浅层煤储层多脉冲高能气体压裂技术试验及应用研究
- 格式:pdf
- 大小:249.60 KB
- 文档页数:3
煤储层无水压裂技术现状及展望
王梓麟;时婧玥;徐栋;詹顺;何朋勃;李兵;白坤森
【期刊名称】《钻采工艺》
【年(卷),期】2024(47)1
【摘要】中国煤层气产业已迈入全新发展阶段,水力压裂技术不断创新的同时,也面临着水资源消耗量巨大,煤储层伤害严重,裂缝扩展不充分等问题,寻求一种可替代的无水或少水压裂技术势在必行。
文章研究总结出三种当前适用于煤储层的无水压裂技术(超临界二氧化碳压裂、液态氮气压裂、泡沫压裂),对其作用机理、理论创新以及国内现场应用的现状进行分析阐述。
对各项压裂技术的优缺点特性开展了评价,结果表明无水压裂技术能减轻煤储层伤害,避免黏土膨胀和水锁效应,有效促进复杂缝网生成,缩短见气时间,实现产量显著提升,可很好应用于煤储层二次压裂改造,具备良好的环境效益和技术可行性;但同时也存在支撑剂携带困难,设备运维成本较高等问题。
最后对煤储层无水压裂技术的发展提出展望,建议逐步开展煤储层无水压裂技术现场先导性试验,优化施工参数,研发地面—井下低温特殊工艺设备,推进开展低密度支撑剂和压裂液增稠剂的优选实验,巩固提升泡沫压裂液体系在高温高压环境下的稳定性能。
【总页数】7页(P80-86)
【作者】王梓麟;时婧玥;徐栋;詹顺;何朋勃;李兵;白坤森
【作者单位】中国石油煤层气有限责任公司工程技术研究院;中联煤层气国家工程研究中心有限责任公司
【正文语种】中文
【中图分类】TE3
【相关文献】
1.煤储层渗透性研究现状及展望
2.煤储层吸附特征研究现状及展望
3.低渗透储层水淹油井堵水压裂技术研究与试验
4.王家岗油田高凝油储层热污水压裂液技术
5.页岩气储层无水压裂技术现状
因版权原因,仅展示原文概要,查看原文内容请购买。
煤层气高能气体压裂开发技术摘要:我国煤气层具有特低渗、低压、煤气层构造复杂等特征,煤气层地层环境复杂,开发难度较大,其中煤层气吸附性较强是煤层气开发的主要难点。
关键词:煤层气井高能气体压裂技术工艺设计煤层气存在于煤的双孔隙系统中,煤的双孔隙系统为基质孔隙和裂缝孔隙。
水力压裂是目前较常用的煤气层改造措施,由于在压裂过程中压力上升缓慢,产生的裂缝受到地层主应力约束,一般只能形成两翼对开的两条垂直裂缝。
而离主裂缝较远的煤气层中难以再产生裂缝,煤气层的渗透性和空隙度基本不受影响,地应力、温度基本不改变,而压力变化仅限于主裂缝附近,难以在离主裂缝较远的煤气层中形成煤层气解吸环境和条件,这部分煤层气也难以解吸出来,所以有些井水力压裂后衰减较快,重复压裂改造也难以改变。
如何有效提高煤气层渗透性和基质空隙的连通性,创造有利煤层气解吸的环境和条件,促进煤层气有效解吸的方法是研究问题的关键。
一、煤层气高能气体压裂开发技术1.高能气体压裂技术高能气体压裂技术是利用固态、液态火药或推进剂在目的层快速燃烧产生的大量高温高压气体,对地层脉冲加载压裂,使地层产生并形成多裂缝体系,同时产生较强的脉冲震荡作用于地层基质,综合改善和提高地层渗透导流能力,扩大有效采油(气)范围,达到提高产量的目的。
