2007-2008上学期第一次月考八年级上数学试题北师大版
- 格式:doc
- 大小:110.50 KB
- 文档页数:2
某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。
北师大版六年级(上)数学期末测试卷(三)时间:90分钟满分:100分题号一二三四五六七总分得分一、填空乐园。
(每空1分,共25分)1.在一个长12cm,宽10cm 的长方形中画一个最大的圆,这个圆的直径是(),面积是(),周长是()。
2.火车的速度是120千米/时,燕子的速度是50千米/时。
燕子的速度约是火车的()%。
3.()=0.6=()∶()=()25=()%。
4.甲乙两数的比是3∶4,甲数是乙数的()%。
5.有10支足球队进行足球比赛,如果每两支球队进行一场比赛,共比()场。
6.根据“第二天的成交量比第一天增加了34”,可以知第二天的成交量是第一天的()倍。
7.某饭店九月份的营业额是78000元,如果按营业额的5%缴纳营业税,九月份应纳税()元。
8.红旗小学六(2)班,有50人,有1人请病假,出勤率()%。
姓名班级___________座位号………………………装…………订…………线…………内…………不…………要…………答…………题………………………9.一辆自行车原价560元,这辆自行车打八五折后的价钱是()元。
10.完成下表。
分数9 10小数0.50.4百分数20%75%二、明辨是非。
(每题1分,共6分)1.半径是2厘米的圆,它的面积和周长相等。
()2.今年的产量比去年增加了20%,今年的产量就相当于去年的120%。
() 3.两个大小不同的圆,大圆周长和直径的比值同小圆周长和直径的比值相等。
()4.一根绳子长910米,可以写成90%米。
() 5.π>33.3%()6.一个三角形三个内角的度数比是2∶5∶3,那么这个三角形是直角三角形。
()三、精挑细选。
(每题1分,共8分)1.一堆煤,用了40%,还剩这堆煤的()。
A.40%B.60%C.60吨D.无法确定2.某厂上半月完成计划的75%,下半月完成计划的12,这个月增产()。
A.25%B.45%C.30%D.20%3.一种纺织品的合格率是98%,300件产品中可能有()件不合格。
2015-2016学年度上学期八年级第一次检测题数学试题温馨提示:1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里.2.填空题、解答题不得用铅笔或红色笔填写.3.考试时,不允许使用科学计算器.4.考试时间:90分钟试卷分值:120分.题号一二三总分19 20 21 22 23 24 25得分第Ⅰ卷(选择题共36分)一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填入相应的表格里.每小题3分,共36分.题号 1 2 3 4 5 6 7 8 9 10 11 12 得分答案1.在平面直角坐标系中,已知点(2,-3),则点在()A.第一象限B.第二象限C.第三象限D.第四象限2.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、43.在3.14,π,3.212212221,2+,,—5.121121112……中,无理数的个数为().A.5 B.2 C.3 D.44.下列计算正确的是()A.B. C. D.5.如果点P(在轴上,则点P的坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,6.点P(-3,5)关于x轴的对称点P′的坐标是()A.(3,5)B.(5,-3)C.(3,-5)D.(-3,-5) 7.如图,已知数轴上的点A 、B 、C 、D 分别表示数-2、1、2、3,则表示数3-的点P 应落在线段( ) A .AO 上 B .OB 上 C .BC 上D .CD 上8.下列说法中,不正确的是( ).A .3是的算术平方根B .±3是的平方根C .-3是的算术平方根D .-3是的立方根9.已知,那么的值为( )A .-1B .1C .D.10.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( )A .4B .6C .8D .311.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米12.如图,在Rt △ABC 中,∠ACB =90°,AB =4.分别以AC ,BC 为直径作半圆,面积分别记为S 1,S2,则S 1+S 2的值等于( ).A .2πB .3πC .4πD .8π第II 卷(非选择题 共84分)二、填空题(每小题4分,共24分)13.-27 的立方根为 , 16 的平方根为 ,的倒数为 .14.如果用(3,19)表示电影院的座位号是3排19号,那么(23,1)表示 ;10排15号可表示为 . 15.已知点P与点Q关于y 轴对称,则.第7题图第11题图第12题图16.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12= .17.如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为 .(π取3)18.已知,如图9,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积 .三、解答题(每题满分60分)19.(本题满分4分)在数轴上作出表示-的点(保留作图痕迹,不写作法).20.计算:(本题满分16分)(1)(2)(3)(4)第17题图第18题图21.(本题满分6分)先化简,再求值其中:,22.(本题满分6分)如图是一块地,已知AD=8m,CD=6m,∠D=,AB=26m,BC=24m,求这块地的面积.第22题图23.(本题满分8分)如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状? 并说明理由.24.(本题满分10分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.第24题图25.(本题满分10分)如图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,在平面图中画出所有最长线段,写出条数.(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系.