式(组)的解集 ⑴x x x ++≤--332311 ⑵⎪⎩⎪⎨⎧-<--≥+-xx x x 6)1(313242.求使不等式74756+>+x x 和3443)2(8+<+-x x 同时成立的自然数x .3.已知不等式61254<--x 的负整数解是方程ax x =-32的解,求不等式组⎪⎩⎪⎨⎧<+>--a x x a x 25133)(7的解集.4.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元,已知两种⑵若该商场把100只球全部以零售价售出,为使商场的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?(10分)初中数学试卷桑水出品。
七年级数学下册一元一次不等式解法及应用题同步练习一、选择题:1、下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2、下列式子:(1)2x=7;(2)3x+4y;(3)-3<2;(4)2a-3≥0;(5)x>1;(6)a-b>1中,是不等式有()A.5个;B.4个;C.3个;D.1个;3、当1≤x≤2时,ax+2>0,则a的取值范围是()A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠04、一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3D.x≥35、解不等式的过程如下:①去分母,得3x-2≤11x+7,②移项,得3x-11x≤7+2,③合并同类项,得-8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④6、下列说法错误的是()A.不等式x-3>2的解集是x>5;B.不等式x<3的整数解有无数个;C.x=0是不等式2x<3的一个解;D.不等式x+3<3的整数解是0;7、不等式3(x-2)≤x+4的非负整数解有()个.A.4B.5C.6D.无数8、不等式3(x-2)<7的正整数解有()A.2个;B.3个;C.4个;D.5个;9、使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在10、小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔11、在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米12、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学二、填空题:13、如果点P(m,1﹣2m)在第四象限,那么m的取值范围是.14、不等式x﹣1≥﹣3的解集为,其中不等式的负整数解为.15、不等式3(x+1)≥5x﹣3的正整数解是.16、不等式2+9≥3(+2)的正整数解是.17、代数式与的差不大于2,则x的取值范围是。
9.2 一元一次不等式(1)练习题一、选择题1.下列不等式中,是一元一次不等式的是( )A . 321x y -<-B . 12-<C . 20x y -<D . 235y +>2.不等式32(1)x x ≤-的解集为( )A . 1x ≤-B . 1x ≥-C . 2x ≤-D . 2x ≥-3.不等式1123x x --≤的解集为( ) A . 4x ≤ B . 4x ≥ C . 1x ≤- D . 1x ≥- 4.已知33y x =-,要使y x ≥,则x 的取值范围是( )A . 23x ≥B . 32x ≥C . 23x ≤D . 32x ≥ 5.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A . 32b -<<-B . 32b -<≤-C . 32b -≤≤-D . 32b -≤<- 二、填空题6.不等式1302x -+<的解集是 . 7.请写出一个满足不等式326x -<的正整数x 的值: . 8.不等式5122(43)x x -≤-的解集是 .9.若x 是非负数,则3215x --≤的解集为 . 10.已知3462(22)x x +≤+-,则1x +的最小值为 .11.已知三个连续整数的和小于10,且最小的整数大于1,则这三个连续整数中,最大的整数为 .三、解答题12.解不等式:(1)2(3)20x --≤(2)23()43x x -<+13.(1)解不等式2(1)132x x +-≥+,并把它的解集在数轴上表示出来.(2)解不等式13(1)42x x +≥--14.当x 取何值时,式子6124x x --的值: (1)大于2-?(2)不大于12x -的值?15.某数的一半大于它的相反数的13加1,求证这个数的取值范围.16.阅读理解: 我们把a b cd 称作二阶行列式,对顶它的运算法则为a b ad bc c d =-.如232534245=⨯-⨯=-. 如果有2301x x ->,求x 的取值范围.17.已知3x =是关于x 的不等式22323ax x x +->的解,求a 的取值范围.四、思维拓展 能力提升 18.已知关于x 的不等式(2)50a b x a b -+->的解集是107x <,求关于x 的不等式ax b >的解集.9.2一元一次不等式(1)参考答案1. C (解析: A.有两个未知数,B.没有未知数,D.未知数的次数是2,故选C)2. C (解析:去括号得322x x ≤-;移项得322x x -≤-;合并同类项得2x ≤-,故选C )3. A (解析:去分母得32(1)6x x --≤,去括号得3226x x -+≤,移项,合并同类项得4x ≤,故选A )4. B (解析:33x x -≥,得32x ≥) 5. D (解析:由0x b ->得x b >恰有两个负整数解,为-1,-2所以b 可以等于-3,但不能等于-2,所以选D )6. 6x >7. 1或2(解析:38x <,83x <即223x <) 8. 2x ≥-9. 04x ≤≤(解析:由3215x --≤得4x ≤,x 为非负数即0x ≥) 10. 