高频保护
- 格式:doc
- 大小:43.00 KB
- 文档页数:2
高频保护原理高频保护是指在高频电路中采取一定的措施,以防止电路受到过载、短路或其他异常情况而损坏。
在高频电路设计中,保护原理是非常重要的,它可以有效地保护电路的稳定运行,延长电路的使用寿命,提高电路的可靠性和安全性。
下面将介绍一些常见的高频保护原理及其应用。
首先,过载保护是高频电路中常见的保护原理之一。
在高频电路中,由于工作环境的复杂性,往往会出现瞬时的过载情况,如果没有有效的保护措施,电路很容易受到损坏。
因此,采用过载保护原理是非常必要的。
过载保护的实现方式有很多种,例如采用过载保险丝、过载保护电路等。
这些保护措施可以在电路受到过载时迅速切断电源,保护电路不受损坏。
其次,短路保护也是高频电路中常见的保护原理之一。
短路是指电路中两个或多个节点之间直接相连,导致电流过大,从而损坏电路。
为了防止短路对电路造成损害,可以采用短路保护原理。
短路保护的实现方式包括采用熔断器、短路保护电路等。
这些保护措施可以在电路发生短路时及时切断电源,防止电路受到损坏。
另外,过压保护也是高频电路中常见的保护原理之一。
在电路工作过程中,往往会受到外部环境的影响,导致电压超过正常范围,从而对电路造成损害。
为了防止过压对电路造成损害,可以采用过压保护原理。
过压保护的实现方式包括采用过压保护电路、过压保护器等。
这些保护措施可以在电路受到过压时迅速切断电源,保护电路不受损坏。
最后,温度保护也是高频电路中常见的保护原理之一。
在电路工作过程中,往往会产生大量的热量,如果不能有效地散热,会导致电路温度过高,从而对电路造成损害。
为了防止温度对电路造成损害,可以采用温度保护原理。
温度保护的实现方式包括采用温度传感器、温度保护电路等。
这些保护措施可以在电路温度过高时及时切断电源,保护电路不受损坏。
总之,高频保护原理在高频电路设计中起着非常重要的作用。
通过采用过载保护、短路保护、过压保护和温度保护等原理,可以有效地保护电路,延长电路的使用寿命,提高电路的可靠性和安全性。
高频保护的基本原理
高频保护是一种保护电路中的高频电路元件免受电路中高频电
流和高频信号干扰的技术手段。
其基本原理是通过在电路中引入一定的电感和电容元件,来阻隔高频电流和高频信号的传输,从而保护电路中的高频元件不受损坏。
具体来说,高频保护的基本原理包括以下几个方面:
1. 电感保护原理:电感具有阻抗的作用,可以对高频电流起到阻隔作用,从而保护电路中的高频元件。
在电路中引入适当的电感元件,可以有效地降低电路中的高频电流和高频信号,从而保护高频元件不受损坏。
2. 电容保护原理:电容具有对电流的滤波作用,可以对高频信号起到滤波作用,从而保护电路中的高频元件。
在电路中引入适当的电容元件,可以有效地滤波高频信号,从而保护高频元件不受损坏。
3. 屏蔽保护原理:屏蔽是一种通过引入金属屏蔽来阻隔高频信号的技术手段。
在电路中引入金属屏蔽可以有效地阻隔高频信号的传输,从而保护高频元件不受干扰和损坏。
4. 地线保护原理:地线是一种可以将电路中的电流和电信号引入地面的技术手段。
在电路中引入适当的地线可以有效地将高频电流和高频信号引入地面,从而保护高频元件不受干扰和损坏。
综上所述,高频保护的基本原理是通过引入适当的电感和电容元件,以及金属屏蔽和地线技术,来阻隔高频电流和高频信号的传输,从而保护电路中的高频元件不受损坏。
高频保护的基本原理高频保护是指保护设备在高频干扰(EMI)下不受影响,保证设备正常运行的手段。
现代电子设备中,由于高频信号越来越多,高频保护显得尤为重要。
下面将详细介绍高频保护的基本原理。
首先,高频保护的基本原理是通过减少高频信号的干扰,保证设备正常工作。
高频信号干扰可以分为两种:一种是通过导线(电磁耦合)传递的干扰,另一种是通过空气中的辐射(电磁辐射)传递的干扰。