第25题图八年级数学参考答案一、选择题:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D D C C B D B C A A C A 二、填空题(每小题4分,共24分)13.-3;. 14.23排1号;(10,15) 15.-1,2. 16.17.15cm. 18.36三、解答题:(满分共60分)19.(作图正确得4分)20.(本题满分16分)答案:(1)(2)(3)(4)…………………………………………………………………………………………………………………(每小题4分,共16分)21.(本题满分6分)解:==…………………………………………………………………………………………………………………………………………4分当,时,原式=3-4= -1………………………………………………………6分22.(本题满分6分)解:如右图所示,连接AC,…………………………………………………………………………………………1分∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABC D=S△ABC-S△A CD=……………………………………………………6分23.(本题满分8分)(1)△ABC 的面积=4 ×8-1 ×8 ÷2-2 ×3 ÷2-6 ×4 ÷2=13故△ABC 的面积为13;…………………………………………………………………………………………………4分(2)∵正方形小方格边长为1∴AC=∵在△ABC 中,AB2+BC2=13+52=65 ,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.…………………………………………………………………………………8分24.(本题满分10分)解答:解:(1)如图所示:△A1B1C1,即为所求;……………………………………………………画对图3分点B1坐标为:(﹣2,﹣1);……………………………………………………………………………………………5分(2)如图所示:△A2B2C2,即为所求,………………………………………………………………画对图8分点C2的坐标为:(1,1).………………………………………………………………………………………………10分25(本题满分10分)解:(1)由勾股定理可得最长线段的长为……………………………………………………1分能画4条,如图所示.……………………………………………………………………………………………………5分(2)∠ABC与∠A′B′C′相等.………………………………………6分∵在立体图中,易得∠ABC=90°,D′B′A△又在平面展开图中,对于和有E′C′B△∴△A′B′D≌△B′C′E(SAS).∴∠DA′B′=∠EB′C′.∵∠DA′B′+∠A′B′E=90°,∴∠A′B′D+∠EB′C′=90°,即∠A′B′C′=90°.∴∠ABC=∠A′B′C′.……………………………………………………………………………10分。
北师大版八年级数学上册期中测试试卷分析一、试题分析试题考查内容范围是《新北师大版数学八年级上》第一章勾股定理——第四章一次函数,包含了勾股定理内容,算数平方根,立方根,轴对称与坐标变化,实数的性质,估算,二次根式的四则运算,平面直角坐标系及一次函数的应用。
试卷以教材为载体,立足基础,适当变式拓展,考查了数形结合等数学思想。
学生的总体感觉:题型熟悉,难度适中,但部分学生在综合应用上失分较多,解题方法与能力的培养有待进一步加强,所以这节课应从注重基础知识着手,增强解题方法指导性教学,能更好的发展学生有条理地进行归纳和总结的能力。
二、成绩分析成绩优秀的同学:胡丹(105分),程天骄(103分)(一)选择题错误情况统计(二十六份试卷)(二)填空题错误情况统计(二十六份试卷)(三)解答题错误情况统计(二十六份试卷)三.问题诊断1.粗心大意造成的失误会造成严重的后果;2.基础知识掌握不够好3.有许多学生字迹潦草,卷面不整洁,答题不规范。
4. 审题不清造成不必要的错误。
四.典型剖析专题一一次函数(试卷8)在一次函数y=kx+2中,若y随x的增大而增大,则它的图像不经过的象限是()A.第一象限B.第二象限C.第三象限.D.第四象限分析:利用一次函数图像中k与b的取值判别象限然后进行排除变式练习1.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限专题一一次函数(试卷第10题)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米.他们前进的路程为s(单位:千米)与甲出发后的时间为t(单位:时)之间的函数图象如图所示.根据图象信息,下列说法正确的是():A.甲的速度是4km/h;B.乙的速度是10km/hC.乙比甲晚出发1h;D.甲比乙晚到B地3h考点:一次函数的应用。
(第四章内容)变式练习1.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地专题二位置与坐标(试卷16题)直线y=3x+2沿y轴向下平移5个单位长,则平移后直线与x轴的交点坐标是_____相关题型:试卷14, 20(2)分析:上下平移,纵坐标上加,下减;左右平移,横坐标右加左减练习:绩优学案66页达标测评填空题5专题三一次函数的应用试卷22题(试卷22题)一次函数y=k1x-4与正比例函数y=k2x的图象经过点(2,-1),(1)分别求出这两个函数的表达式;解:(1)∵一次函数y=k1x-4与正比例函数y=k2x的图象经过点(2,-1).把点(2,-1)代入y=k1x-4得:2k1-4=-1,解得:k1= 3/ 2,所以解析式为:y= 3/ 2x-4;把点(2,-1)代入y=k2x得:2k2=-1,解得:k2=- 1 /2,所以解析式为:y=- 1 /2x;考点:求一次函数的解析式及与坐标轴围成的三角形的面积专题三一次函数的应用试卷22题(试卷22题)一次函数y=k1x-4与正比例函数y=k2x的图象经过点(2,-1),(2)求这两个函数的图象与x轴围成的三角形的面积。
