数学公开课课件2.4.2抛物线的简单几何性质2
- 格式:ppt
- 大小:919.00 KB
- 文档页数:21
(精品课件)抛物线的简单几何性质contents •抛物线基本概念及引入•抛物线标准方程及性质•抛物线平移变换规律探究•抛物线焦点弦性质研究•抛物线切线问题解决方法•抛物线综合应用举例目录抛物线基本概念及引入抛物线定义与数学表达式定义抛物线是指平面内到一个定点(焦点)和一条定直线(准线)距离相等的点的轨迹。
数学表达式一般形式为$y = ax^2 + bx + c$(开口向上或向下)或$x = ay^2 + by + c$(开口向左或向右)。
其中,$a$、$b$、$c$ 为常数,$a neq 0$。
体育运动工程设计科学研究桥梁、拱门等建筑结构的形态设计。
弹道学、天文学等领域的研究。
0302 01抛物线在实际生活中应用如篮球、足球、铅球等运动项目的轨迹分析。
当椭圆的长轴无限延长时,椭圆将趋近于抛物线。
与椭圆关系双曲线的一支在无限远处与抛物线相交。
与双曲线关系抛物线、椭圆和双曲线都是二次曲线,具有一些共同的几何性质,如对称性、切线性质等。
二次曲线共性抛物线与其他二次曲线关系通过学习抛物线的基本概念,为进一步学习其他二次曲线打下基础。
掌握基本概念通过对抛物线几何性质的探究,培养学生的几何直觉和空间想象力。
培养几何直觉掌握抛物线知识,可以帮助学生更好地理解和解决一些实际问题,如运动轨迹分析、建筑设计等。
解决实际问题引入课程目的和意义抛物线标准方程及性质标准方程形式及推导过程标准方程形式y^2=2px(p>0)或x^2=2py(p>0),其中p为焦准距,表示焦点到准线的距离。
推导过程通过抛物线的定义(平面内到一个定点和一条定直线的距离相等的点的轨迹)和几何性质,可以推导出抛物线的标准方程。
焦点、准线概念及其性质焦点抛物线上的一个固定点,记为F,对于标准方程y^2=2px,焦点坐标为(p/2,0);对于x^2=2py,焦点坐标为(0,p/2)。
准线抛物线的一条固定直线,记为l,对于标准方程y^2=2px,准线方程为x=-p/2;对于x^2=2py,准线方程为y=-p/2。
课题:§2.4.2 抛物线的简单几何性质应用(二)1.进一步掌握应用抛物线的几何性质解决有关问题;2.掌握直线与抛物线的位置关系,能综合应用有关知识解决抛物线的综合问题。
※复习:类比椭圆、双曲线和抛物线的几何性质,填表。
思考:当焦点在y轴时,又怎样处理?题型三:定值问题例1:过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。
变式练习:22,,过抛物线的顶点作两条互相垂直的弦求证:直线y x O A O B AB与轴的交点为定点。
x题型四:直线与抛物线的位置问题1. 直线与抛物线相切:直线与抛物线有且只有一个公共点,但不平行于抛物线的对称轴。
即把x =my +n 代入y 2=2px (p >0)消去x 得:y 2-2pmy -2pn =0①,当方程①的判别式△=0⇔直线与抛物线相切;2. 直线与抛物线相交:(1)直线与抛物线只有一个交点:直线与抛物线的对称轴平行; (2)直线与抛物线有两个不同的交点⇔方程①的判别式△>0; 3. 直线与抛物线相离⇔方程①的判别式△<0。
例2:已知抛物线的方程24y x =,直线l 过定点()2,1P -,斜率为k 。
k 为何值时,直线l 与抛物线24y x =:只有一个公共点;有两个公共点;没有公共点?探究:1.画出上述几种位置关系,从图中你发现直线与抛物线只有一个公共点时是什么情况?2.方程组解的个数与公共点的个数是什么关系?变式练习:求过点(0,1)M 且和抛物线C:24y x =仅有一个公共点的直线的方程。
1.(2010年高考陕西卷理科8)已知抛物线()022>=p px y 的准线与圆07622=--+x y x 相切,则p 的值为 ( )()21A ()1B ()2C ()4D2. 已知F 为抛物线22y x =的焦点,定点Q (2,1)点P 在抛物线上,要使||PQ PF +的值最小,点P 的坐标为( )A. (0,0)B. 112⎛⎫⎪⎝⎭, C.D. (2,2)3. (2012高考安徽理9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则A O B ∆的面积为( )()A 2()B ()C 2()D4.已知抛物线22(0)y px p =>,过点()20p ,作直线交抛物线于11()A x y ,、22()B x y ,两点,给出下列结论:①O A O B ⊥;②AOB ∆的面积的最小值为24p ;③2124x x p =-,其中正确的结论是__________________.5.( 2010年高考全国卷I 理科21)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;。