《牵引变流器》PPT课件
- 格式:ppt
- 大小:2.75 MB
- 文档页数:23
电力机车牵引变流器讲义课件1. 引言电力机车作为现代铁路运输中的重要组成局部,其牵引变流器的设计和运行原理成为了工程师和技术人员的关注焦点。
本讲义课件将介绍电力机车牵引变流器的根本知识和工作原理,帮助读者了解和掌握这一关键装置。
2. 牵引系统概述牵引系统是电力机车的核心局部,负责提供动力和 traction 控制。
牵引变流器作为牵引系统的重要组成局部,将直流电源转换为可变频率和可变电压的交流电源,以满足不同负载和运行条件下的牵引力要求。
3. 牵引变流器的分类牵引变流器按照不同的拓扑结构和控制策略可以分为:逆变式、半控制式和全控制式牵引变流器。
本节将详细介绍各种类型的特点和应用场景,帮助读者全面了解牵引变流器的分类。
3.1 逆变式变流器逆变式变流器是最常用的牵引变流器,通过逆变电路将直流电源转换为可调制的交流电源,其输出波形可以通过调整开关频率和占空比来控制。
该种类型的变流器结构简单,运行可靠。
3.2 半控制式变流器半控制式变流器在逆变式的根底上增加了一些开关元件,以提供更多的控制自由度。
例如,在逆变桥中引入了逆并联三相桥,以实现对输出电流的片段控制,提高了系统的输出性能和稳定性。
3.3 全控制式变流器全控制式变流器是最灵巧和功能最强大的牵引变流器,通过控制所有开关元件的触发时刻和角度来实现对输出电流和电压的精确控制。
该种类型的变流器在特殊的工况下具有更好的调节性能和响应速度。
4. 牵引变流器的工作原理牵引变流器的工作原理是将输入的直流电源转换为可变频率和可变电压的交流电源,为电力机车的牵引系统提供所需的电力。
本节将分别介绍逆变式、半控制式和全控制式变流器的工作原理,并且附有相应的示意图和数学推导。
5. 牵引变流器的控制策略牵引变流器的控制策略直接影响着电力机车的牵引性能和能效。
本节将介绍常见的控制策略,包括感应电动机控制、直流电动机控制、矢量控制等,帮助读者了解这些策略的原理和应用。
6. 牵引变流器的故障诊断与维护牵引变流器作为电力机车的核心部件之一,其故障对电力机车的运行平安和稳定性具有重要影响。
牵引变流器牵引变流器从负载来看可分为电压型和电流型两种。
由于电压型变流器相对于电流型变流器具有较大的优势,所以在交流传动领域大多采用电压型逆变器。
电压型变流器的驱动一般采用“四象限变流器+中间直流电路+电压型逆变器+异步牵引电动机”的方式。
根据变流器输出交流侧相电压的可能取值可将电压型变流器分为两点式和三点式。
在交流传动领域,当中间电路直流电压kV kV U d 8.2~7.2>时,主电路中通常采用两点式结构;当kV U d 3>时,宜采用三点式结构。
下面将分别介绍两点式变流器和三点式变流器的工作原理。
一、两点式牵引变流器图3.1为两点式牵引变流器的一种典型电路。
它主要由两点式四象限脉冲整流器、中间直流电压回路和两点式PWM 逆变器组成,由牵引变压器的二次绕组供电。
图3.1 两点式变流器电路原理图逆变器把中间回路直流电压变成幅值和频率可调的三相交流电压,供给异步牵引电机。
在起动范围内,逆变器按脉宽调制模式进行控制,当逆变器输出达到规定值时,转入方波模式。
有时,在逆变器和异步牵引电机之间串入平波电抗器,用以抑制起动过程电动机电流中的谐波分量,改善转矩脉动状况,并减少损耗。
起动完成后,通过接触器把它短接。
当机车进行再生制动时,整个系统的工作原理及方式没有发生什么变化,主电路结构也不发生任何变化。
为了使牵引电动机能够进入发电机状态,控制系统应使异步牵引电动机工作在负的转差频率。
在交流传动电力机车发展的初期,为保证电气制动的可靠性和安全性,还装有制动电阻和转换开关。
如果电网不能接受再生能量或网侧整流器故障,应立即在无电流状态下接入制动电阻。
1.两点式四象限脉冲整流器及中间储能环节1) 两点式四象限脉冲整流器在交流传动领域,网侧变流器现大多采用四象限脉冲整流器,它具有以下优点:(1)能量可以双向流动;(2)从电网侧吸收的电流为正弦波;(3)功率因数可到达1;(4)减低了接触网的等效干扰电流,减少对通讯的干扰;(5)可以保证中间回路直流电压在允许偏差内。