这两种干扰方式通常混合在一起,对电子设备的影响非常大。
为了有效地减少高频信号干扰,需要采取一系列的措施来进行保护。
下面将介绍一些常见的高频保护措施。
第一种措施是屏蔽。
屏蔽是指利用屏蔽材料将电子设备与干扰信号隔离开来,以减少干扰的传播。
屏蔽材料通常是金属或金属合金,如铜、铝等。
屏蔽的设计要考虑到高频信号的特性,包括频率范围、电磁波阻抗等,以保证有效屏蔽高频信号的干扰。
第二种措施是滤波。
滤波是指利用滤波器将高频干扰信号过滤掉,以减少对电子设备的影响。
滤波器通常是由电容和电感组成的,其作用是形成一个低通滤波器,可以阻止高频信号的传播。
滤波器的设计要考虑到滤波器的带宽、通带损耗等因素,以保证有效过滤高频信号的干扰。
第三种措施是接地。
接地是指将电子设备与地之间建立低阻抗接触,以便将高频干扰信号排放到地面上。
地面作为高频信号的无源吸收体,可以有效消除高频信号的辐射。
同时,良好的接地还可以降低电子设备的噪声干预(EMI)。
第四种措施是屏蔽环。
屏蔽环是一种通过引导电流形成电磁屏蔽的方式。
屏蔽环通常是由一个金属环组成,将电源线或信号线从中穿过,使其形成一个环路。
通过这种方式,可以有效地消除高频干扰信号。
第五种措施是布线。
布线是指布置电子设备内部和外部线路时,应避免线路交叉、并列和平行排列,以减少干扰的传播。
布线的设计要考虑到高频信号的传输特性,包括信号的波长、失真、反射等,以保证有效的防止高频信号的干扰。
综上所述,高频保护是通过一系列措施降低高频信号干扰,保证电子设备正常工作的手段。
什么是高频保护?答:高频保护包括相差高频保护和功率方向闭锁高频保护。
相差高频保护是测量和比较被保护线路两侧电流量的相位,是采用输电线路载波通信方式传递两侧电流相位的。
功率方向闭锁高频保护,是比较被保护线路两侧功率的方向,规定功率方向由母线指向某线路为正,指向母线为负,线路内部故障,两侧功率方向都由母线指向线路,保护动作跳闸,信号传递方向相同。
高频保护基本原理是什么?答:高频保护基本原理是反映并比较被保护线路两端电流的大小和相位。
即将两端的电气量调制成高频信号,利用高频通道将高频信号相互送到对侧,再由各自的保护装置将收到的对侧信号与本侧的信号进行比较,判断是内部还是外部的,从而决定保护是否动作。
一般利用输电线路本身,采取“相—地”制方式作为高频通道。
高频通道工作方式一般采用短路时发信方式(即正常时通道中无高频信号)。
构成高频保护通道的元件有哪些?答:构成高频保护通道的元件有:高频收发信机、高频电缆、结合滤波器、耦合电容器、阻波器和单相输电线路等。
什么是相差高频保护的闭锁角?答:如图F-5(a)所示,当k点发生穿越性故障时,在理想情况下,IM与IN 相差180°,保护装置不动作。
而实际上,当线路外部故障时,由于各种因素的影响,IM与IN的相角差不是180°,收信机收到的信号有一个间断角。
根据相差高频保护的原理,当线路故障而出现间断角时,保护装置将动作。
为此,应找出外部故障可能出现的最大间断角,并按此值进行闭锁,以保证当线路外部故障时保护不误动。
这个最大间断角就叫相差高频保护的闭锁角。
如图F-5(b>所示保护的动作区φop为(180°-β)>φop>(180°+β),闭锁角即为β。
在具有远方起动的高频保护中为什么要设置断路器三跳停信回路?答:(1)在发生区内故障时,一侧断路器先跳闸,如果不立即停信,由于无操作电流,发信机将发生连续的高频信号,对侧收信机也收到连续的高频信号,则闭锁保护出口,不能跳闸。
高频保护概述⏹定义及应用⏹基本结构⏹高频通道的构成及工作方式⏹高频信号⏹收发信机工作方式⏹分类定义及应用⏹定义:将线路两端的电气量转换为高频信号,利用输电线路构成的高频通道,将高频信号传送至对端进行比较,从而决定是否动作的一种继电保护。
