公式汇总-周赟
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
摘要:随着计算机技术的普及,Excel作为一款强大的数据处理软件,广泛应用于各个领域。
Excel中的函数公式是数据处理的核心,本文对Excel中的常用函数公式进行了总结,并探讨了其在实际应用中的具体操作方法。
一、引言Excel函数公式是Excel中的一种功能强大的数据处理工具,能够帮助用户快速、准确地完成各种数据计算和分析。
掌握Excel函数公式对于提高工作效率、优化数据处理流程具有重要意义。
本文旨在对Excel中的常用函数公式进行总结,并探讨其在实际应用中的具体操作方法。
二、常用函数公式总结1. 基础函数(1)加法、减法、乘法和除法:使用 "+"、"-"、"" 和 "/" 运算符进行计算。
(2)平均数:使用 AVERAGE 函数计算一组数据的平均值。
(3)求和:使用 SUM 函数计算一组数据的总和。
(4)最大值和最小值:使用 MAX 函数计算一组数据的最大值,使用 MIN 函数计算一组数据的最小值。
2. 文本函数(1)合并单元格内容:使用 CONCATENATE 函数将多个单元格的内容合并为一个单元格。
(2)查找:使用 VLOOKUP 函数在数据表中查找特定值,并返回相应单元格的值。
(3)替换:使用 REPLACE 函数将指定单元格中的文本替换为新的文本。
3. 逻辑函数(1)IF函数:根据条件判断返回两个值之一。
(2)AND和OR函数:用于组合多个条件,进行逻辑运算。
(3)IFERROR函数:在公式产生错误时返回指定值。
4. 统计函数(1)COUNT函数:计算数据集中数值的个数。
(2)COUNTIF函数:根据指定条件计算数据集中符合条件的数值个数。
(3)SUMIF函数:根据指定条件计算数据集中符合条件的数值总和。
(4)SUBTOTAL函数:对数据集进行分组,并计算每个组内的统计值。
5. 时间和日期函数(1)TODAY和NOW函数:分别返回当前日期和时间。
在实际应用中柯西积分公式的用途正文柯西积分公式的应用摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用.关键词:解析函数;复积分;柯西积分公式.1 前言《实变函数与泛函分析》是综合性大学理工科的基础课程,其中柯西积分定理和柯西积分公式是基础,是关键,也是19实际最独特的创造,是抽象科学中最和谐的理论之一.许多重要的性质定理由它们直接或者间接推导出来的.柯西积分公式是复变函数的基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.柯西积分公式的基本理论和相关性质已经有了详细而全面的阐述.但柯西积分公式仍然存在一些有待解决和完善的方面.有些理论的证明比较复杂,为初学者带来了诸多的不便;柯西积分公式只给出了求解光滑周线域的复积分方法;已经证明了的理论给出的例题还不够.考虑到柯西积分公式是复变函数积分的基础,对其进行研究具有较强的理论意义和现实意义.通过阅读大量的专着,期刊还有网上的资料,本文将对实变函数中的柯西积分公式和它的几个重要的推论的意义及其性质进行归纳总结,并举出相应的例子,化抽象为具体;还将对柯西积分公式的使用条件和使用方法进行总结;然后总结归纳参考文献中得到的结论,并试图将归纳得到的这些结论做进一步的推广;在论文的最后,会选取一些经典例题做供大家参考!为完成本文我查阅大量的相关资料,力求把课本上的知识运用到实践中去.2 预备知识柯西积分定理设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?cdz z f .推广的柯西积分定理设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则0)(=?cdz z f .复周线柯西积分定理设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数)z (f 在D 内解析,在C D D +=上连续,则0)(=?cdz z f .柯西积分公式设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则有-=c d zf i z f ζζζπ)(21)( (D z ∈). 3 柯西积分公式的推论解析函数平均值定理如果函数)(z f 在R z <-0ζ内解析,在闭圆R z ≤-0ζ上连续,则?ππ?d e R zf z f i ?+=2000)(21)(,即)(z f 在圆心0z 的值等于它在圆周上的值的算术平均数.证:设C 表示圆周R z =-0ζ,则π?ζ?20,0≤≤=-i e R z ,即?ζi e R z +=0,由此?ζ?d e iR d i =,根据柯西积分公式高阶导数公式设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式.现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一种简单的证明.引理设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数那么每个)(z F m 在区域Γ-=C D 上解析,且证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有ε<-)()(a F z F m m .