2013—2014学年度八年级上期第一次月考数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号 填在题后的括号中. 1.4的平方根是( )A .2±B .2 C. D2.在平面直角坐标系中,点P (3,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列实数21-, 0, π , 4 , 31 , 5中是无理数的有( )A .1个B .2个C .3个D .4个4.在下列四组数中,不是勾股数的是( )A .7,24,25B .3,5,7C .8,15, 17D .9,40,415.下列计算正确的是( ) A .632=⨯ B .532=+ C .5315= D .235=-6.如图以数轴的单位长线段为边作一个正方形,以 数轴的原点为旋转中心,将过原点的对角线顺时 针旋转,使对角线的另一端点落在数轴正半轴的 点A 处,则点A 表示的数是( )A .32BCD ..17.点(2,6)关于x 轴的对称点坐标为( )A .(2,-6)B . (-2,-6)C . (-2,6)D . (6,2)8.已知直角三角形中一条直角边长为12cm ,周长为30cm ,则这个三角形的面积是( )A .220cm B .230cm C .260cm D .275cm 9.化简4323-的结果是( ) A .23- B .23- C .3223- D .223-10.已知平面内的一点P ,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则点P 的坐标是( )A .(-1,1)或(1,-1)B .(1,-1)C .(-2,2)或(2,-2)D .(2,-2)11.实数b a ,在数轴上的位置如图所示,则()a b a ++2的化简结果为( )A .2a b +B .b -C .bD .2a b -12.如图是放在地面上的一个长方体盒子,其中'''9,5,6AB BB B C ===,在线段AB 的三等分点E (靠近点A )处有一只蚂蚁,''B C 中点F 处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为( ) A .10B .106C .5+35D .6+34第12题图第11题图二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上. 13.在平面直角坐标系中,点(),2P a a -在x 轴上,则a = 14.比较大小:23 52 (填“>”或“<”或“=” ) 15.x 21x = (结果保留根号)16.如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是17.在平面直角坐标系中,等边ABC ∆的顶点(6,0)A -,(2,0)B ,则顶点C 的坐标为18.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,直角△CEF 的面积为200,则BE 的值为三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19()-1020*******(1)272π⎛⎫⨯---- ⎪⎝⎭第16题图第18题图FEDCBA20.如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B -,(5,3)C .(1)在图中画出ABC ∆关于y 轴的对称图形111A B C ∆;(要求:画出三角形,标出相应顶点的 字母,不写结论) (2)分别写出 111A B C ∆三个顶点的坐标.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.化简: (1)122154+⨯ (2))11CB22.四个点的坐标分别是:A(0,3)、B(2,4)、C(6,2)、D(5,0).(1)在下面的方格中分别作出A 、B 、C 、D 四个点的位置; (2)顺次连结A 、B 、C 、D 四个点,得到四边形ABCD ,求四边形ABCD 的面积.23.先化简,后求值:()()()()222232x y y x y x y x y -----+-,其中x y ==8,4)O。
)第10题图2012-2013年秋季八年级(上)数学综合测试一、选择题(每小题3分,共30分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请把符合要求的选项前面的字母填写在Ⅱ卷上指定的位置.1.在如图1所示的四个图案中,既可以由旋转形成,又可以由轴对称形成的是( )2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3;4:5; ③三边长分别为9,40,41;④三边之比为8:15:17. 其中,能构成直角三角形的个数有( ) A .1个 B .2个 C .3个 D .4个3.如图2,用8块相同的长方形地砖刚好拼成一个宽为20 cm 的矩形图案(地砖间的缝隙忽略不计),则每块长方形地砖的面积是( )A .20 cm2B .40 cm2C .60 cm2D .75 cm24、如图,两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图像位置可能是( )5、一个正方形的边长如果增加2cm ,面积则增加32cm ,则这个正方形的边长为( ) (A )6cm (B )5cm (C )8cm (D )7cm6、若点P (a ,a -4)是第二象限的点,则a 必须满足( )A 、a <4B 、a >4C 、a <0D 、0<a <47.某校学生体验完后,抽查了6名男学生的身高(单位:厘米):151,151,151,152,152,154;给出下列结论:①众数是152厘米;②众数是151厘米;③中位数是151厘米;④平均数是152.其中正确的个数有( )A .1个B .2个C . 3个D .4个8.下列说法正确的是( )A .有两边相等的平行四边形是菱形B .有一个角是直角的四边形是矩形C .四个角相等的菱形是正方形D .任何正多边形都可以密铺9、某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年实际生产水稻x 吨,生产小麦y 吨,则依据题意列出方程 组是( ) A 、1510%15%17x y x y +=⎧⎨+=⎩ B 、1710%15%15x y x y +=⎧⎨+=⎩C 、15(110%)(115%)17x y x y +=⎧⎨+++=⎩D 、17(110%)(115%)15x y x y +=⎧⎨+++=⎩10、某储运部紧急调拨一批物资,调进物资共用4小时,调 进物资2小时后开始调出物资(调进物资与调出物资的速度均 保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关 系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时二、填空题(每小题3分,共15分)将答案填写在Ⅱ卷上指定的位置. 