⏹应用:110KV重要线路、220KV及以上线路⏹高频保护不能单端运行。
基本结构框图高频通道的构成及工作方式构成:有“相-相”制和“相-地”制两种。
我国常用“相-地”制1、输电线路:传送工频和高频信号2、高频阻波器:将高频信号的传送范围限制在被保护线路内。
即通工频阻高频。
为由电感线圈与可变电容器组成的并联谐振回路,谐振频率为高频信号的频率。
3、耦合电容器(结合电容器):将低压的高频收发信机与高压的输电线路隔离;与连接滤波器构成高频串联谐振回路,通高频。
即通高频阻工频。
4、连接滤波器:两侧分别构成高频串联谐振回路,通高频;两侧阻抗与连接元件的波阻抗相匹配,以减少高频能量的附加损耗。
5、放电间隙:防止过电压对收发信机的损坏。
接地刀闸:检修、调试高频保护时保证人身安全。
6、高频电缆:将室内的收发信机与室外设备连接起来并屏蔽干扰信号。
7、高频收发信机:发送和接受高频信号。
工作方式:1、故障时发信方式(正常时无高频电流方式、短期发信方式)(a)2、长期发信方式(正常时有高频电流方式)(b)3、移频方式(c)高频信号⏹定义:指线路故障时两端保护所传送的信息或命令。
⏹高频电流:频率为40~500kH Z之间的电流。
⏹利用方式根据收信机输出信号与本侧保护输出信号之间的逻辑关系分为:1、允许信号:允许保护动作跳闸的高频信号。
闭锁信号:制止保护动作将保护闭锁的高频信号。
3、跳闸信号:线路对端发来的直接使保护动作跳闸的高频信号。
收发信机工作方式⏹单频制:各侧收信机和发信机工作频率相同即收信机不仅可接受本侧发信机发送的信号还可接受对侧发信机发送的信号。
⏹双频制:各侧收信机和发信机工作频率不同即收信机只接受对侧发信机发送的信号。
高频保护一、概念:高频保护是利用高频载波代替二次导线,通过电力线路传送线路两侧电信号的保护。
原理是反应被保护线路首末两端电流的差值或功率方向信号,用高频载波将信号传输到对侧加以比较而决定保护是否动作。
高频保护包括相差高频保护、高频闭锁距离保护和高频闭锁方向保护。
二、高频保护的组成:高频保护结构图高频保护由以下部分组成:高频阻波器;结合电容器;连接滤波器;高频电缆;保护间隙;接地刀闸;高频收、发信机。
1、高频阻波器:高频阻波器是由电感线圈和可调电容组成的并联谐振回路,其作用是阻止调频电流通过,而工频电流可以畅通无阻,即通常所说的阻高频,通低频。
在被保护线路两侧装上高频阻波器,可以把高频电流限制在被保护线路内。
2、结合电容器:结合电容器是一个高压电容器,电容很小,对工频电压呈现很大的阻抗,使收发信机与高压输电线路绝缘,载频信号顺利通过。
3、连接滤波器:它是一个可调的空心变压器,与结合电容器共同组成带通滤波器,连接滤波器起着阻抗匹配作用,可以避免高频信号的电磁波在传输过程中发生反射,并减少调频信号的损耗,增加输出功率。
4、高频电缆:用来连接户内的收发信机和户外的连接滤波器。
5、保护间隙:保护间隙是高频通道的辅助设备,它的作用是使高频电缆和高频收发信机与线路形成一定的间隙,免受过电压的袭击。
6、接地刀闸:当高频保护检修时,利用接地刀闸来进行安全接地,保证设备和人身的安全。
7、高频收发信机:用于发送和接收高频信号的装置。
三、高频信号的分类高频信号可分为允许信号、闭锁信号和跳闸信号。
1、允许信号:收到这种信号是高频保护动作跳闸的必要条件。
即:高频保护收到这种这种允许信号后动作跳闸,收不到允许信号高频保护不动作。
2、闭锁信号:收不到这种信号是高频保护动作的必要条件下。
即收到这种信号时保护被闭锁,不动作;当保护收不到这种信号时,保护闭锁解除,高频保护动作。
3、跳闸信号:收到这种信号是保护动作跳闸的充分必要条件。
高频保护的基本原理
高频保护是指在电力系统中,为了保护设备和线路不受到高频干扰的影响而采取的一系列措施。