因为]))((1)()(1)()(1)[()()(1)11()(1)(12111m m m m k k k m m m a z a z a z a z a z a z a z --++--+---=-----=----=--∑ζζζζζζζζζζζζΛ(1)所以ζζζζζζζζζζζd a z a z f a z d a f z f a F z F m m m m m m ]11[)(])()()()([)()(--++---≤---=-??ΓΓΛ (2)因为)(z f 在Γ上连续,所以存在某个常数0>M ,使得对于Γ上一切点ζ,M f ≤)(ζ.设a 与Γ的距离为r .那么对于任意Γ∈ζ及2r a z <-,有2,2r r z rr a >≥->≥-ζζ.于是有(2)得 l rMm a z a F z F m m m 1)2()()(+-<-,其中l 为曲线Γ的长.令 lMm r a z l r Mm a z m m m 1112)2(+++<-?<-εε.取 )21,2min(11l Mm r m m ++=εδ.那么,当δ<-a z ,就有ε<-)()(a F z F m m .其次证明)(z F m 在区域G 上解析,且满足)()(1z mF z F m m +=',在G 内任取一点a ,设a z G z ≠∈,,由(1)得??Γ-Γ---++--=--ζζζζζζd za z f d z a z f a z a F z F mm m m ))(()())(()()(1Λ,因为Γ∈a ,所以对于满足不等式m k ≤≤1的每个k ,k z z f --))((ζ在Γ上连续.根据前一部分的证明,上式右边的每个积分都在G 上定义了一个变量z 的连续函数,因此,当a z →时的极限存在,即 )()()()()()(111a mF d z f d a f a F m m m m +Γ+Γ+=-++-='??ζζζζζζΛ.对于G 内的一切a 均成立.下面使用这个引理证明高阶导数公式:证明:由柯西积分公式,对于G 内的任意点z ,有?Γ-=ζζζπd z f i z f )(21)(,?Γ-=ζζζπd z f i z F mm )()(21)(.记)()(1z F z f =根据引理,即?Γ+-=ζζζπd z f i m z f m m 1)()(2!)(.柯西不等式设函数)(z f 在区域D 内解析,a 为D 内一点,以a 为心作圆周R a r =-ζ:,只要r 及其内部K 均含于 D ,则有Λ,2,1,)(max )(,)(!)()(==≤=-n z f R M RR M n a f R a z n n .证:由上面的推导可由柯西积分公式得到高阶导数公式,下面再有高阶导数公式证明柯西不等式.应用上面得到的定理,则有注:柯西不等式是对解析函数各阶导数模的估计式,说明解析函数在解析点a 的各阶导数的估计与它的解析区域的大小密切相关.刘维尔定理有界整函数)(z f 必为常数证:设)(z f 的上界为M ,则在柯西不等式中,对无论什么样的R ,均有M R M ≤)(.于是命1=n 时有 RM a f ≤')(,上式对一切R 均成立,让+∞→R ,即知0)(='a f ,而a 是z 平面上任一点,故)(z f在z 平面上的导数为零,所以,)(z f 必为常数摩勒拉定理若函数)(z f 在单连通区域D 内连续,且对D 内任一周线C ,有0)(=?cdz z f ,则)(z f 在D 内解析.证:在假设条件下,即知在D 内解析,且)()()(D z z f z F ∈='.但解析函数)(z F 的导函数)(z F '还是解析的.即是说)(z f 在D 内解析.4 奇点在积分路径C 上的柯西积分公式我们一般讨论的复积分,要就被积函数在积分路径上有界,并且奇点不在积分路径上,这类积分可以直接套用柯西积分公式可求,如果积分路径上存在奇点,就不满足条件了,就不能直接用柯西积分公式了,此时一般用复积分概念,利用极限来求解,但比较复杂,甚至求不出结果.下面结合Holder 条件和奇异积分相关知识,对被积函数分析变形,针对奇点在积分路径上的复积分得出一种新的求解公式.定义1 设C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,在C 上0z 的两边各取一点21,z z ,若存在,则称此极限值是f 沿C 的奇异积分,记为定义2 设C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,以0z 为心、充分小的正数ε为半径做圆周,使它与C 的交点恰为21,z z ,若极限dz z z z f i z z c ?-→-21,00)(21lim πε存在,则称此极限值是f 沿C 的柯西主值积分,记为定理1 设C 施光滑曲线,取正向,若f 满足Holder 条件,即(其中a K ,都是实常数,21,z z 是C 上任意两点)则称柯西主值积分存在,且有证:dz z z dz i z f dz z z z f z f i dz z z z f i z z c z z c c ---+--=-2121,00,0002)()()(21)(21πππ又 )0(,)]arg()[arg()]log()[log(102010201,021→→---=---=-?