1(解析:由3462(22)x x +≤+-得2x ≤-,当2x =-时,1x +最小为1)11. 4(设最大的整数为x ,则(1)(2)10x x x +-+-<即143x <,又21x ->即3x >,所以4x =)12.(1)解:去括号,得 2620x --≤移项,得 262x ≤+合并同类项,得28x ≤系数化为1,得4x ≤(2)解:去括号,得324x x -<+移项,得 342x x -<+合并同类项,得26x <系数化为1,得3x <13.(1)解:去括号,得22132x x +-≥+移项,得23221x x -≥-+合并同类项,得1x -≥系数化为1,得1x ≤-(数轴略)(2)解:去分母,得16(1)8x x +≥--去括号,得1668x x +≥--移项,得6681x x -≥---合并同类项,得515x -≥-系数化为1,得3x ≤ 14.解:(1)61224x x -->- 6188x x -->-27x ->-72x <(2)612124x x x --≤- 61848x x x --≤-65x ≤56x ≤ 15.解:设这个数为x 则11123x x >-+ 326x x >-+65x > ∴这个数的范围是大于65 16.解:2(3)0x x -->23x x +>1x >17.解:把3x =代入22323ax x x +->得 32922a +-> 18324a -->312a ->-4a < 18.解:由(2)50a b x a b -+->得(2)5a b x a b ->-+ ∵(2)50a b x a b -+->的解集是107x <∴51027a b a b -=-且20a b -<,50a b -+< ∴35b a =且102b a b << ∴a 与b 均为负数∴由ax b >得b x a< ∴ax b >的解集为35x <。
一元一次不等式七年级数学下册人教版(原卷版)9.2 一元一次不等式一﹨选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列不等式中,是一元一次不等式的是A .234x y ->B .23-<C .310x -<D .232y -> 2.解不等式22135x x +->的下列过程中错误的是 A .去分母得5(2)3(21)x x +>-B .去括号得10563x x +>-C .移项,合并同类项得13x ->-D .系数化为1,得13x > 3.不等式x -2>1的解集是A .x >1B .x >2C .x >3D .x >44.一元一次不等式x -1≥0的解集在数轴上表示正确的是A .B .C .D . 5.不等式122123x x ++>-的正整数解的个数是 A .1个B .2个C .3个D .4个 二﹨填空题:请将答案填在题中横线上.6.不等式3134x +>3x +2的解是__________. 7.当x __________时,代数式326x -的值为非负数. 8.某投资人有甲﹨乙两种投资选择,其获利y (元)与投资额x (元)之间的关系式分别为y 甲=15000+0.7x ,y 乙=10000+1.2x ,则当投资额满足x >__________时,乙种投资获利高. 三﹨解答题:解答应写出文字说明﹨证明过程或演算步骤.9.按要求解答下列各题:(1)解不等式:3x-5<2(2+3x);(2)解不等式:2x-3≤12(x+2);(3)解不等式:13x<x-1,并将解集在数轴上表示出来.10.某城市平均每天产生生活垃圾700吨,全部由甲﹨乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?学-科网。
七年级数学下册《第九章一元一次不等式》练习题及答案(人教版)班级:___________姓名:___________考号:_____________一、选择题1. “x的3倍与5的差不大于4”用不等式表示是( )A. 3x+5≤4B. 3x+5<4C. 3x−5<4D. 3x−5≤42. 若x+|x|=0,则x的取值范围是.( )A. x≤0B. x<0C. x>0D. x≥03. 不等式x+1≥2x−1的解集在数轴上表示为( )A. B.C. D.4. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x−16<4C. 1x<2 D. 4x−3<2y−75. 不等式x−72+1<3x−22的负整数解有( )A. 1个B. 2个C. 3个D. 4个6. 若(m−1)x>m−1的解集是x<1,则m的取值范围是( )A. m>1B. m≤−1C. m<1D. m≥17. 若关于x的方程3m(x+1)+1=m(3−x)−5x的解是负数,则m的取值范围是.( )A. m>−54B. m<−54C. m>54D. m<548. 设a,b是常数,不等式xa +1b>0的解集为x<15,则关于x的不等式bx−a>0的解集是( )A. x>15B. x<−15C. x>−15D. x<159. 对于不等式x−12−x+38>1,给出了以下解答:①去分母,得4(x−1)−(x+3)>8;②去括号,得4x−4−x+3>8;③移项、合并同类项,得3x>9;④两边都除以3,得x>3.其中错误开始的一步是( )A. ①B. ②C. ③D. ④10. 某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( )A. 2种B. 3种C. 4种D. 5种二、填空题11. 若(k−1)x|k|+3≥0是关于x的一元一次不等式,则k的值为______.12. 不等式3−2x>7的解集为______.13. 关于x的不等式−k−x+6>0的正整数解是1,2,3,则k的取值范围是__________.14. 当x时,3(x−2)5不大于0.15. 某种商品的进价为800元,标价为1200元.由于商品积压,商家准备打折销售,但要保证利润不低于20%,则至少可以打折.16. 某次数学测验中,老师出了16道选择题,评分办法是:答对一道题得6分,答错一道题扣2分,不答得0分.某学生有一道题未答,那么这个学生至少要答对道题,成绩才能在60分以上.三、解答题17. 