高频保护的基本原理是通过对电力系统中的高频信号进行检测和分析,及时采取相应的保护措施,以确保电力系统的安全稳定运行。
首先,高频保护的基本原理是基于对电力系统中的高频信号进行监测和分析。
电力系统中存在着各种各样的高频信号,如雷电击打、电弧放电、谐波等,这些高频信号可能会对电力设备和线路造成损坏。
因此,通过对这些高频信号进行监测和分析,可以及时发现潜在的危险,从而采取相应的保护措施。
其次,高频保护的基本原理是基于对高频信号的特征进行识别和分类。
不同类型的高频信号具有不同的特征,如频率、幅值、波形等,通过对这些特征进行识别和分类,可以判断高频信号的来源和性质,从而有针对性地采取保护措施,避免对电力系统造成损害。
另外,高频保护的基本原理还包括对高频信号进行定位和定量分析。
通过对高频信号的定位和定量分析,可以确定高频信号的发生位置和强度,从而有针对性地采取相应的保护措施,最大程度地减少对电力设备和线路的影响。
最后,高频保护的基本原理还包括对高频信号进行响应和处理。
一旦发现电力系统中存在高频信号的干扰,高频保护系统会立即做出相应的响应和处理,如切断故障回路、调整设备参数、发出警报等,以保护电力系统的安全稳定运行。
综上所述,高频保护的基本原理是通过对电力系统中的高频信号进行监测、分析、识别、分类、定位、定量分析和响应处理,以确保电力系统的安全稳定运行。
通过科学合理地应用高频保护技术,可以有效地减少设备损坏和线路故障,提高电力系统的可靠性和稳定性。
章 高频保护什么叫高频保护高频保护就是将线路两端的电流相位或功率方向转化为高频信号,然后利用输电线路本身构成一个高频电流通道,将此信号送至对端,以比较两端电流相位或功率方向的一种保护。
.高频保护是如何分类的按照工作原理分两大类,即方向高频保护和相差高频保护。
①方向高频保护:比较被保护线路两侧的功率方向。
②相差高频保护:比较被保护线路两侧的电流相位。
在高压电网中,高频保护的作用是什么高频保护用在远距离高压输电线路上,对被保护线路上任一点各类故障均能瞬时由两侧切除,从而提高电力系统运行的稳定性和重合闸的成功率。
第6什么叫高频闭锁距离保护高频闭锁距离保护的基本原理是利用增量元件作为启动元件,在故障时启动高频收发信机,发送高频闭锁信号,利用距离段或段方向阻抗继电器作为故障功率判别元件,如果内部故障,两侧距离保护段或段测量元件动作,停发高频闭锁信号,瞬时跳闸切除故障。
如果外部故障,正方向侧距离段方向阻抗继电段或器动作,停止发信,但反方向侧方向阻抗元件不动作,继续发信以闭锁对侧保护。
这样,高频闭锁距离保护既具有高频保护全线速动的功能,段又有距离保护①跳闸信号:跳闸)所示,高频信号是跳闸的充分条件。
②允许信号:跳闸)所示,高频信号是跳闸的必要条件。
③闭锁信号:跳闸)所示,收不到高频信号是跳闸的必要条件。
做相邻后备保护的功能。
高频闭锁距离保护的主要缺点是高频保护和距离保护的接线互相连在一起不便于运行维护和检修。
试述高频信号的分类及应用按高频信号的应用分三类,即跳闸信号、允许信号及闭锁信号。
高频信号逻辑图如图所示。
跳闸门“或”门)跳闸与跳闸“非”门图高频信号逻辑图“或”,如图“与”门,如图“非”,如图试述高频闭锁方向保护的基本原理双电源网络接线如图所示。
当内部接地时,保护动,两侧都不发高频信号,保护动作跳外部接地时,保护动,它们发出高频闭锁信号,送至保护线路均保持不动。
图双电源网络接线这种保护是以由短路功率为负的一侧发出高频闭锁信号,这个信号被两端的收信机所接收,而把保护闭锁,故称高频闭锁方向保护。
线路纵联(高频)保护基本知识1、什么是输电线路的纵联差动保护?其特点是什么?输电线路的纵联差动保护是指用某种通信通道(简称通道)将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路。