-επi zz z z i z z z z dz z z z z c(其中)log(0z z -为21,z z c -上任意连续分支,ε=-=-0201z z z z ),)]arg()[arg(0201z z z z ---为当z 从2z 沿21,z z c -变动到1z 时0z z -的幅角改变量,当0→ε即02,1z z z →时,它的极限值为π.又因为)(z f 满足Holder 条件,即而10<≤a ,则积分存在.于是,得定理2 若C 是简单逐段光滑曲线,D 是以C 为边界的有界单连通区域,)(z f 在D 内解析,在}{0z D -上连续)(0C z ∈,在0z 的邻域有K z D z a z z K z f a },{,10,)(00-∈<≤-≤为常数则 0)(=?dz z f c .证:以0z 为心,充分小的0>ε为半径作圆,在C 上取下一小段弧εC ,在D 内得到圆弧εL ,取正向,有柯西积分定理设εL 的参数方程为,,210θθθεθ<≤=-i e z z)0(,0)()(121021→→-==-≤-εθθθθεεεεθθa L a a L K d K dz z z K dz z f .故定理3 设区域D 的边界是周线(或复周线)C ,)(z f 在D 内解析,在C D D +=上连续,且在C 上)(z f 满足Holder 条件,则有此式称为0z 在边界C 上的柯西积分公式.证:)(z f 满足Holder 条件,则有那么由定理1知:而于是由定理3得故有另外,当C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,以0z 为心、充分小的正数ε为半径做圆周,使它与C 的交点恰为21,z z ,若极限dz z z z f i z z c ?-→-21,00)(21lim πε不一定存在.因此,此时的柯西积分主值不能确定,故此时0z 在边界C 上的柯西积分公式也不能确定.柯西积分公式的方法与技巧柯西积分公式是复积分基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.解析函数的高阶导数给我们一个利用导数来求积分的公式,是求沿闭曲线的积分更加简洁.而尤其重要的是,高阶导数公式告诉我们:只要函数)(z f 在D 内处处可导(解析),则它的各阶导数在区域D 内存在.到此为止,我们已经掌握了关于复积分计算的基本定理和公式.因此,计算复积分不再是应用某一定理或某一公式,而往往是同时应用几个定理或几个公式,这就要求我们加强对综合问题的分析、研究和求解能力的培养.当被积函数为有理函数或被积函数可化为分母为多项式的函数式,如果在封闭曲线C 内含有分母的一个零点而分子在C 内处处解析(即对?c dz z g )(,0)()(z z z f z g -=或10)()(+-n z z z f ,0z 在C 内,而)(z f 在C 内处处解析),则可直接应用柯西积分公式或高阶导数公式来计算积分.而在有理函数情形,若C 内含有分母一个以上零点而分子解析,则要先将被积函数化为部分分式,然后依据具体问题是用恰当的方法去求积.6 举例应用例1 计算积分 x y x C zz dz c 4:,cos )4(222=+-?.解:化x y x 422=+为4)2(22=+-y x ,即22=-z .C 内有奇点2,2π,作以2π和2为心的位于C 内的互不相交且互不包含的小圆周1C 和2C ,依复闭合定理与柯西积分公式,有例2 计算积分(1)?=-++1)3141(z dz z z ,(2)?=-++4)3141(z dz z z 分析:(1)和(2)的主要区别在于积分路径上是否存在奇点,(1)的结果很好求,符合积分定理的条件,可直接使用柯西积分定理.(2)应为奇点4-=z 在积分路径上,所以就不能直接用柯西积分定理来求,但满足定理3条件,可利用定理3求值.解(1)直接用柯西积分定理得(2)因为 ===-++=-++44434)3141(z z z z dz z dz dz z z 又有柯西积分公式有i i z dz z z ππ2|123 34=?=-==? 由定理3有i z f i z dz z z ππ=?=+-==?4040|2)(24 所以i i i dz z z z πππ32)3141(4=+=-++?= 例3 计算积分?+∞sin dx x x 分析:此题如果用广义积分来求解,计算繁冗,有一定难度,但通过变形,转化为复数,利用定理3求解就简单多了.解:dx ix x i x dx x x dx x x dx x x R R RRR R +-+-+∞→+∞→+∞∞-+∞+===sin cos lim 21sin lim 21sin 21sin 0 (其中经过定积分的计算可以得到积分?+-=R R dx x x 0cos )设iz e z f =)(,)(z f 满足Holder 条件,且zz f )(的奇点0=z 在积分路径上,由定理3得(其中R Γ是连接R -和R +的一段弧,则],[R R C R +-+Γ=是闭曲线)由约当引理知0=?Γdz ze R iz所以 221lim 21sin 0ππ=?==??+-+∞→+∞i i dx x e dx x x RR ix R 参考文献[1] 钟玉泉.复变函数论[M].北京:高等教育出版社,2009[2] 孙清华,孙昊.