当前位置:文档之家› knn算法介绍与参数调优

knn算法介绍与参数调优

knn算法介绍与参数调优
knn算法介绍与参数调优

KNN算法介绍与参数调优

K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。

KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别。而KNN 做回归时,一般是选择平均法,即最近的K个样本的样本输出的平均值作为回归预测值。由于两者区别不大,虽然本文主要是讲解KNN的分类方法,但思想对KNN的回归方法也适用。由于scikit-learn里只使用了蛮力实现(brute-force),KD树实现(KDTree)和球树(BallTree)实现,本文只讨论这几种算法的实现原理。

1. KNN算法三要素

KNN算法我们主要要考虑三个重要的要素,对于固定的训练集,只要这三点确定了,算法的预测方式也就决定了。这三个最终的要素是k值的选取,距离度量的方式和分类决策规则。

对于分类决策规则,一般都是使用前面提到的多数表决法。所以我们重点是关注与k值的选择和距离的度量方式。

对于k值的选择,没有一个固定的经验,一般根据样本的分布,选择一个较小的值,可以通过交叉验证选择一个合适的k值。

选择较小的k值,就相当于用较小的领域中的训练实例进行预测,训练误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是泛化误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;

选择较大的k值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少泛化误差,但缺点是训练误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。

一个极端是k等于样本数m,则完全没有分类,此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单。

对于距离的度量,我们有很多的距离度量方式,但是最常用的是欧式距离,即对于两个n维向量x和y,两者的欧式距离定义为:

大多数情况下,欧式距离可以满足我们的需求,我们不需要再去操心距离的度量。

当然我们也可以用他的距离度量方式。比如曼哈顿距离,定义为:

更加通用点,比如闵可夫斯基距离(Minkowski Distance),定义为:

可以看出,欧式距离是闵可夫斯基距离在p=2时的特例,而曼哈顿距离是p=1时的特例。

2. KNN算法蛮力实现

从本节起,我们开始讨论KNN算法的实现方式。首先我们看看最想当然的方式。

既然我们要找到k个最近的邻居来做预测,那么我们只需要计算预测样本和所有训练集中的样本的距离,然后计算出最小的k个距离即可,接着多数表决,很容易做出预测。这个方法的确简单直接,在样本量少,样本特征少的时候有效。但是在实际运用中很多时候用不上,为什么呢?因为我们经常碰到样本的特征数有上千以上,样本量有几十万以上,如果我们这要去预测少量的测试集样本,算法的时间效率很成问题。因此,这个方法我们一般称之为蛮力实现。比较适合于少量样本的简单模型的时候用。

既然蛮力实现在特征多,样本多的时候很有局限性,那么我们有没有其他的好办法呢?有!这里我们讲解两种办法,一个是KD树实现,一个是球树实现。

3. KNN算法之KD树实现原理

KD树算法没有一开始就尝试对测试样本分类,而是先对训练集建模,建立的模型就是KD树,建好了模型再对测试集做预测。所谓的KD树就是K个特征维度的树,注意这里的K和KNN中的K的意思不同。KNN中的K代表最近的K个样本,KD树中的K代表样本特征的维数。为了防止混淆,后面我们称特征维数为n。

KD树算法包括三步,第一步是建树,第二部是搜索最近邻,最后一步是预测。

1.1 KD树的建立

我们首先来看建树的方法。KD树建树采用的是从m个样本的n维特征中,分别计算n个特征的取值的方差,用方差最大的第k维特征来作为根节点。对于这个特征,我们选择特征的取值的中位数对应的样本作为划分点,对于所有第k维特征的取值小于的样本,我们划入左子树,对于第k维特征的取值大于等于的样本,我们划入右子树,对于左子树和右子树,我们采用和刚才同样的办法来找方差最大的特征来做更节点,递归的生成KD树。

具体流程如下图:

比如我们有二维样本6个,{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构建kd树的具体步骤为:1)找到划分的特征。6个数据点在x,y维度上的数据方差分别为6.97,5.37,所以在x轴上方差更大,用第1维特征建树。

2)确定划分点(7,2)。根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以划分点的数据是(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:划分点维度的直线x=7;3)确定左子空间和右子空间。分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)}。