2、纵联保护的通道可分为几种类型?纵联保护的通道类型有:(1)电力线载波纵联保护(简称高频保护)。
(2)微波纵联保护(简称微波保护)。
(3)光纤纵联保护(简称光纤保护)。
(4)导引线纵联保护(简称导引线保护)。
3、什么是信号?需要传送的信息就是信号。
继电保护装置信号的作用就是信号与保护之间的逻辑关系。
例如:在故障启动发信方式中,高频电流的出现为信号;在长期发信方式中,高频电流的无成为信号;高频保护的信号有以下三种:4、通道的工作方式故障时发信、长期发信;5、高频信号的分类及作用(1)闭锁信号:他是阻止保护动作于跳闸的信号。
换言之,无闭锁信号时保护作用于跳闸的必要条件。
同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸。
其逻辑框图如图3-4(a)所示。
(2)允许信号:它是允许保护动作于跳闸的信号。
换言之,有允许信号是保护动作于跳闸的必要条件。
只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳闸,其逻辑框图如图3-4(b)所示。
(3)跳闸信号。
它是直接引起跳闸的信号。
此时与保护元件是否动作无关,只要收到跳闸信号,保护就作用于跳闸,如图3-4(c)所示。
远方跳闸式高频保护就是利用跳闸信号。
6、纵联保护出现的理由:(1)电流、距离保护存在问题:不能瞬时切除全线故障(切除线路末端故障时有一定的延时);(2)电压等级提高,要求全线瞬时切除故障,电流、距离保护无法做到,纵联保护能瞬时切除全线故障7、高频通道的构成原理8、纵联保护的分类:(1)按通道分有:A、电力线载波纵联保护(简称高频保护);B、微波纵联保护(简称微波保护);C、光纤纵联保护(简称光纤保护);D、导引线纵联保护(简称导引线保护);(2)按判定故障是在区内还是在区外的方式分有:方向高频(比较电流或功率方向)和相差高频(比较电流相位);(3)按信号方式分有:允许式高频和闭锁式高频;(4)启动方式分:距离、9、各类高频保护的特点:(1)导引线纵联保护(也称输电线路纵差动保护):A、构成原理:通过比较被保护线路两端电气量(电流、功率)大小和方向原理构成;B、纵差动保护存在问题:⏹可瞬时动作切除全线范围内故障⏹需要敷设与输电线路等长的导引线,经济上不划算⏹导引线故障的监视问题如何解决?C、纵差动保护原理接线:采用环流法接线;(2)相差高频保护:比较被保护线路两端电流的相位,内部短路时线路两端电流方向均为母线流向线路,而外部短路时靠近故障点侧电流方向由线路流向母线,如图:通过鉴别高频信号的连续性可以判别是内部还是外部短路工作原理:起动元件:I2、I4低灵敏度,I1、I3高灵敏度,用于起动收发信机操作元件:控制收发信机发信比相元件:比较电流相位(3)方向高频保护:比较被保护线路两端的功率方向,以判别输电线路内部或外部故障;其工作基本原理是:若约定由母线送至线路的方向为正,则在外部故障时,两侧功率方向相反,保护不动作;内部故障时,两侧功率近似同相,保护应动作,因此只要得知线路两侧功率同时为正,就发出跳闸脉冲。
高频闭锁保护原理高频闭锁保护原理闭锁保护第一节概述电网中运行的所有线路均需配备继电保护来切除故障,对于不同电压等级的线路而言,对继电保护的要求也不同。
110 千伏及以下电压等级线路,通常配备以输电线路单侧电流、电压、零序电流等电气量作为判据的距离保护、零序保护、过流保护等。
而对于220 千伏及以上电压等级线路,由于系统稳定的要求,必须能快速切除线路上任一点故障,这是普通的距离、零序保护所无法实现的。
这就需要配置利用两端电气量的纵联保护来作为线路主保护。
1、纵联保护的构成纵联保护的核心原理是利用某种通道将线路两端的保护装置连接起来,将两端的电气量进行比较,判断故障为区内还是区外故障。