复变函数内容、方法和技巧[M].武汉:华中科技大学出版社,2003[3] 西安交大.复变函数第四版[M].西安:高等教育出版社,2007[4] 杨丽,张伟伟.柯西积分公式的应用[J].沧州师范专科学校学报.2006,22 (3):65-67[5]易才凤,潘恒毅.柯西积分公式及其在积分中的应用[J].江西师范大学学报.2010,34 (1):5-7,12[6] 邱双月.复积分的计算[J].邯郸学院学报.2009,19 (3):57-60[7] 朱茱,刘敏.z在积分路径c上的柯西积分公式[J].阜阳师范学院学报.2004,21(4):60-63[8] 完巧玲.周线上复积分的几种算法[J].陇东学院学报.2010,21 (2):7-9[9] 张庆.Cauchy积分公式及其应用[J].唐山师专学报.2000,22 (2):27-28[10] 崔冬玲.复积分的计算方法.淮南师范学院学报.2006, (3):31-32[11] 李敏,王昭海.巧用复变函数积分证明实积分.考试周刊.2009,41 :64[12] 泰华妮.复变函数积分方法的教学思考.考试周刊.2011,58 :73-74[13] 官春梅.用留数计算一类数列极限.中国科技创新导刊.2010 :105[14] 韦煜.高阶导数公式的证明[J].黔南民族师范学院学报.2003 (6):8-9。
管理类联考数学公式大全pdf一、代数公式:1. 二次方程公式:对于二次方程ax^2+bx+c=0,其根可以通过公式x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}求得。
2.因式分解公式:对于二次三次等多项式,可以通过因式分解公式将其分解成两个或多个因式的乘积。
3. 二项式展开公式:根据二项式定理,对于任意实数a和b以及自然数n,(a+b)^n=a^n+na^{n-1}b+\frac{n(n-1)}{2}a^{n-2}b^2+...+b^n。
二、几何公式:1. 直线斜率:直线的斜率可以通过斜率公式k=\frac{y_2-y_1}{x_2-x_1}求得,其中(x_1,y_1)和(x_2,y_2)为直线上的两个点的坐标。
2. 圆的面积公式:圆的面积可以通过面积公式A=\pi r^2求得,其中r为圆的半径。
3. 三角形的面积公式:对于三角形ABC,其面积可以通过海伦公式A=\sqrt{s(s-a)(s-b)(s-c)}求得,其中a、b、c为三角形的边长,s为半周长s=\frac{a+b+c}{2}。
4.直角三角形的勾股定理:对于直角三角形ABC,其两直角边长度分别为a和b,斜边长度为c,满足a^2+b^2=c^2三、概率统计公式:1. 期望公式:对于一个随机变量X,其期望可以通过公式E(X)=\sum{xP(X=x)}求得,其中x为可能的取值,P(X=x)为X取到x的概率。
2. 方差公式:方差表示随机变量的离散程度,可以通过公式Var(X)=E[(X-E(X))^2]求得。
3. 正态分布公式:对于正态分布的随机变量X,其概率密度函数f(x)可以通过公式f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}求得,其中\mu为均值,\sigma为标准差。
以上只是数学公式的一部分,管理类联考数学公式实际上还包括更多内容,如排列组合、函数、微积分等。
猴博士高数公式总结 -回复
以下是猴博士对高数常见公式的总结:
1. 导数的基本公式:
- 基本函数求导法则:常数函数导数为0,幂函数导数为幂
次减一乘以该函数的导数。
- 指数函数求导法则:e^x的导数仍为e^x。
- 对数函数求导法则:ln(x)的导数为1/x。
- 三角函数求导法则:sin(x)的导数为cos(x),cos(x)的导数为-sin(x)。
2. 积分的基本公式:
- 基本函数积分法则:幂函数积分为幂次加一除以该函数的
导数,对数函数积分为xln(x)-x,三角函数积分法则与求导法
则相反。
- 定积分:使用积分上下限进行求解,结果为曲线与x轴之
间的有向面积。
3. 微分方程的解法:
- 分离变量法:将微分方程中的变量分离到一边,再对两边
进行积分。
- 变量代换法:对微分方程中的变量进行适当的代换,转化
为更容易求解的形式。
- 齐次微分方程解法:将微分方程转化为一个关于y/x的方程,进行代换后进行求解。
- 一阶线性微分方程解法:使用积分因子法解线性微分方程。
这些是高数中常见的公式和解法,希望对你有帮助!。
流程挖掘在银行服务管理中的应用卢盛祺;李远刚;管连;周赟【摘要】随着银行服务信息化的不断发展,银行面临如何从大量的服务数据中提取有价值的信息用以提升服务效率的问题.在银行服务管理系统的实际应用中,由于其业务具有并发性事件多、日志数量大等特点,选择并行Apriori算法进行分析.与传统的Apriori算法相比,针对银行业务中并发性业务较多的特点,设计使用了并行Apriori算法,解决了单服务器运行效率随日志数量明显下降的弊端.银行服务管理系统每日会产生大量流程的日志数据,记录每一位参与员工的工作状态,通过调用并行Apo-riori算法,挖掘服务流程日志中的关联规则,找出能够高效协作的员工组合.实验结果表明,将并行Apriori算法应用于服务流程日志的关联规则挖掘,使系统可以根据规则将协作关系紧密的员工分配在一起共同处理服务请求,提高了服务效率,取得了合理的应用效果,提高了银行服务管理系统中服务分配的智能.