11、如果(x-4)2=25,那么x 的值是 12、已知a 、b 为两个连续整数,且a <7<b ,则b a += .13、下图是一个简单的数值运算程序,若输入x 的值为3,则输出的数值为__________.14、表2是从表1中截取的一部分,则a =15.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子枚(用含n的代数式表示).二OO八年宜昌市秋季学期八年级期末调研考试数学试题Ⅱ卷(解答题共75分)三、解答题(每题6分,共24分)16、17.18.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45 方向的B点生成,测得OB .台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60 方向继续移动.以O为原点建立如图12所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?19、如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.第1个图2个图3个图…AB CE FM NO(第19题图)四、解答题(每小题7分,共21分)20.2008年8月8日,第29届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差.(2)求出这6个奥运会项目门票最高价的平均数、中位数和众数.(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送还1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.21、为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?22、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片ABC△和DEF△.将这两张三角形胶片的顶点B与顶点E重合,把DEF△绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当DEF△旋转至如图②位置,点()B E,C D,在同一直线上时,AFD∠与DCA∠的数量关系是.2分(2)当DEF△继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接BO AD,,探索BO与AD之间有怎样的位置关系,并证明.C AEFBDOAFB(E)ADOF CB(E)图①图②图③五、解答题(每小题10分,共30分)23.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震。
专题08整式中规律探索的三种考法类型一、数字类规律探索问题-,A B.30,D C.29,BA.29【答案】A【分析】观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用【答案】4【分析】由题意知,第一次输出的结果是4,第二次输出的结果是1,第四次输出的结果是4,第五次输出的结果是=⨯+,进而可得第2023次输出的结果.202336741【详解】解:由题意知,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,……,∴可知三次为一个循环,=⨯+,∵202336741∴第2023次输出的结果是4,故答案为:4.【点睛】本题考查了程序流程图与有理数计算,规律探究.解题的关键在于根据推导一般性规律.【变式训练1】按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【答案】C【分析】分三种情况讨论,当输入n经过一次运算即可得到输出的结果为656,当输入n经过两次运算即可得到输出的结果为656,当输入n经过三次运算即可得到输出的结果为656,再列方程,解方程即可得到答案.【详解】解:当输入n经过一次运算即可得到输出的结果为656,51556∴+=,n∴=5655,nn∴=131.当输入n经过两次运算即可得到输出的结果为656,()∴++=5511656,n∴+=26.51131,n∴=n当输入n经过三次运算即可得到输出的结果为656,()∴+++=n555111656,⎡⎤⎣⎦()∴++=5126,n5511131,∴+=5n∴=.n综上:开始输入的n值可能是5或26或131.故选:C.【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.课后训练A.31B.49C.62D 【答案】BA.13-B.2【答案】CA.73B.81C.91D.109【答案】C【分析】根据图形,将每个图形分为上下两部分,分别数出每个图形两部分中菱形的个数,总结出数量变化的一般规律即可.【详解】解:由图可知:第一个图形:上面由3个菱形,下面有0个菱形,第二个图形:上面有6个菱形,下面有1个菱形,A .62B .70【答案】B 【分析】观察图形得到第1个五边形数为1,第为14712++=,第4个五边形数为14710+++A .31B .32C .63D .64【答案】C 【分析】根据图形,可以得到正方形个数的变化特点,从而可以得到图⑤中正方形的个数.【详解】解:由图可得,第①个图形中正方形的个数为:212321+==-,第②个图形中正方形的个数为:23122721++==-,第③个图形中正方形的个数为:23412221521+++==-,…则第⑤个图形中正方形的个数为:62164163-=-=,故选:C .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现正方形个数的变化特点,求出图⑤中正方形的个数.7.下列图形都是由大小相同的小正方形按一定规律组成的,其中第①个图形中有1个小正方形,第②个图形中有5个小正方形,第③个图形中有11个小正方形,…,按此规律排列下去,第⑦个图形中的小正方形个数为()个A .40B .49C .55D .71【答案】C 【分析】由已知图形中点的分布情况知:横放是图形序号的平方减去1,竖着摆放的数与序号相同,再进行相加即可.