解下列不等式:(1)−3x>3;(2)x−1>3x+5;(3)5x+2≥7x+20;(4)12x≤2+13x.18.已知关于x 的方程3x +a =x −7的解是正数,求实数a 的取值范围.19.已知3x−25与1的和不小于2x+14,求x 的取值范围.20. 下面是小英解不等式x+52−2<3x+22的过程:①去分母,得x +5−2<3x +2②移项、合并同类项,得−2x <−1③两边都除以−2,得x >12.先阅读以上解题过程,然后解答下列问题.(1)小英的解题过程从哪一步开始出现错误?请写出该步的代号______ ;(2)错误的原因是______ ;(3)第③步的依据是______ ;(4)该不等式的解集应该是______ .21.若不等式2(x +1)−5<3(x −1)+4的最小整数解是方程13x −ax =5的解,求代数式a 2−2a −11的值.22.为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?23.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调査:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购头3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.参考答案1. D2.A3.B4.B5.A6.C7.A8.C9.B10.B11.−112.x<−213.2≤k<314.≤215.八16.1217.【1】x<−1【2】x<−3【3】x≤−9【4】x≤1218.解:3x+a=x−7则3x−x=−a−7解得:x=−a−72∵关于x的方程3x+a=x−7的解是正数∴−a−72>0解得:a<−7.19.解:由题意得:3x−2 5+1≥2x+144(3x−2)+20≥5(2x+1)12x−8+20≥10x+512x−10x≥5+8−202x≥−7x≥−3.5.20.①去分母时,不等式左边第二项没有乘2不等式的基本性质2x>−12 21.解:解不等式2(x+1)−5<3(x−1)+4,得x>−4∵大于−4的最小整数是−3∴x=−3是方程13x−ax=5的解.把x=−3代入13x−ax=5中,得:13×(−3)−a×(−3)=5解得a =2.当a =2时,a 2−2a −11=22−2×2−11=−11.∴代数式a 2−2a −11的值为−11.22.解:(1)设该参赛同学一共答对了x 道题,则答错了(25−1−x)道题依题意得:4x −(25−1−x)=86解得:x =22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则答错了(25−y)道题 依题意得:4y −(25−y)≥90解得:y ≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.23.解:(1)由题意得:{a −b =122a −3b =6解得:{a =30b =18.(2)设购买节省能源的新设备甲型设备x 台,乙型设备(10−x)台则:30x +18(10−x)≤216∴x ≤3∵x 取非负整数∴x =0,1,2∴有4种购买方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)由题意:240x +180(10−x)≥1890∴x ≥1.5∴1.5≤x ≤3∴x 为2或3.当x =2时,购买费用为:30×2+18×8=204(万元)当x=3时,购买费用为:30×3+18×7=216(万元)∴最省钱的购买方案是应选购甲型设备2台,乙型设备8台.。
七年级数学下册《一元一次不等式组》练习题及答案(人教版)一、单选题 1.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]5.75,55,4π==-=-如果132x +⎡⎤=⎢⎥⎣⎦则x 的取值范围是( )A .57x ≤<B .57x <<C .57x <≤D .57x ≤≤2.八年级某班部分学生去植树,若每人平均植树4棵,还剩9棵,若每人平均植树5棵,则最后一名学生有但棵数不足2棵.若设同学人数x 人,则下列列式正确的是( )A .49504952x x x x +->⎧⎨+-<⎩B .49504952x x x x +-≥⎧⎨+-<⎩C .495(1)0495(1)2x x x x +-->⎧⎨+--<⎩D .()()4951049512x x x x ⎧+--≥⎪⎨+--<⎪⎩3.若关于x 的不等式组()1022113x a x x ⎧-->⎪⎪⎨-⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之积是( ) A .0 B .1 C .2 D .34.不等式组21223x x x ->+⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A . B . C .D .5.不等式20-1x x -⎧⎨≤⎩>的解集在数轴上表示正确的是( ) A .B .C .D . 6.如果点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,那么符合条件的点有( )个A .2B .3C .4D .57.不等式组32531x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C . D.8.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否15≥”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )A .3x ≥B .37x ≤<C .37x <≤D .7x ≤ 9.不等式组2{3x x >≤的解集在数轴上表示正确的是( ) A . B .43 C .3 D .2226-55(,) 10.