4)用同样的办法划分左子树的节点{(2,3),(5,4),(4,7)}和右子树的节点{(9,6),(8,1)}。最终得到KD树。最后得到的KD树如下:

1.2 KD树搜索最近邻

当我们生成KD树以后,就可以去预测测试集里面的样本目标点了。对于一个目标点,我们首先在KD 树里面找到包含目标点的叶子节点。以目标点为圆心,以目标点到叶子节点样本实例的距离为半径,得到一个超球体,最近邻的点一定在这个超球体内部。然后返回叶子节点的父节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不相交那就简单了,我们直接返回父节点的父节点,在另一个子树继续搜索最近邻。当回溯到根节点时,算法结束,此时保存的最近邻节点就是最终的最近邻。

从上面的描述可以看出,KD树划分后可以大大减少无效的最近邻搜索,很多样本点由于所在的超矩形

体和超球体不相交,根本不需要计算距离。大大节省了计算时间。

我们用3.1建立的KD树,来看对点(2,4.5)找最近邻的过程。

先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,但(4,7)与目标查找点的距离为3.202,而(5,4)与查找点之间的距离为3.041,所以(5,4)为查询点的最近点;以(2,4.5)为圆心,以3.041为半径作圆,如下图所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找,也就是将(2,3)节点加入搜索路径中得<(7,2),(2,3)>;于是接着搜索至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5;回溯查找至(5,4),直到最后回溯到根结点(7,2)的时候,以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如下图所示。至此,搜索路径回溯完,返回最近邻点(2,3),最近距离1.5。

对应的图如下:

1.3 KD树预测

有了KD树搜索最近邻的办法,KD树的预测就很简单了,在KD树搜索最近邻的基础上,我们选择到了第一个最近邻样本,就把它置为已选。在第二轮中,我们忽略置为已选的样本,重新选择最近邻,这样跑k次,就得到了目标的K个最近邻,然后根据多数表决法,如果是KNN分类,预测为K个最近邻里面有最多类别数的类别。如果是KNN回归,用K个最近邻样本输出的平均值作为回归预测值。

4.KNN算法之球树实现原理

KD树算法虽然提高了KNN搜索的效率,但是在某些时候效率并不高,比如当处理不均匀分布的数据集时,不管是近似方形,还是矩形,甚至正方形,都不是最好的使用形状,因为他们都有角。一个例子如下图:

如果黑色的实例点离目标点星点再远一点,那么虚线圆会如红线所示那样扩大,导致与左上方矩形的右下角相交,既然相交了,那么就要检查这个左上方矩形,而实际上,最近的点离星点的距离很近,检查左上方矩形区域已是多余。于此我们看见,KD树把二维平面划分成一个一个矩形,但矩形区域的角却是个难以处理的问题。

为了优化超矩形体导致的搜索效率的问题,牛人们引入了球树,这种结构可以优化上面的这种问题。

我们现在来看看球树建树和搜索最近邻的算法。

4.1球树的建立

球树,顾名思义,就是每个分割块都是超球体,而不是KD树里面的超矩形体。

我们看看具体的建树流程:

1) 先构建一个超球体,这个超球体是可以包含所有样本的最小球体。

2) 从球中选择一个离球的中心最远的点,然后选择第二个点离第一个点最远,将球中所有的点分配到离这两个聚类中心最近的一个上,然后计算每个聚类的中心,以及聚类能够包含它所有数据点所需的最小半径。这样我们得到了两个子超球体,和KD树里面的左右子树对应。

3)对于这两个子超球体,递归执行步骤2). 最终得到了一个球树。

可以看出KD树和球树类似,主要区别在于球树得到的是节点样本组成的最小超球体,而KD得到的是节点样本组成的超矩形体,这个超球体要与对应的KD树的超矩形体小,这样在做最近邻搜索的时候,可以避免一些无谓的搜索。

4.2球树搜索最近邻

使用球树找出给定目标点的最近邻方法是首先自上而下贯穿整棵树找出包含目标点所在的叶子,并在这个球里找出与目标点最邻近的点,这将确定出目标点距离它的最近邻点的一个上限值,然后跟KD树查找一样,检查兄弟结点,如果目标点到兄弟结点中心的距离超过兄弟结点的半径与当前的上限值之和,那么兄弟结点里不可能存在一个更近的点;否则的话,必须进一步检查位于兄弟结点以下的子树。