2、纵联保护的分类按通道类型可以划分为导引线、载波(高频)、微波、光纤纵联保护;按构成原理分为纵联方向、距离、差动保护。
3、纵联保护的通道类型目前我省主要应用的通道是高频通道和光纤通道。
4、纵联保护的信号分类纵联保护通道传输的信号分为闭锁信号、允许信号和跳闸信号。
(1)闭锁信号:阻止保护动作于跳闸,收不到闭锁信号是跳闸的必要条件。
平时通道内不传输信号,保护启动后发闭锁信号。
线路两侧收、发频率一样,只要有一侧线路发出闭锁信号,两侧都能收到闭锁信号。
高频闭锁保护的动作原理是:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸。
举例说明:A B C D E F 如上图:如果AB 线路发生故障,ABCDEF 保护启动(解释反方向也启动以及启动原理),同时发闭锁信号,A、B、D、F 正方向元件启动,停信,而C、E 则继续发闭锁信号。
因此AB 线路保护出口跳闸,而CD、EF 两条线路保护则分别由于C、E 侧保护发闭锁信号而不跳闸。
这也是我们平时在工作中经常会遇到的现象:系统发生事故,与之联络的线路高频保护会启动发信而不会跳闸。
再如下图:A B C D E F 如果CD 线路发生故障,ABCDEF 保护启动,同时发闭锁信号。
A、C、D、F 正方向元件启动,停信,而B、E 则继续发闭锁信号。
因此CD 线路保护出口跳闸,AB、两条线路保护则分别由于B、而EF E 侧保护发闭锁信号而不跳闸。
(2)允许信号:允许保护动作跳闸,收到允许信号是跳闸的必要条件。
与闭锁信号相比较,允许信号对通道的要求更高,且只能接收对侧的允许信号,而闭锁信号不然,可以自发自收,同时对侧也能收到。
因为一旦通道有异常,对于闭锁信号而言,充其量是区外故障保护失去闭锁越跳,而区内故障正常动作。
允许信号则在线路发生区内故障时由于不能发送允许信号而拒动,这是绝对不允许的,因此允许式高频保护通道平时就一直在交换信号,而闭锁式高频保护只要定期交换信号就可以了。
A B C D E F 允许式高频保护的动作原理是:保护启动――两侧发允许信号――正方向元件启动――――出口跳闸。
如图CD 线路发生故障,A、C、D、F 保护发出允许信号,A、C、D、F 正方向元件启动。
CD 线路两侧保护启动且收到允许信号,对于AB 线路而言,A 侧收不到允许信号、B 侧收到允许信号而本身保护未动作,因此AB 两侧开关均不跳闸,同样EF 线路也是如此。
(3)跳闸信号:只要收到跳闸信号即出口跳闸。
目前我国还没有使用,主要是对通道要求和对元件测量精度要求太高。
. 第二节高频闭锁保护的动作原理目前我们南通电网中使用的高频保护均是采用闭锁信号,称为高频闭锁保护。
该保护的动作条件是本侧保护动作且收不到闭锁信号,整个保护动作的过程包括:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸,对应的保护装置部分是启动元件、收发信元件、方向元件、停信元件、跳闸元件。
下面对以上5 个元件逐一加以介绍:一、启动元件启动元件是当系统发生事故时启动收发信机工作的元件。
在我们系统中配置的高频保护启动元件都是以相电流突变量或者零序电流作为启动元件的,无论系统发生什么类型的故障,只要相电流发生突变或者产生零序电流(一般整定为0.1-0.5In)启动元件就会动作。
,二、收发信元件高频保护收发信机收信和发信是独立的功能,收信由收信机独立完成,发信则包括保护启动发信、远方启动发信和通道检查发信。
保护启动发信是在保护启动后和保护整组复归前进行的强制发信。
远方启动发信是对侧发信后启动本侧发信机发信。
使用远方发信的作用主要有:(1)提高被保护线路两侧装置配合的可靠性,防止在下列情况下保护误动作:发生区外故障,近故障侧保护启动发信元件未能启动发信,此时远故障侧保护将误动(见图,无闭锁信号)。