【期刊名称】《微型机与应用》【年(卷),期】2016(035)018【总页数】5页(P88-92)【关键词】流程挖掘;关联规则;员工组合;组织优化;并行Apriori算法【作者】卢盛祺;李远刚;管连;周赟【作者单位】上海财经大学信息管理与工程学院,上海 200433;上海财经大学上海市金融信息技术重点实验室,上海 200433;复旦大学软件学院,上海 200433;上海财经大学信息管理与工程学院,上海 200433;上海财经大学上海市金融信息技术重点实验室,上海 200433;国际商业机器(中国)有限公司,北京 100101;复旦大学软件学院,上海 200433【正文语种】中文【中图分类】TP391引用格式:卢盛祺,李远刚,管连,等. 流程挖掘在银行服务管理中的应用 [J].微型机与应用,2016,35(18):88-92.随着银行同业竞争之间的压力逐渐加剧,将数据挖掘技术应用于发现流程日志数据中的有用模式,解决银行在新形势下面临的问题,成为大数据时代下银行信息化应用的研究热点[1-2]。
代入排除法范围:1.典型题:年龄、余数、不定方程、多位数。
2.看选项:选项为一组数、可转化为一组数(选项信息充分)。
3.剩两项:只剩两项时,代一项即得答案。
4.超复杂:题干长、主体多、关系乱。
方法:1.先排除:尾数、奇偶、倍数。
2.在代入:最值、好算。
数字特性一、奇偶特性:范围:1.知和求差、知差求和:和差同性。
2.不定方程:一般先考虑奇偶性。
注意是“先”考虑。
3.A是B的2倍,将A平均分成两份:A为偶数。
4.质数:逢质必2.方法:1.加减法:同奇同偶则为偶,一奇一偶则为奇。
a+b和a-b的奇偶性相同。
2.乘法:一偶则偶,全奇为奇。
4x、6x必为偶数,3x、5x不确定。
二、倍数特性1.整除型(求总体):若A=B×C(B、C均为整数),则A能被B整除且A能被C整除。
试用范围:用于求总体,如工作量=效率×时间,S=VT,总价=数量×单价。
2.整除判定法则:口诀法:a)3/9看各位和,各位和能被3/9整除,这个数就能被3/9整除。
例:12345,能被3整除不能被9整除。
b)4/8看末2/3位,末2/3位能被4/8整除,这个数就能被4/8整除。
例:12124,能被4整除不能被8整除。
c)2/5看末位能否被2/5整除。
2看末位能否被2整除,即是不是偶数,5是看尾数是不是0或5。
拆分法:要验证是否是m的倍数,只需拆分成m的若干被+-小数字n,若小数字n能被m整除,原数即能被m整除。
例:217能否被7整除?217=210+7,所以可以被7整除。
复杂倍数用因式分解:判断一个数是否能被整除,这个数拆解后的数是否能被整除,拆分的数必须互质。
3.比例型:a)某班男女生比例为3:5,即可把男生看成3份,女生看成5份。
男生是3的倍数,女生是5的倍数,全班人数是5+3=8的倍数,男生女生差值是5-3=2的倍数b)A/B=M/N(M、N互质)A是M的倍数,B是N的倍数,A+B是M+N的倍数,A-B是M-N的倍数。
高考数学常用公式203条杨景波1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=–10且二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ax 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m a x m ax ()(),()(),()2bf xf f xf p f q a=-=;[]q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n()m i n (),()f x fp f q =,若[]q p ab x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;()00f m n >⎧⎪<或⎧⎨⎩ .14.四种命题的相互关系('f 函数y =22.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象不是y =)y ,f (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)mn a =(0,,a m n N *>∈,且1n >). (2)1m nmnaa -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||a a a ≥⎧==⎨.R ,需要若0a >,0b >,0x >,x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. ,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式s co 限决定,.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-. 53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =(,)x y ,b =(,)x y ,则a-b=(,)x x y y --.,则 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P P P ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件73.