【详解】解:根据图形可得第①个图案正方形个数为:21111=-+;第②个图案正方形个数为:2532212=+=-+;第③个图案正方形个数为:21183313=+=-+;第④个图案正方形个数为:219154414=+=-+;所以,第⑦个图形中的小正方形个数为271755-+=(个)故选:C【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.如图1,AE 是O 的直径,点B 、C 、D 将半圆分成四等分,把五位同学分别编为序号1、2、3、4、5按顺序站在半圆的五个点上,现把最右边的5号同学调出,站到2号和3号两位同学之间,再把最右边的4号同学调出,站到1号和2号两位同学之间,得到图2,称为“1次换序”.接着按同样的方法,把最右边的3号同学调出,站到4号和2号两位同学之间,再把最右边的5号同学调出,站到1号和4号两位同学之间,得到图3,称为“2次换序”.以此类推……;若从图1开始,经过“n 次换序”后,得到的顺序与图1相同,则n 的值可以是()A .11B .12C .13D .14【答案】B 【分析】先得到前4次换序后的结果,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:1次换序后,得到的顺序为1,4,2,5,3,2次换序后,得到的顺序为1,5,4,3,2,3次换序后,得到的顺序为1,3,5,2,4,4次换序后,得到的顺序为1,2,3,4,5,由此可知,每经过4次换序,得到的顺序与图1相同,即此时4n k =(k 为正整数),观察四个选项可知,只有选项B 符合题意,故选:B .【点睛】本题考查了图形类规律探索,正确归纳类推出一般规律是解题关键.。
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【北师大版】专题2.5平行线的性质与判定大题专练(填空型问题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(黑龙江省哈尔滨市南岗区萧红中学2021-2022学年七年级上学期期中数学试题)完成下面的证明.如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证:AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(① )∴∠C=② ∴AC∥BD(③ )2.(江苏省南京师范大学附属中学树人学校2020-2021学年七年级下学期第一次月考数学试题)完成下面的推理说明:如图,AB⊥BC,垂足为点B.∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE//DF,理由如下:∵AB⊥BC,∴∠ABC=,即∠3+∠4=.又∵∠1+∠2=90°,且∠2=∠3,∴=理由是:.∴BE//DF.理由是:.3.(江苏省扬州市邗江区实验学校2020-2021学年七年级下学期期末数学试题)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠2=∠ ( ).∵∠1=∠2(已知),∴∠1=∠ ( ).∴AB∥CD( ).4.(江苏省南通市如皋市实验初中2021-2022学年七年级下学期3月月考数学试题)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α( )∵DE平分∠BDC(已知),∴∠BDC=( ).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( )∵∠α+∠β=90°.(已知),∴∠ABD+∠BDC= ( ).∴AB∥CD ( )5.(福建省福州屏东中学2021-2022学年七年级上学期期末数学试题)如图,点G 在CD 上,已知∠BAG +∠AGD =180°,EA 平分∠BAG ,FG 平分∠AGC 请说明AE∥GF 的理由.解:因为∠BAG +∠AGD =180°(已知),∠AGC +∠AGD =180°(邻补角的性质),所以∠BAG =∠AGC (________________)因为EA 平分∠BAG ,所以∠1=12∠BAG (________________).因为FG 平分∠AGC ,所以∠2=12______________,得∠1=∠2(等量代换),所以_________________(________________).6.(陕西省西安交通大学附属中学分校2020-2021学年七年级下学期第一次月考数学试题)已知,如图,∠ABC =∠ADC ,BF ,DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC ,请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF ,DE 分别平分∠ABC 与∠ADC (已知),∴∠1=12∠ABC ,∠2=12∠ADC ( ).∵∠ABC =∠ADC ( ),∴∠ =∠ (等量代换).∵∠1=∠3( ),∴∠2=∠ ( ).∴AB ∥DC ( ).7.(江苏省盐城市初级中学2019-2020学年七年级下学期期中数学试题)请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD( )∴∠2=∠( ),∵∠1=∠2.(已知)∴∠1=∠( )∴AB//CD( )8.(广东省珠海市第十一中学2020-2021学年七年级下学期期中考试数学试卷)如图,已知∠1=∠3,CD// EF,试说明AB//EF.请将过程填写完整.证明:∵∠1=∠3又∠2=∠3(_____________)∴∠1=_______(______________)∴AB//CD(______________)又∵CD//EF∴AB//______________.9.(江苏省灌云县西片2019-2020学年七年级线上教学质量检测数学试题)如图,AB⊥BD,CD⊥BD,∠A 与∠AEF互补,以下是证明CD∥EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB= ( )∴∠ABD+∠CDB=180°∴AB∥ ( )又∠A与∠AEF互补( )∠A+∠AEF= ∴AB∥ ( )∴CD∥EF( )10.(福建省三明市明溪县2021-2022学年七年级下学期期中数学试题)填空,将本题补充完整.如图,已知EF∥AD,∠1=∠2,∠BAC=65°.将求∠AGD的过程填写完整.解:∵EF∥AD(已知)∴∠2= ( )又∵∠1=∠2(已知)∴∠1= (等量代换)∴AB∥GD()∴∠BAC+ =180°()∵∠BAC=65°(已知)∴∠AGD= °11.