具备了远方启动条件后,只要一侧发信机启动,则另一侧发信机也发信,确保区外故障不会误动作。
(2)可以方便通道检查,不必由两侧值班人员同时配合进行,尤其是在改成监控中心值班模式之后,显得更加方便了。
通道检查发信是用来进行通道检测的,必须满足以要
求:(1)线路每侧都能单独进行通道检查(2)应能分别检查对侧单独发信、两侧同时发信及本侧单独发信时的通道工作情况。
(3)通道检查应能在线路正常运行、单侧断开、双侧断开时都可进行。
(4)通道检查过程中如遇系统故障,应能立即转入保护启动发信、停信状态。
(5)通道检查既能手动进行,也能保护按定时自动进行。
三、方向元件方向元件在高频保护中主要是用来判别故障是区外还是区内,有正方向元件和反方向元件之分,正方向元件在区内故障时动作,反方向元件在区外故障时动作。
纵联保护的方向元件应该满足下列要求:(1)要有明确的方向性,如果方向判别错误将会导致误动或者拒动。
(2)要确保在本线路全长范围内发生各种故障都能可靠动作,只有这样,才能做到全线速动。
(3)反方向元件要闭锁正方向元件。
防止区外故障时保护误动,缺点是区外故障转区内故障时需等区外故障切除方能切除本线路的区内故障。
(4)本侧的反方向元件比本侧的正方向元件更灵敏。
(5)本侧的反方向元件比对侧的正方向元件更灵敏。
停信元件四、停信元件高频闭锁保护的停信元件包括正方向元件动作停信、其他保护动作停信、本保护动作停信、断路器位置停信和弱馈保护停信五种实现方式。
1、正方向元件动作停信高频闭锁保护在正方向元件动作后就会停发闭锁信号。
2、其他保护动作停信母差保护动作停信,目的是防止故障发生在开关和CT 之间或者母线上开关拒动,此时高频保护会将母线故障视为“区内故障” ,如为单相故障,高频保护动作后会重合一次。
需要说明的是此时高频保护并不是肯定动作。
3、本保护动作停信本保护是指保护装置的后备保护,比如距离、零序等,本保护动作停信的作用:如果正方向和反方向同时发生故障,反方向元件闭锁正方向元件,导致高频保护不能停信,则由距离或零序保护动作停信,确保两个故障都能快速切除。
4、三跳位置停信三跳位置停信是指开关在断开的情况下使其收发信机处于停信状态,解除远方启动发信元件的作用。
例如手动充电合闸于故障线路时,本侧保护启动发信,同时远方启动对侧发信机发信,本侧正方向元件启动停信,而对侧无法停信导致本侧开关也无法跳闸。
5、弱馈保护停信弱馈保护的定义:线路弱电源或无电源端,或者说线路发生区内故障时某一端保护的所有正方向元件灵敏度都不够。
目的:使线路发生区内故障时能做到全线速动。
弱馈侧是否跳闸可以根据运行的需要进行选择,称为“弱馈跳闸” 。
通俗的说,弱馈功能就是当线路发生故障时,由于线路某侧短路容量不够,正方向元件无法启动,因而无法停信,也无法跳闸。
此时采用的弱馈停信能在区内故障时停信不拒动,区外故障时发信不误动。
6、功率倒向问题及其处理方法1 甲线2 3 乙线4 所谓功率倒向:如图示,乙线发生故障,保护1 正方向启动并停信,保护2反方向元件动作发闭锁信号。
保护3、4 正方向元件启动跳闸。
如果此时4 开关跳闸后而3 开关尚未跳开,会造成甲线上短路电流由原来的1-2变为2-1,对于 1 保护而言反方向元件动作,发闭锁信号;对于 2 保护而言,反方向元件返回,正方向元件动作,停信。
如果 2 保护停信快于 1 保护发信的话,就会造成1、2 保护误动。
这就是说发生功率倒向时有可能造成纵联保护误动,必须采取措施避免。
简单介绍一种措施:由于功率倒向时必然存在一个反方向元件转为正方向元件动作的过程,采用延时停信或者延时跳闸的方法,就可以避免保护误动了。
五、跳闸元件跳闸元件在纵联保护中相对较为简单,有正方向元件动作跳闸和弱馈保护跳闸两种。