检查完兄弟节点后,我们向父节点回溯,继续搜索最小邻近值。当回溯到根节点时,此时的最小邻近值就是最终的搜索结果。

从上面的描述可以看出,KD树在搜索路径优化时使用的是两点之间的距离来判断,而球树使用的是两边之和大于第三边来判断,相对来说球树的判断更加复杂,但是却避免了更多的搜索,这是一个权衡。

5.KNN算法的扩展

这里我们再讨论下KNN算法的扩展,限定半径最近邻算法。

有时候我们会遇到这样的问题,即样本中某系类别的样本非常的少,甚至少于K,这导致稀有类别样本在找K个最近邻的时候,会把距离其实较远的其他样本考虑进来,而导致预测不准确。为了解决这个问题,我们限定最近邻的一个最大距离,也就是说,我们只在一个距离范围内搜索所有的最近邻,这避免了上述问题。这个距离我们一般称为限定半径。

接着我们再讨论下另一种扩展,最近质心算法。这个算法比KNN还简单。它首先把样本按输出类别归类。对于第L类的个样本。它会对这个样本的n维特征中每一维特征求平均值,最终该类别所有维度的n个平均值形成所谓的质心点。对于样本中的所有出现的类别,每个类别会最终得到一个质心点。当我们做预测时,仅仅需要比较预测样本和这些质心的距离,最小的距离对于的质心类别即为预测的类别。这个算法通常用在文本分类处理上。

6.KNN算法小结

KNN算法是很基本的机器学习算法了,它非常容易学习,在维度很高的时候也有很好的分类效率,因此运用也很广泛,这里总结下KNN的优缺点。

KNN的主要优点有:

1)理论成熟,思想简单,既可以用来做分类也可以用来做回归。

2)可用于非线性分类。

3)训练时间复杂度比支持向量机之类的算法低,仅为O(n)。

4)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。

5)由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

6)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

KNN的主要缺点有:

1)计算量大,尤其是特征数非常多的时候

2)样本不平衡的时候,对稀有类别的预测准确率低

3)KD树,球树之类的模型建立需要大量的内存

4)使用懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢

5)相比决策树模型,KNN模型可解释性不强

4.scikit-learn K近邻法类库使用小结

4.1scikit-learn 中KNN相关的类库概述

在scikit-learn 中,与近邻法这一大类相关的类库都在sklearn.neighbors包之中。KNN分类树的类是KNeighborsClassifier,KNN回归树的类是KNeighborsRegressor。除此之外,还有KNN的扩展,即限定半径最近邻分类树的类RadiusNeighborsClassifier和限定半径最近邻回归树的类RadiusNeighborsRegressor,以及最近质心分类算法NearestCentroid。

在这些算法中,KNN分类和回归的类参数完全一样。限定半径最近邻法分类和回归的类的主要参数也和KNN基本一样。

比较特别是的最近质心分类算法,由于它是直接选择最近质心来分类,所以仅有两个参数,距离度量和特征选择距离阈值,比较简单,因此后面就不再专门讲述最近质心分类算法的参数。

另外几个在sklearn.neighbors包中但不是做分类回归预测的类也值得关注。kneighbors_graph类返回用KNN时和每个样本最近的K个训练集样本的位置。radius_neighbors_graph返回用限定半径最近邻法时和每个样本在限定半径内的训练集样本的位置。NearestNeighbors是个大杂烩,它即可以返回用KNN时和每个样本最近的K个训练集样本的位置,也可以返回用限定半径最近邻法时和每个样本最近的训练集样本的位置,常常用在聚类模型中。

4.2K近邻法和限定半径最近邻法类库参数小结

本节对K近邻法和限定半径最近邻法类库参数做一个总结。包括KNN分类树的类KNeighborsClassifier,KNN回归树的类KNeighborsRegressor,限定半径最近邻分类树的类RadiusNeighborsClassifier和限定半径最近邻回归树的类RadiusNeighborsRegressor。这些类的重要

邻法中的半radius 叉验证来选择一个较小的半径,尽量保证每类训练样本其他类别样本的距离较远,默认值是1.0。如果数据是三维或者三维以下的,可以通过可视化观察来调参。