(山东省济南东南片区2021-2022学年七年级下学期期末考试数学试题)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.解:∵EF∥AD,∴∠2= ( ).又∵∠1=∠2,∴∠1=∠3( ).∴AB∥ ( ).∴∠BAC+ =180°( ).∵∠BAC=70°,∴∠AGD= .12.(浙江省台州市黄岩区2021-2022学年七年级下学期期末数学试题)如图,已知:∠1=∠2,∠A=∠D.求证:∠B=∠C.证明:∵∠1=∠2(已知),∴______∥______(________________________).∴∠A=∠BED(_____________________________).∵∠A=∠D(已知),∴∠BED=∠D(等量代换).∴______∥______(__________________________).∴∠B=∠C(______________________________).13.(重庆市忠县花桥镇初级中学校2021-2022学年七年级下学期期中数学试题)完成下面推理过程:如图,AB∥CD,∠ABC=50°,∠CPN=150°,∠PNB=60°,∠NDC=60°,求∠BCP的度数.解:∵∠PNB=60°,∠NDC=60°,(已知)∴∠PNB=∠NDC,(等量代换)∴PN // CD,()∴∠CPN+∠_________=180°,()∵∠CPN=150°,(已知)∴∠PCD=180°−∠CPN=180°−150°=30°∵AB//CD,(已知)∴∠ABC=∠____________,(两直线平行,内错角相等)∵∠ABC=50°,(已知)∴∠BCD=__________,(等量代换)∴∠BCP=∠BCD-∠PCD=____________°-30°=_________°.14.(江西省南昌市江西育华学校2021-2022学年七年级下学期3月月考数学试题)如图,在△ABC中点D、E分别在AB、BC上,且DE∥AC,∠1=∠2,若AC平分∠BAF,∠B=50°,求∠1的度数.解:∵DE∥AC(已知)∴∠1=∠ ( )∵∠1=∠2(已知)∴∠C=∠2( )∴AF∥ ( )∴∠B+∠BAF=180°( )∵∠B=50°(已知)∴∠BAF=180°﹣∠B=130°(角的运算)∵AC平分∠BAF(已知)∴∠2=12∠BAF =65° ( )∵∠1=∠2(已知)∴∠1=65°( )15.(江苏省南通市如皋初级中学2021-2022学年七年级下学期月考数学试题)请补全证明过程及推理依据.已知:如图,BC ∥ED ,BD 平分∠ABC ,EF 平分∠AED .求证:BD ∥EF .证明:∵BD 平分∠ABC ,EF 平分∠AED ,∴∠1=12∠AED ,∠2=12∠ABC ( )∵BC ∥ED ,∴∠AED =( ).∴12∠AED =12∠ABC ( )∴∠1=∠2( )∴BD ∥EF ( )16.(山东省日照市开发区2020-2021学年七年级下学期期末数学试题)如图,已知AB∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,求证∠1+∠2=90°.证明:∵BE 平分∠ABC (已知),∴∠2=( ),同理∠1= ,∴∠1+∠2=12 ,又∵AB∥CD (已知)∴∠ABC +∠BCD =( ),∴∠1+∠2=90°.17.(广东省江门市新会陈经纶中学2021-2022学年七年级下学期期中考试数学试题)完成下面的证明:如图,在四边形ABCD 中,BE 平分∠ABC 交线段AD 于点E ,∠1=∠2,∠C =110°,求∠D 的度数?解:∵BE 平分∠ABC (已知)∴∠2=_________()又∵∠1=∠2 (已知)∴∠1=_________()∴AD //BC ( )∴∠C +________=180°( )又∵∠C =110°(已知)∴∠D =__________.18.(山西省大同市广灵县2020-2021学年七年级下学期期中数学试题)已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB //DC .证明:∵∠ABC =∠ADC ,∴12∠ABC =12∠ADC .( )又∵BF 、DE 分别平分∠ABC 与∠ADC ,∴∠1=12∠ABC ,∠2=12∠ADC .( )∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.(等量代换)∴______//______.( )19.(北京市石景山区2021-2022学年七年级上学期期末数学试题)如图,已知∠AOB =120°,OP 平分∠AOB .反向延长射线OA 至C .(1)依题意画出图形,直接写出∠BOC 的度数_______°.(2)完成下列证明过程:证明:如图,∵OP 是∠AOB 的平分线,∴∠AOP =12∠_______.(_______)∵∠AOB =120°,∴∠AOP =_______°.∵∠BOC =_______°.∴∠AOP =∠BOC .(_________)20.(四川省广安市邻水县2021-2022学年七年级下学期期末数学试题)已知: 如图,EF ∥AD ,∠1=∠2,∠BAC =70°.求: ∠AGD 的度数解: 因为 EF //AD (已知)所以 ∠2=__ __ ( 两条直线平行,同位角相等 )又因为∠1=∠2(已知)所以∠1=∠3( 等量代换)所以//__ ___ ( 内错角相等,两直线平行)所以∠BAC+___ ___=180°(_________ ____ ______________)因为∠BAC=70°(已知)所以∠AGD=110°21.(河南省周口市鹿邑县2020-2021学年七年级下学期期中数学试题)将下列推理过程依据补充完整.如图,已知CD平分∠ACB,AC//DE,CD//EF求证:EF平分∠DEB证明:∵CD平分∠ACB(已知)∴∠DCA=∠DCE(角平分线的定义)∵AC//DE(已知)∴∠DCA=∠CDE(________________________________)∴∠DCE=∠CDE(等量代换)∵CD//EF(已知)∴________________=∠CDE(________________________________)∴∠DCE=∠BEF(________________________________)∴∠DEF=________________(等量代换)∴EF平分∠DEB(角平分线的定义)22.(河南省信阳市淮滨县2021-2022学年七年级下学期期中数学试题)完成下面的求解过程.