其主要作用特点:①对地层无伤害,有利于储层保护;②能使地层产生和形成多裂缝体系及脉冲震荡作用,沟通了更多的天然裂缝,提高地层渗透性,扩大有效泄流范围;③起裂压力高,产生的起始裂缝不受地应力约束,地层产生剪切破坏形成的裂缝难以闭合,有利于泄流生产周期的延长;④与水力压裂技术复合应用,在产生较长多裂缝的同时,也有利于产生更长的主裂缝,大大提高油气层渗流能力;⑤综合成本低,有利于现场推广应用.其研究的主要方向是如何进一步在地层产生和形成更长的多裂缝体系,及层内或裂缝内产生和形成裂缝网络等。
2.作用机理高能气体压裂技术改造煤气层作用机理是通过高能气体压裂装置在煤气层产生大量高温、高压气体压裂煤气层,促使煤气层产生较长的多裂缝体系,并沟通更多的天然裂缝,以形成网络裂缝改善煤气层泄气通道;同时伴随较强的多脉冲震荡作用,提高和改善了煤气层基质空隙间的连通性和渗透性。
不同压裂液对煤层气解吸影响的实验研究随着煤层气开发技术的日益完善,钻井工程师可以在不同地区搜索煤层气,并利用压裂技术开采出更多的煤层气。
但是,由于压裂方法所使用的压裂液不同,压裂效果也会有所不同,从而影响煤层气的解吸量。
因此,为了研究不同压裂液对煤层气解吸量的影响,本文以《不同压裂液对煤层气解吸影响的实验研究》为主题,通过实验研究来探究不同压裂液对煤层气解吸量的影响。
首先,本文研究的实验采用的是煤层气模拟压裂实验装置,该装置可以以实验室中的作用形式优化压裂条件的压裂效果,并采用不同压裂液进行压裂。
设备的主要组成部分包括金属压裂管、钢制压裂块、相变液体仪表、传感器、液压驱动装置、控制系统等。
为了模拟地层的真实状态,在实验中采用了模拟煤与石英砂混合物,其中模拟煤的密度和粘度等物理特性与实际煤质比较接近,研究了不同压裂液对压裂效果的影响。
在实验中,我们采用了3种不同成分的压裂液进行实验,分别是水压裂液、油压裂液和硫酸盐压裂液。
采用不同成分的压裂液在不同的压力、温度和流量下进行压裂,改变压裂参数,观察煤层气的解吸量。
通过实验表明,不同类型的压裂液会对煤层气的解吸量产生不同的影响。
结果显示,在相同的压裂参数下,油压裂液能够较为有效地提升煤层气渗透率和解吸量;而水压裂液的解吸量及其改善效果要明显低于油压裂液,但油压裂液会产生更多的废水;硫酸合成液的压裂效果则要明显低于前两者。
实验结果还表明,不同成分的压裂液在不同的压力、温度和流量条件下可能产生不同的效果。
从本文研究的实验结果可以看出,不同成分的压裂液对煤层气解吸量有明显的影响,油压裂液比水压裂液具有更好的解吸效果,而硫酸合成液的压裂效果则要明显低于前两者。
此外,压力、温度和流量也会影响压裂液的效果。
因此,为了实现最佳煤层气解吸效果,在实际开发利用煤层气时,应根据地层特性选择合适的压裂液,并充分考虑压力、温度和流量等因素,从而获得更好的开采效果。
本文以《不同压裂液对煤层气解吸影响的实验研究》为主题,采用实验室试验的方法,研究了不同压裂液对煤层气解吸量的影响。
高能气体压裂技术摘要:文章介绍了高能气体压裂技术的基本原理,与普通压裂进行对比描述了裂缝特征。
就高能气体压裂过程的作用说明增产机理,分析了高能气体压裂技术的优缺点,针对高能气体压裂措施工艺的设计内容和设计方法做了具体描述,并对胜利油田现河、东辛采油厂、中原油田的应用效果进行了评估分析。
认为高能气体压裂是油田的生产开发中一个有效的增产增注手段,能获得良好的经济效益。
关键词:高能气体压裂;增产增注; 装药参数,工艺设计引言以经济而有效的技术获得地层中更高的油气产量,是油田开发的目标。
在地层中产生人工裂缝有利于油气的产出。