定义一种新运算:2ab ab a =+则不等式组(2)21 52x x -<⎧⎪⎨≤⎪⎩的负整数解有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.某种药品的说明书上,贴有如下的标签,一次服用这种药品的剂量范围是________~________mg .12.若a<b,则x a x b>⎧⎨≤⎩的解集是______. 13.不等式组112260x x ⎧≥-⎪⎨⎪+>⎩的解集为________.14.不等式组360x x m->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______.15.不等式组112237xx⎧-<⎪⎨⎪-≤-⎩的解集是______.三、解答题16.解不等式组36021 xx+≥⎧⎨-≤-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.17.(1)计算:3216+1927-⨯--(2)解不等式组:1>043xx x+⎧⎨+>⎩并把不等式组的整数解写出来.18.已知方程组713x y ax y a+=-+⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)当a为何整数时,不等式2ax+x>2a+1的解集为x<1?19.(1)解方程:241111xx x-+=-+(2)解不等式组:273(1)15(4)2x xx x--⎧⎪⎨-+≥⎪⎩<①②20.已知关于x的不等式12x≤8-32x+2a的解集表示在数轴上,如图所示(1)求a的值;(2)是否存在整数k,使得方程组26x y kx y a+=⎧⎨-=+⎩的解满足x>1,y≤1,若存在,求出k的值;若不存在,请说明理由.。
七年级下数学一元一次不等式练习题
1、下列不等式中,是一元一次不等式的是 ( )
A 012>-x ;
B 21<-;
C 123-≤-y x ;
D 532>+y ;
2.下列各式中,是一元一次不等式的是( )
A.5+4>8
B.2x -1
C.2x ≤5
D.1x
-3x ≥0 3. 下列各式中,是一元一次不等式的是( )
(1)2x<y (2) 错误!未找到引用源。
(3)错误!未找到引用源。
(4)错误!未找到引用源。
4.用“>”或“<”号填空.
若a>b,且c 错误!未找到引用源。
,则:
(1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b;
(4)c-a_____c-b (5)错误!未找到引用源。
; (6)错误!未找到引用源。
5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
二、填空题(每题4分,共20分)
1、不等式组⎩
⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 . 2、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620
x x ⎧<⎪⎨⎪->⎩的解集为 . 三. 解下列不等式,并在数轴上表示出它们的解集.
(1) 7)1(68)2(5+-<+-x x (2))2(3)]2(2[3-->--x x x x
(3)
1215312≤+--x x (4) 2
15329323+≤---x x x
(5)11(1)223x x -<- (6) 4
1328)1(3--<++x x
三、解不等式组,并在数轴上表示它的解集 1.⎪⎩⎪⎨⎧+>-<-.
3342,121x x x x
2. -5<6-2x <3.
3.⎪⎩
⎪⎨⎧⋅>-<-322,352x x x x 4.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x
5.532(1)
314(2)2
x x x -≥⎧⎪⎨-<⎪⎩ 6.⎪⎩⎪⎨⎧≥--+.052,1372x x x
7.⎪⎩⎪⎨⎧---+.
43)1(4,1321x x x x 8.14321<--<-x
四.变式练习
1不等式组⎩
⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2
(B)m ≥2 (C)m ≤1 (D)m ≥1
1.
k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.
2.
.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.
3.
已知方程组⎩⎨⎧-=++=+②①m
y x m y x 12,312的解满足x +y <0,求m 的取值范围.
4. 适当选择a 的取值范围,使1.7<x <a 的整数解
(1) x 只有一个整数解;
(2) x 一个整数解也没有.
5. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.
6.
已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
7.
当k 取何值时,方程组⎩
⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.
8.
已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
9.
已知a 是自然数,关于x 的不等式组⎩
⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.
10. 关于x 的不等式组⎩
⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.
11. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?
12. 已知关于x ,y 的方程组⎩⎨
⎧-=-+=+3
4,72m y x m y x 的解为正数,求m 的取值范围.
若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.
初中数学试卷
马鸣风萧萧
13.。