一元二次不等式20(0)a x b x c ++><或2(0,40)a ba c ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.()0f x ≥⎧(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是π.x =为(A x Bx 84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).⇔直线A B 是x 的交条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;02x x a是2A22ab21|()|aPF e x c =+,22|()|aPF e x c=-.97.双曲线的内外部 (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)xya b a b -=>>的外部22221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by a x ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-bya x有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab-=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.件是1)顶点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k+=--,其中22max{,}k a b <.当22m in{,}k a b >时,表示椭圆; 当2222m in{,}m ax{,}a b k a b <<时,表示双曲线.点A A 0. 2y ,用A (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)O P t O A tO B =-+.||AB CD ⇔AB、CD 共线且A B C D 、不共线⇔AB tCD = 且A B C D 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使M P x M A y M B =+,或对空间任一定点O ,有序实数对,x y ,使O P O M x M A y M B =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C=++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、A C 共面⇔A D x A B y A C =+ ⇔(1)O D x y O A xO B yO C =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使O P xO A y O B z O C =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;r r r rα特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边A C ,B C 与平面α成的角分别是1θ、2θ,''A B 、为A B O ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).向量b =P d 为12,l l (点E 2()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积F 长13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+; (2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A m A -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m(10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系mmn n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kkk n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法? 当1+>m n 时,无解;当1+≤m n 时,有nm n nnm C A A 11++=种排法.n. N 、b 、.2n 有,2n 则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!!...21211m nn n n p n p n n n p C C C N mm =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!nf n n n =-+-+- .