如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.解:因为FG∥CD(),所以∠2=()又因为∠1=∠3,所以∠3=∠2(),所以BC∥(),所以∠B+=180°().又因为∠B=50°,所以∠BDE=.23.(重庆市南川区2021-2022学年七年级下学期期中数学试题)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.证明:∵∠BAP+∠APD=180°(已知),∴______∥______(______),∴∠BAP=______(______),又∵∠1=∠2(已知),∴∠FPA=______.∴______∥______(______),∴∠E=∠F(______).24.(江苏省徐州市丰县初级中学2021-2022学年七年级下学期3月月考数学试题)如图.己知AD⊥BC,垂足为点D,EF⊥BC,垂足为点F,∠1+∠2=180°.请填写∠CGD=∠CAB的理由.∵AB⊥BC,EF⊥BC∴∠ADC=90°,∠EFC=90°(____________________)∴∠ADC=∠EFC∴AD∥EF(________________________________)∴∠3+∠2=180°(________________________________)∵∠1+∠2=180°(已知)∴∠_________=∠_________(____________________)∴DG∥_________(________________________________)∴∠CGD=∠CAB.25.(山东省青岛市市南区青岛第五十一中学2021-2022学年七年级下学期期中数学试题)已知:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G,∴∠ADC=∠EGC=90°,∴AD∥EG,(__________________)∴∠1=∠2,(__________________)∠______=∠3,(__________________)又∵∠E=∠1(已知),∴______=______∴AD平分∠BAC26.(上海七年级下学期期末精选60题(压轴版)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版))填写理由或步骤如图,已知AD∥BE,∠A=∠E因为AD∥BE .所以∠A+ =180° .因为∠A=∠E(已知)所以 + =180° .所以DE∥AC .所以∠1= .27.(重庆市江津区2021-2022学年七年级下学期期末数学试题(B卷))如图,直线PQ分别与直线AB、CD 交于点E、点F,∠1=∠2,射线EM、EN分别与直线CD交于点M、N,且EM⊥EN,则∠3与∠4有何数量关系,并给出证明.请你将以下证明过程补充完整.解:∵∠1=∠2,∴______(同位角相等,两直线平行)∴∠4=______(两直线平行,内错角相等).∵EM⊥EN,∴______=90°.∵∠MEB=∠3+______,∴______.28.(北京市通州区2021-2022年七年级下学期期末数学试题)请在下列空格内填写结论或理由,完成推理过程.已知:如图,∠B=∠BGD,∠BGC=∠F.求证:∠B+∠F=180°.证明:∵∠B=∠BGD(已知),∴______//______(______).∵∠BGC=∠F(已知),∴CD//EF(______).∴AB//______(______).∴∠B+∠F=180°(______).29.(上海市静安区2021-2022学年七年级下学期期中数学试题)如图,已知∠ED B +∠B= 180°,∠1=∠2,GF⊥AB,请填写CD⊥AB的理由解:因为∠ED B +∠B= 180°()所以∥()所以∠1=∠3()因为= (已知)所以∠2=∠3(等量代换)所以∥()所以∠FGB=∠CDB()因为GF⊥AB(已知)所以∠FGB=90° ()所以∠CDB =90°()所以CD⊥AB(垂直的意义)30.(2023秋·江西抚州·八年级临川一中校考期末)填空:(请补全下列证明过程及括号内的推理依据)已知:如图,∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知),∠1=∠3(_______),∴∠2=∠3(等量代换),∴BD∥CE(_______),∴∠D=∠______(_______),又∵∠C=∠D(已知),∴∠C=∠____(等量代换),∴_______∥_______(_______),∴∠A=∠F(_______).。
715242520715202425157252024257202415(A)(B)(C)(D)初级中学20 年八年级上学期数学第一学月月考试题班级 姓名( 温馨提示:满分:120分 时间:120分钟) 一、选择题(每小题3分,共30分)1. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )122. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ). (A )9 (B )3 (C )49 (D )29 3. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )84.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )5.在△ABC 中,AB =15,AC =13,高AD =12,则三角形的周长是( )A .42B .32C .42或32D .37或336·在2,3π,327,722,21-,0.151515…,0.101001001…(相邻两个1之间0的个数依次加1)中无理数有 ( ) A .1个 B .2个 C .3个 D .4个 7·下列说法正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .负数没有立方根C .无理数都是开不尽的方根数D .无理数都是无限小数8·16的算术平方根是 ( ) A .±4 B .4 C .±2 D .2 9·如图,数轴上的点A 所表示的数为( ) (A )2 (B ) -2 (C )12- (D )21-10·已知:a 、b 、c 是△ABC 的三边,化简等于22)()(c b a c b a --++-( ) A.2a-2b B.2b-2a C.2c D. –2c 二、填空题(每小题3分,共24分)11.36的平方根是 ,64的立方根是 ,2-的绝对值是 ; 12.若8,a ,17是一组勾股数,则a = 。