近邻权重weights

主要用于标识每个样本的近邻样本的权重,如果是KNN,就是K个近邻样本的权重,如果是限定半径最近邻,就是在距离在半径以内的近邻样本的权重。可以选择"uniform","distance" 或者自定义权重。选择默认的"uniform",意味着所有最近邻样本权重都一样,在做预测时一视同仁。如果是"distance",则权重和距离成反比例,即距离预测目标更近的近邻具有更高的权重,这样在预测类别或者做回归时,更近的近邻所占的影响因子会更加大。当然,我们也可以自定义权重,即自定义一个函数,输入是距离值,输出是权重值。这样我们可以自己控制不同的距离所对应的权重。

一般来说,如果样本的分布是比较成簇的,即各类样本都在相对分开的簇中时,我们用默认的"uniform"就可以了,如果样本的分布比较乱,规律不好寻找,选择"distance"是一个比较好的选择。如果用"distance"发现预测的效果的还是不好,可以考虑自定义距离权重来调优这个参数。

KNN和限定半径最近邻法使用的算法algorithm

算法一共有三种,第一种是蛮力实现,第二种是KD树实现,第三种是球树实现。这三种方法在K近邻法(KNN)原理小结中都有讲述,如果不熟悉可以去复习下。对于这个参数,一共有4种可选输入,‘brute’对应第一种蛮力实现,‘kd_tree’对应第二种KD树实现,‘ball_tree’对应第三种的球树实现,‘auto’则会在上面三种算法中做权衡,选择一个拟合最好的最优算法。需要注意的是,如果输入样本特征是稀疏的时候,无论我们选择哪种算法,最后scikit-learn都会去用蛮力实现‘brute’。

个人的经验,如果样本少特征也少,使用默认的‘auto’就够了。如果数据量很大或者特征也很多,用"auto"建树时间会很长,效率不高,建议选择KD树实现‘kd_tree’,此时如果发现‘kd_tree’速度比较慢或者已经知道样本分布不是很均匀时,可以尝试用‘ball_tree’。而如果输入样本是稀疏的,无论你选择哪个算法最后实际运行的都是‘brute’。

停止建子树的叶子节点阈值leaf_size

这个值控制了使用KD树或者球树时,停止建子树的叶子节点数量的阈值。这个值越小,则生成的KD树或者球树就越大,层数越深,建树时间越长,反之,则生成的KD树或者球树会小,层数较浅,建树时间较短。默认是30. 这个值一般依赖于样本的数量,随着样本数量的增加,这个值必须要增加,否则不光建树预测的时间长,还容易过拟合。可以通过交叉验证来选择一个适中的值。

如果使用的算法是蛮力实现,则这个参数可以忽略。

距离度量metric

K近邻法和限定半径最近邻法类可以使用的距离度量较多,一般来说默认的欧式距离(即p=2的闵可夫斯基距离)就可以满足我们的需求。可以使用的距离度量参数有:

a) 欧式距离“euclidean”:

b) 曼哈顿距离“manhattan”:

c) 切比雪夫距离“chebyshev”:

d) 闵可夫斯基距离“minkowski”(默认参数): ,p=1为哈曼顿

距离,p=2是欧式距离。

e) 带权重闵可夫斯基距离“wminkowski”:

f) 标准化欧式距离“seuclidean”: 即对于各特征维度做了归一化以后的欧式距离。此时各样本特征维度的均值为0,方差为1.

g) 马氏距离“mahalanobis”:,其中,为样本协方差矩阵的逆矩阵。当样本分布独立时,S为单位矩阵,此时马氏距离等同于欧式距离。

还有一些其他不是实数的距离度量,一般在KNN之类的算法用不上,这里也就不列了。

距离度量附属参数p

p是使用距离度量参数metric 附属参数,只用于闵可夫斯基距离和带权重闵可夫斯基距离中p值的选择,p=1为曼哈顿距离,p=2为欧式距离。默认为2

距离度量其他

附属参数metric_param s

一般都用不上,主要是用于带权重闵可夫斯基距离的权重,以及其他一些比较复杂的距离度量的参数。

并行处理任务数n_jobs

主要用于多核CPU时的并行

处理,加快建立KNN树和预测搜

索的速度。一般用默认的-1就可以

了,即所有的CPU核都参与计算。

不适用于限定半径最近邻法

异常点类别选

outlier_label 不适用于KNN

主要用于预测

时,如果目标点半径

内没有任何训练集

的样本点时,应该标

记的类别,不建议选

择默认值none,因

为这样遇到异常点

会报错。一般设置为

训练集里最多样本

的类别。

不适用于限定半径

最近邻回归

4.3使用KNeighborsRegressor做回归的实例

1.数据情况:boston数据集

2.建模的过程

(1)标准化数据

(2)初步搜索n_neighbors,algorithm

(3)搜索leaf_size、wights'