推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m pp mm m mf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]pmpmm m m m m m p m n nnnnnC C C C C C n AAAAAA=-+-+-+-++- .))n n 168.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥= ; (2)121P P ++= .169.数学期望1122n n E x P x P x P ξ=++++ 170.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则1E pξ=.171.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+172.标准差σξ=ξD .173.方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.a y bx⎪=-⎩179.相关系数()()nii xx y y r --=∑ ()()nii xx y y --=∑.|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 180.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 . (3)()111limna q a S -==(S 无穷等比数列1n a q- (||1q <)的和).则x (2)0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim0x x f x a b g x b→=≠.186.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).187.)(x f 在0x 处的导数(或变化率或微商)0000()()()limlimx x x x f x x f x y f x y xx=∆→∆→+∆-∆''===∆∆.188.瞬时速度 0()()()limlimt t s s t t s t s t t t υ∆→∆→∆+∆-'===∆∆.率(f ' 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.195.常用的近似计算公式(当x 充小时) (1)x x 2111+≈+;x n x n 111+≈+; (2)(1)1()x x R ααα+≈+∈; x x-≈+111;(3)x e x+≈1;(4)x x l n ≈+)1(;(5)x x ≈sin (x 为弧度); (6)x x ≈tan (x 为弧度); (7)x x ≈arctan (x 为弧度)196.判别)(0x f 是极大(小)值的方法 当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 197.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)为非①若240b ac ∆=->,则1,22x a =②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)2x b ac a=-<.。
公考资料公式汇总公务员考试是许多人梦寐以求的职业选择。
但是,公务员考试是一项非常严格的考试,需要准备充分和掌握各种公式和知识点。
本文将为您提供一些公考资料的公式汇总,帮助您更好地准备公务员考试。
一、数学公式1. 平方差公式(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^22. 一元二次方程公式ax^2+bx+c=0x=frac{-b±sqrt{b^2-4ac}}{2a}3. 三角函数公式sin^2x+cos^2x=1tanx=frac{sinx}{cosx}cotx=frac{cosx}{sinx}4. 对数公式loga(mn)=loga(m)+loga(n)loga(frac{m}{n})=loga(m)-loga(n)5. 概率公式P(A∪B)=P(A)+P(B)-P(A∩B)P(A|B)=frac{P(A∩B)}{P(B)}6. 统计学公式均值=frac{总和}{样本数}方差=frac{∑(x-均值)^2}{样本数}标准差=sqrt{方差}二、英语公式1. 时态公式现在时:主语+动词原形过去时:主语+动词过去式将来时:主语+will+动词原形2. 代词公式主格代词:I, you, he, she, it, we, they宾格代词:me, you, him, her, it, us, them 3. 被动语态公式be动词+过去分词4. 比较级和最高级公式比较级:形容词/副词+er,more+形容词/副词最高级:形容词/副词+est,most+形容词/副词 5. 非谓语动词公式动词不定式:to+动词原形现在分词:动词-ing形式过去分词:过去式形式三、逻辑公式1. 命题公式命题是一个陈述句,可以为真或假。
例如:“今天天气晴朗。
”2. 命题联结词命题联结词用于组合命题,包括“且”、“或”、“非”等。
例如:“今天天气晴朗,且我要去爬山。
”3. 真值表公式真值表用于判断命题联结词的真假。