最先应用的爆炸压裂技术,虽然产生了比较显著的经济效益,但其损害井筒、难以控制、形成近井压实带等技术问题难以解决,逐渐被水力压裂取代。
目前,水力压裂已成为一项成熟而完善的技术,在油田开发中起着重要作用。
但其产生的裂缝受地应力限制,对一些油层的改造效果不尽人意,急需其它技术补充和完善。
高能气体压裂技术就是一种较为有效的井底处理新技术。
1 高能气体压裂技术1.1 基本原理高能气体压裂(HEGF) 是在爆炸压裂和聚能射孔的基础上发展起来的一种利用火药或火箭推进剂在井筒中高速燃烧产生大量的高温高压气体来压裂油气层的增产增注技术。
施工程序是将火药下至目的层,通过地面通电或投棒引燃,其技术关键是控制好高能气体的升压速度和最高压力。
要求这一升压速度慢于爆炸压裂而快于水力压裂,一般在1 毫秒到几百毫秒之间;同时,限制最高压力低于地层岩石的屈服压力, 一般在100MPa 以内。
这样,就能在井筒周围产生多条裂缝,并且无破碎/ 压实带,从而把天然裂缝与井筒沟通,提高油层导流能力,同时又增大了与天然裂缝沟通的机会,压裂过程中伴有压力冲击波及高温作用,因而对近井地带被污染及各种机械杂质、结腊堵塞的井具有很好的解堵作用,对中低渗透层亦有明显的改造作用,能有效降低表皮系数,并相应提高渗透率,从而达到增产增注的目的。
高能气体压裂技术在油田增产增注中的应用效果评价【摘要】本文比较详细地论述了高能气体压裂技术的机理、施工工艺、技术特点及适用范围,并结合其在胡尖山油田的现场应用进行了增产增注效果评价,认为高能气体压裂在油田的生产开发中是一个很好的增产增注手段,具有良好的应用前景。
【关键词】高能气体压裂压裂机理施工工艺适用范围应用效果评价1 前言高能气体压裂(high energy gas fracture,简写hegf)技术以其施工简单、费用低廉的特点在改善油水井近井地带渗流能力的增产增注中取得了很好的效果,具有良好的应用前景。
2 高能气体压裂技术2.1 压裂机理高能气体压裂是利用火药或火箭推进剂,在井下有规律地燃烧,产生大量高温高压气体,以一定的升压速度加载于地层,将地层压开,在近井地带形成多条不受地应力控制的径向多裂缝体系,提高井筒附近地层的导流能力,达到增产增注的目的[1]。
火药及火箭推进剂产生的高温高压气体对压裂处理基于四个方面的作用:机械作用、热作用、化学作用和水力作用[2]。
2.1.1 机械作用高能气体压裂的机械作用即岩石破裂多条裂缝造逢作用,指高能气体压裂过程中压力增值快,高能气体瞬间产生的各项冲力大于地层破裂压力值,造逢方位不受地应力控制,在近井地带造逢机会均等,是改善近井地带导流能力的有效方法。
机械作用过程可分为井内增压、岩石破裂和裂缝延伸三个阶段。
2.1.2 热作用高能气体压裂施工后的井温测试表明,在火药弹点燃后的一段时间内,井温可升高到500~700℃,开始下降很快,以后在几个小时内变慢,足以熔化沉淀在油井附近的石蜡与沥青,同时降低油的粘度。
对解除近井地带和射孔孔眼的堵塞以及清蜡起着重要的作用。
2.1.3 化学作用火药燃烧后产生co2、co、n2、no及hcl气体。
no及hcl溶于水生成腐蚀性较强的酸液,配合以燃气的高温作用对油层起到一定的酸化解堵作用。
2.1.4 水力作用在高能气体压裂过程中,伴随着高压脉冲压力作用,井中液体会产生液体振荡作用,液体振荡对地层的振动作用可以破坏堵塞颗粒与储油岩层之间的凝集力,使输油孔道毛细孔径发生变化,同时也有助于裂缝形成和清理储层堵塞。