(4)搜索p值

(5)用最佳训练的参数进行预测

3.涉及核心内容

自定义scoring的使用

1.自定义评价函数

评价函数的输入是实际的label(y_true)和模型的输出label(y_pred)

def my_custom_loss_func(y_true, y_pred):

'''

:param y_true:实际label

:param y_pred: 预测的label

:return:

'''

r2 =0.5* r2_score(y_true,y_pred)

return r2

'

2.scoring函数的制作

通过greater_is_better 参数设定scoring的值的优化方向

''通过greater_is_better 参数设定scoring的值的优化方向'''

score = make_scorer(my_custom_loss_func, greater_is_better=True)

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

import numpy as np

from sklearn.neighbors import KNeighborsRegressor

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error,make_scorer

def search_best_param(clf,X,y,param_base,param_grid,scoring='r2'):

clf.set_params(**param_base)

gs = GridSearchCV(

estimator=clf,

param_grid=param_grid, scoring=scoring, n_jobs=-1, iid=False, cv=5)

gs.fit(X,y)

param_base.update(gs.best_params_)

print('\n best param:%s'%str(gs.best_params_)+' best score:%s'%str(gs.best_score_))

return param_base

def model_select_step(clf,X,y,param_grids,scoring='r2'):

param_base=clf.get_params()

for param_grid in param_grids:

param_base = search_best_param(clf, X, y, param_base=param_base, param_grid=param_grid, scoring=scoring)

return param_base

'''自定义scoring'''

def my_custom_loss_func(y_true, y_pred):

'''

:param y_true:实际label

:param y_pred: 预测的label

:return:

'''

r2 =0.5* r2_score(y_true,y_pred)

return r2

if __name__=='__main__':

boston = load_boston()

X = boston.data

y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

ss_X = StandardScaler()

ss_y = StandardScaler()

'''Step 1: 数据标准化处理'''

X_train = ss_X.fit_transform(X_train)

X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train.reshape(-1, 1))

y_test = ss_y.transform(y_test.reshape(-1, 1))

param_base = {

'n_neighbors':5,

'leaf_size':30,

'weights':'uniform'

}

clf = KNeighborsRegressor(**param_base)

'''Step 1: 初步搜索n_neighbors,algorithm'''

param_grid1 = {'n_neighbors':[5,10,15,20,25],

'algorithm':['ball_tree', 'kd_tree', 'brute']

}

'''Step 2: Tune leaf_size、wights'''

param_grid2 = {'leaf_size':range(10,51,10),

'weights': ['uniform', 'distance']

}

param_grid3 = {'p': [1,2,3]

}

param_grids = [param_grid1, param_grid2, param_grid3]

'''通过greater_is_better 参数设定scoring的值的优化方向'''

score = make_scorer(my_custom_loss_func, greater_is_better=True)

bst_param=model_select_step(clf,X_train,y_train,param_grids,scoring=score)#使用最佳模型参数进行建模

clf = KNeighborsRegressor(**bst_param)

clf.fit(X_train, y_train)

y_pred=clf.predict(X_test)

r2=my_custom_loss_func(y_test,y_pred)

print('r2 is'+str(r2))