2007年北师大版八年级上学期第一次阶段考试数学试卷一、细心填一填,你一定能填好!(每小题3分,共36分。
)12345678.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm9.下列说法正确的个数( ) 212414+=③A .0个B .1个C .2个D .3个10.“数轴上的点并不都表示有理数,如图中数轴上的点P1112二.13.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若a ∶b=3∶4,c=10则S △ABC =________。
14.10在两个连续整数a 和b 之间,a<10<b , 那么a ,b 的值分别是 。
15.一个正数的平方根为3x +1,与x -1,则x =__________。
16.在实数-2,3π,0.50105,71,364中,无理数为 。
① ② ( ) 3 3 16 25 16 25 4 5 2 - = - - - = - - = π π 3232=④+424-的平方根是)(⑤-17.已知直角三角形两条直角边的长分别是5c m 和12c m ,则斜边上的高的长是 c m 。
18.用计算器探索:已知按一定规律排列的一组数:1,21,31,…,191,201。
如果从中选出若干个数,使它们的和大于3,那么至少需要选 个数。
19202122((23.(本题6分)如图,一棵小树在大风中被吹歪,小芳用一根棍子把小树扶直,已知支撑到地面的距离为米,棍子的长度为米,求棍子和地面接触点到小树的距1055.C 离是多少?24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方30米B处,过了2秒后,测得小汽车C与车速检测仪A间距离为50米,这辆小汽车超速了吗?25.(7分)已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。
校 班级 考号 姓名_________________试场号___________ 装订线内不要答题 ◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆2007-2008上学期第一次月考
八年级数学试题(北师大版)
一 填空题:(每题3分,共24分)
1、一个长方形的周长为14,宽为3,则对角线的长为____________________。
2、在
227,3.2333 ,2
π,21
2- ,0, 554544554445.0,3271,9.0- ,
127中,有理数有 ,无理数
有 ,
正数有 ,负数有 。
3、 81的平方根是____;- 0.729的立方根是____。
4、6的相反数是 ;绝对值等于2的数是 .
5、估算面积是18平方米的正方形,它的边长是_____米(误差小于0.1米) 6、等腰三角形的腰长10cm ,高是8cm ,则这个三角形的底边为___________cm 7、满足
x 是
8、直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
二、选择题:(每题3分,共30分。
将正确答案代号填入答题栏)
9、2
6)(-的平方根是…………………………………………………………………( ) A 、-6 B 、36 C 、±6 D 、±6
10、下列4组数中不能构成直角三角形的是 ( ) (A )20、21、29;(B )16、28、34;(C )3k 、4k 、5k ;(D )5m 、12m 、13m 。
11、下列结论中正确的是……………………………………………………………………( )
A 数轴上任一点都表示唯一的有理数
B 数轴上任意两点之间还有无数个点
C 两个无理数之和一定是无理数
D 数轴上任一点都表示唯一的无理数
12、下列说法正确的是………………………………………………………………( ) A 有理数只是有限小数 B
3
π
是分数
C 无限小数是无理数
D 无理数是无限小数
13、小明用31个等距离的结把一根绳子分成等长的30段,他一只手同时握住第1个结和第31个结,小红拉住第6个结,这时小东应该拉住第( )个结,拉紧绳子后才会得到一个直角三角形。
(A )19;
(B )18;
(C )17;(D )16。
14、如果梯子的底端离建筑物有5m ,15m 长的梯子可以达到该建筑物的高度大约是( ) (A)13m ;(B )14m ;(C )15m ;(D )16m 。
15、-27 的立方根与( )
A 0 B
6 C -12或6 D 0 或-6 16、若11
22
a b =
=,则a 2 + ab+b 2= … ……………………… ( ) A
72 B 92 C 112 D
1- 17、一架2.5m 高的梯子,斜靠在一竖直的墙上,这时梯子脚距墙底端的距离为0.7m 。
如果梯子的顶端沿墙下滑0.4m ,那么梯子脚将离墙角 ( ) (A )0.9m ;(B )1.5m ;(C )0.5m ;(D )0.8m 。
18、立方根等于本身的数是( )
A. –1
B. 0
C. ±1
D. ±1或0
三、解答题:
19、(6分) 如图,∠C=90 0,AC=3,BC=4,AD=12,试说明理由。
校 班级 考号 姓名_________________试场号___________ 装订线内不要答题 ◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆20、化简与计算:(每题3分,共12分) (1
(2) 123
1
27+-
(3)
—
) (4) 32÷(-3)2
+|- 16 |×(- 6)+49 ;
21、(本题8分)有一块土地形状如图所示,∠B=∠D=900,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。
22、(本题6分)小明从家出发向正东方向走了160千米,然后又向正北出发走到离家200千米远的地方。
小明向正北方向走了多远?
23、.(本题9分)如图,折叠矩形的一边AD ,使得点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,则EC 的长是多少?
24、(本题5分)判断下列各式是否成立。
你认为成立的请在()内打对号 ,不成立的打错号 。
= ( ) ;
=( ) ③
=( );
= ) 你判断完以后,发现了什么规律?请用含有n 的式子将规律表示出来.
(第25题图) A
B C D
(第16题)
(第23题图)。