交叉验证的结果0.5*r2为0.38,最佳参数在test-set上的表现为0.354与训练的结果相差比较小。

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

kNN算法综述

kNN算法综述 王宇航13120476 (北京交通大学计算机与信息技术学院,北京,100044) 摘要:kNN算法是著名的模式识别统计学方法,是最好的文本分类算法之一,在机器学习分类算法中占有相当大的地位,是最简单的机器学习算法 之一。本文对kNN算法及相关文献做一份总结,详细介绍kNN算法的思想、原理、实现步骤以及具体实现代码,并分析了算法的优缺点及其各种改进方 案。本文还介绍了kNN算法的发展历程、重要的发表的论文。本文在最后介 绍了kNN算法的应用领域,并重点说明其在文本分类中的实现。 关键字:kNN算法;k近邻算法;机器学习;文本分类 Abstract:KNN algorithm,a famous statistical method of pattern recognition, which is one of the best algorithms for dealing with text categorization,is playing an important role in machine learning classification algorithm,and it is one of the simplest algorithms in machine learning.This paper mainly summaries the kNN algorithm and its related literature,and detailed introduces its main idea,principle, implementation steps and specific implementation code,as well as analyzes the advantages and disadvantages of the algorithm and its various improvement schemes.This paper also introduces the development course of kNN algorithm,its important published paper.In the final,this paper introduces the application field of kNN algorithm,and especially in text categorization. Keywords:KNN algorithm,K neighbor algorithm,Machine learning,Text classification 1引言 分类是数据挖掘中的核心和基础技术,在经营、决策、管理、科学研究等多个领域都有着广泛的应用。目前主要的分类技术包括决策树、贝叶斯分类、kNN分类、人工神经网络等。在这些方法中,kNN分类是一种简单、有效、非参数的方法,现已经广泛应用于文本分类、模式识别、图像及空间分类等领域。本文从各个角度对kNN算法进行较为全面的总结。 本文的结构如下: 在第二部分,主要介绍kNN算法的基本原理、思想、实现步骤、Java实现代码以及发展历程和经典论文。 第三部分是对kNN算法的诸多不足之处进行的讨论,并给出一些改进的方案。 第四部分介绍的是kNN算法如何处理多标签数据。 第五部分介绍了kNN算法目前的主要应用领域,并着重说明了其在文本分类中的出色表现。

文本分类中的特征提取和分类算法综述

文本分类中的特征提取和分类算法综述 摘要:文本分类是信息检索和过滤过程中的一项关键技术,其任务是对未知类别的文档进行自动处理,判别它们所属于的预定义类别集合中的类别。本文主要对文本分类中所涉及的特征选择和分类算法进行了论述,并通过实验的方法进行了深入的研究。 采用kNN和Naive Bayes分类算法对已有的经典征选择方法的性能作了测试,并将分类结果进行对比,使用查全率、查准率、F1值等多项评估指标对实验结果进行综合性评价分析.最终,揭示特征选择方法的选择对分类速度及分类精度的影响。 关键字:文本分类特征选择分类算法 A Review For Feature Selection And Classification Algorithm In Text Categorization Abstract:Text categorization is a key technology in the process of information retrieval and filtering,whose task is to process automatically the unknown categories of documents and distinguish the labels they belong to in the set of predefined categories. This paper mainly discuss the feature selection and classification algorithm in text categorization, and make deep research via experiment. kNN and Native Bayes classification algorithm have been applied to test the performance of classical feature detection methods, and the classification results based on classical feature detection methods have been made a comparison. The results have been made a comprehensive evaluation analysis by assessment indicators, such as precision, recall, F1. In the end, the influence feature selection methods have made on classification speed and accuracy have been revealed. Keywords:Text categorization Feature selection Classification algorithm

算法的时间复杂性

算法的时间复杂度计算 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0;(一次) for(i=1;i<=n;i++) (n次) for(j=1;j<=n;j++) (n^2次) sum++;(n^2次) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

算法的含义及算法复杂度分析方法

算法的含义 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。 特征 一个算法应该具有以下六个重要的特征: 算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。 1、有限性 算法的有穷性是指算法必须能在执行有限个步骤之后终止; 2、确切性 算法的每一步骤必须有确切的定义; 3、输入 一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件; 4、输出一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的; 算法复杂度分析 通常一个算法的复杂度是由其输入量决定的,随着输入的增加,复杂度越大。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 方法: 时间复杂度 (1)算法耗费的时间和语句频度 一个算法所耗费的时间=算法中每条语句的执行时间之和 每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。 若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。 (2)问题规模和算法的时间复杂度 算法求解问题的输入量称为问题的规模(Size),一般用一个整数表示。 矩阵乘积问题的规模是矩阵的阶数。 一个图论问题的规模则是图中的顶点数或边数。 一个算法的时间复杂度(Time Complexity, 也称时间复杂性)T(n)是该算法的时间耗费,是该算法所求解问题规模n的函数。当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。 (3)渐进时间复杂度评价算法时间性能 主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。 空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 算法执行期间所需要的存储空间包括3个部分: ·算法程序所占的空间;

最大公约数的三种算法复杂度分析时间计算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) {

r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

快速流分类算法研究综述

快速流分类算法研究综述 李振强 (北京邮电大学信息网络中心,北京 100876) 摘要 本文对流分类算法进行了综述,包括流分类的定义,对流分类算法的要求,以及各种流分类算法的分析比较。文章的最后指出了在流分类方面还没有得到很好解决的问题,作为进一步研究的方向。 关键词 流分类;服务质量;IP 背景 当前的IP网络主要以先到先服务的方式提供尽力而为的服务。随着Internet的发展和各种新业务的出现,尽力而为的服务已经不能满足人们对Internet的要求,IP网络必须提供增强的服务,比如:SLA(Service Level Agreement)服务,VPN(Virtual Private Network)服务,各种不同级别的QoS (Quality of Service)服务,分布式防火墙,IP安全网关,流量计费等。所有这些增强服务的提供都依赖于流分类,即根据包头(packet header)中的一个或几个域(field)决定该包隶属的流(flow)。典型的,包头中可以用来分类的域包括:源IP地址(Source IP Address)、目的IP地址(Destination IP Address)、协议类型(Protocol Type)、源端口(Source Port)和目的端口(Destination Port)等。 流分类算法描述 首先定义两个名词:规则(rule)和分类器(classifier)。用来对IP包进行分类的由包头中若干域组成的集合称之为规则,而若干规则的集合就是分类器。构成规则的域(我们称之为组件component)的值可以是某个范围,例如目的端口大于1023。流分类就是要确定和每个包最匹配的规则。表1是由6条规则组成的一个分类器。我们说这是一个5域分类器,因为每条规则由5个组件构成。我们假定分类器中的规则是有优先级的,越靠前的规则优先级越高,即规则1的优先级最高,规则6的最低。

算法的时间复杂度计算

for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,

下面我们就这个问题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1)f(n)=O(g(n)) (2)g(n)=O(f(n)) (3)h(n)=O(n^1.5) (4)h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,

KNN算法应用

应用场景 (1)文本分类:文本分类主要应用于信息检索,机器翻译,自动文摘,信息过滤,邮件分类等任务。文本分类在搜索引擎中也有着大量的使用,网页分类/分层技术是检索系统的一项关键技术,搜索引擎需要研究如何对网页进行分类、分层,对不同类别的网页采用差异化的存储和处理,以保证在有限的硬件资源下,提供给用户一个高效的检索系统,同时提供给用户相关、丰富的检索结果。在搜索引擎中,文本分类主要有这些用途:相关性排序会根据不同的网页类型做相应的排序规则;根据网页是索引页面还是信息页面,下载调度时会做不同的调度策略;在做页面信息抽取时,会根据页面分类的结果做不同的抽取策略;在做检索意图识别的时候,会根据用户所点击的url所属的类别来推断检索串的类别。 (2)回归:通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。 (3)可以使用knn算法做到比较通用的现有用户产品推荐,基于用户的最近邻(长得最像的用户)买了什么产品来推荐是种介于电子商务网站和sns网站之间的精确营销。只需要定期(例如每月)维护更新最近邻表就可以,基于最近邻表做搜索推荐可以很实时。 文本分类 1.KNN 算法最初由Cover 和Hart 于1968 年提出,该算法的基本思想是:根据传统的向量空间模型,文本内容被形式化为特征空间中的加权特征向量,即 D = D (T1,W1;T2,W2;…;Tn,Wn)。对于一个测试文本,计算它与训练样本集中每个文本的相似度,找出K 个最相似的文本,根据加权距离和判断测试文本所属的类别。 具体算法步骤如下: (1) 对于一个测试文本,根据特征词形成测试文本向量。 (2) 计算该测试文本与训练集中每个文本的文本相似度,计算公式为: 式中: x 为测试文本的特征向量;Sim(x,di)为相似度计算公式;b 为阈值,有待于优化选择;而y(di,Cj)的取值为1 或0,如果di属于Cj,则函数值为1,否则为0 。 (5)比较类的权重,将文本分到权重最大的那个类别中。 2.传统KNN 分类系统 传统的KNN 分类过程如图5-1:

算法的时间复杂度

算法的时间复杂度 Prepared on 22 November 2020

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶 O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^+5000nlgn 请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^ (4) h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤Cf(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

算法时间复杂度计算示例

算法时间复杂度计算示 例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本计算步骤? 示例一:? (1) int num1, num2; (2) for(int i=0; i

机器学习十大算法8:kNN

Chapter8 k NN:k-Nearest Neighbors Michael Steinbach and Pang-Ning Tan Contents 8.1Introduction (151 8.2Description of the Algorithm (152 8.2.1High-Level Description (152 8.2.2Issues (153 8.2.3Software Implementations (155 8.3Examples (155 8.4Advanced Topics (157 8.5Exercises (158 Acknowledgments (159 References (159 8.1Introduction One of the simplest and rather trivial classi?ers is the Rote classi?er,which memorizes the entire training data and performs classi?cation only if the attributes of the test object exactly match the attributes of one of the training objects.An obvious problem with this approach is that many test records will not be classi?ed because they do not

exactly match any of the training records.Another issue arises when two or more training records have the same attributes but different class labels. A more sophisticated approach,k-nearest neighbor(k NNclassi?cation[10,11,21],?nds a group of k objects in the training set that are closest to the test object,and bases the assignment of a label on the predominance of a particular class in this neighborhood.This addresses the issue that,in many data sets,it is unlikely that one object will exactly match another,as well as the fact that con?icting information about the class of an object may be provided by the objects closest to it.There are several key elements of this approach:(ithe set of labeled objects to be used for evaluating a test object’s class,1(iia distance or similarity metric that can be used to compute This need not be the entire training set. 151 152kNN:k-Nearest Neighbors the closeness of objects,(iiithe value of k,the number of nearest neighbors,and(iv the method used to determine the class of the target object based on the classes and distances of the k nearest neighbors.In its simplest form,k NN can involve assigning an object the class of its nearest neighbor or of the majority of its nearest neighbors, but a variety of enhancements are possible and are discussed below. More generally,k NN is a special case of instance-based learning[1].This includes case-based reasoning[3],which deals with symbolic data.The k NN approach is also an example of a lazy learning technique,that is,a technique that waits until the query arrives to generalize beyond the training data. Although k NN cl assi?cation is a classi?cation technique that is easy to understand and implement,it performs well in many situations.In particular,a well-known result by Cover and Hart[6]shows that the classi?cation error2of the nearest neighbor rule is

最大公约数的三种算法复杂度分析时间计算

理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 一、上机目的及容 1.上机容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。

根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

数据挖掘中的文本挖掘的分类算法综述

数据挖掘中的文本挖掘的分类算法综述 摘要 随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。 关键词:数据挖掘,文本挖掘,文本分类算法 ABSTRACT With the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work. KEYWORDS: data mining, text mining, text classification algorithms,KNN 目录 摘要 (1) ABSTRACT (1) 目录 (1)

KNN算法实验报告

KNN算法实验报告 一试验原理 K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决 定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。 该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量

并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 二试验步骤 那么根据以上的描述,我把结合使用反余弦匹配和kNN结合的过程分成以下几个步骤: 1.计算出样本数据和待分类数据的距离 2.为待分类数据选择k个与其距离最小的样本 3.统计出k个样本中大多数样本所属的分类 4.这个分类就是待分类数据所属的分类 数学表达:目标函数值可以是离散值(分类问题),也可以是连续值(回归问题).函数形势为f:n维空间R—〉一维空间R。 第一步:将数据集分为训练集(DTrn)和测试集(DTES)。 第二步:在测试集给定一个实例Xq;在训练集(DTrn)中找到与这个实例Xq的K-最近邻子集{X1、、、、XK},即:DKNN。 第三步:计算这K-最近邻子集得目标值,经过加权平均: ^f(Xq)=(f(X1)+...+f(XK))/k作为f(Xq)的近似估计。改进的地方:对

相关主题
文本预览
相关文档 最新文档