RIPv1与RIPv2协议的对比实验
- 格式:docx
- 大小:139.78 KB
- 文档页数:5
ripv1协议和ripv2协议原理(一)RIP协议介绍什么是RIP协议?RIP,全称为Routing Information Protocol,是一种基于距离矢量的路由协议。
它主要用于在局域网中实现路由器之间的路由信息交换,以便实现数据包的正确转发。
RIPv1协议RIPv1是RIP的第一个版本,它在后来的RIPv2协议中进行了改进。
下面是RIPv1协议的主要特点:•距离矢量算法:RIPv1使用距离矢量算法来确定最佳路径。
每个路由器都会维护一个距离矢量表,其中包含了到达其他路由器的距离。
•最大跳数限制:RIPv1将路径的最大跳数限制为15跳,如果一个路径超过了这个限制,RIPv1将不会选择该路径。
•广播通知:RIPv1使用广播方式向其他路由器发送路由更新信息。
这意味着每个路由器都会将自己的路由信息发送给网络中的所有路由器。
•不支持无类别域间路由(CIDR):RIPv1只能传输网络地址信息,无法处理子网掩码等更精确的路由表信息。
RIPv2协议RIPv2是对RIPv1的改进版本,它在功能和性能上进行了提升。
下面是RIPv2协议的主要特点:•支持VLSM和CIDR:RIPv2可以传输子网掩码等更精确的路由表信息,可以更好地适应不同网络环境。
•支持多播通知:RIPv2使用组播方式向其他路由器发送路由更新信息,使得网络中的多个路由器可以同时接收到更新。
•认证功能:RIPv2支持对路由器之间发送的路由信息进行认证,提高了网络的安全性。
•支持IPv6:RIPv2协议还支持IPv6网络环境,可以在不同版本的IP协议之间进行路由信息交换。
总结RIP协议是一种基于距离矢量的路由协议,用于在局域网中的路由器之间交换路由信息。
RIPv1是RIP的第一个版本,而RIPv2是对RIPv1的改进版本。
RIPv2在功能和性能上进行了提升,支持了VLSM和CIDR等更精确的路由表信息,同时还增加了认证功能和对IPv6的支持。
对于不同的网络环境和需求,我们可以选择适合的RIP协议版本来实现路由功能。
网络路由协议配置实验报告实验目的1.把握RIP动态路由协议的配置和测试方式。
2.把握OSPF路由协议配置和测试方式。
实验原理动态路由协议动态路由是网络中的路由器之间彼此通信,传递路由信息,利用收到的路由信息更新路由器表的进程。
它能实时地适应网络结构的转变。
若是路由更新信息说明发生了网络转变,路由选择软件就会从头计算路由,并发出新的路由更新信息。
这些信息通过各个网络,引发各路由重视新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑转变。
动态路由适用于网络规模大、网络拓扑复杂的网络。
固然,各类动态路由协议会不同程度地占用网络带宽和CPU资源。
依照是不是在一个自治域内部利用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。
那个地址的自治域指一个具有统一治理机构、统一路由策略的网络。
自治域内部采纳的路由选择协议称为内部网关协议,经常使用的有RIP、OSPF;外部网关协议要紧用于多个自治域之间的路由选择,经常使用的是BGP和BGP-4。
RIP1RIP1是一种内部网关协议。
RIP1要紧用在利用同类技术与大小适度的网络。
因此通过速度转变不大的接线连接,RIP1比较适用于简单的校园网和区域网,但并非适用于复杂网络的情形。
RIP1特点:1.仅和相邻的路由器互换信息。
若是两个路由器之间的通信不通过另外一个路由器,那么这两个路由器是相邻的。
RIP1协议规定,不相邻的路由器之间不互换信息。
2.路由器互换的信息是当前本路由器所明白的全数信息。
即自己的路由表。
3.按固按时刻互换路由信息,如,每隔30秒,然后路由器依照收到的路由信息更新路由表。
4. RIP1消息通过广播地址进行发送,利用UDP 协议的520端口。
5. RIP1是一种有类路由协议,不支持不持续子网设计。
RIP1的气宇制度:距离确实是通往目的站点所需通过的链路数,取值为1~15,数值16表示无穷大。
RIP2RIP2由RIP1 而来,属于RIP1 协议的补充协议,具有RIP1协议的大体特性。
实训报告-RIPv1与RIPv2实践分析NEW《RIPv1与RIPv2实践分析》实训报告课程名称网络交换与路由章节第5-6章RIPv1-RIPv2 系部计算机与电子电气工程系专业计算机科学与技术班级计算机121 姓名邢再寿学号201216021103 机房304 周次10 节次6,7实训名称RIPv1与RIPv2实践分析成绩评定实训目标了解RIPv1与RIPv2特点、协议封装格式与路由表结构,理解计时器、被动接口、连续子网编址、非连续子网编址、VLSM编址、CIDR编址、自动总结、静态路由重分布等相关概念,理解RIPv1的局限性及其本质原因,理解RIPv1路由更新发送与接收处理规则,掌握在实际网络环境中配置RIP协议的基本操作,能够动态分析RIPv1与RIPv2路由更新信息。
针对相关故障,能够合理分析故障原因,并迅速排除故障,保证网络畅通。
网络拓扑备注:X指自己学号后3位,若学号后3位大于255,则X指自己学号后2位。
任务要求1、IP编址网络地址分配如图所示;其中,点对点链路上,DCE端口分配网段中最小主机地址,另一端口分配网段中最大主机地址;以太网中,路由器接口(FastEthernet 端口)分配网段中最大主机地址,主机分配网段中最小主机地址。
2、路由配置(1)配置RIPv1——默认路由重分布在R1、R2上启用RIPv1,宣告所有直连网络,在R3上启用RIPv1,不宣告网络20.X.1.12/30,宣告其他所有直连网络。
在R3上配置默认路由,下一跳路由器为R4,并配置该路由在RIPv1更新中传递。
在R4上配置默认路由,下一跳路由器为R3。
在R1、R2和R3上禁止通过以太网接口向外发送路由更新。
Packet Tracer保存命名“学号-姓名-RIPv1默认路由重分布”;(2)配置RIPv1——静态路由重分布在(1)的基础上修改网络配置:在R3上配置两条静态路由到网络200.X.40.0和200.X.46.0,下一跳路由器为R4,并配置这两条静态路由在RIPv1更新中传递。
RIPv1与RIPv2共存实验1.拓扑图2.配置解析在全部路由器上面启用RIP路由协议左边(R1\R2\R5)为RIPv1右边(R3\R4\R5)为RIPv2下面是各路由器的配置==============================================R1Router(config-router)#do sh ip roGateway of last resort is not set1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback03.0.0.0/24 is subnetted, 1 subnetsR 3.3.3.0 [120/2] via 11.0.0.1, 00:00:16, Serial1/14.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/2] via 11.0.0.1, 00:00:16, Serial1/15.0.0.0/24 is subnetted, 1 subnetsR 5.5.5.0 [120/1] via 11.0.0.1, 00:00:16, Serial1/1C 11.0.0.0 is directly connected, Serial1/112.0.0.0/24 is subnetted, 1 subnetsR 12.0.0.0 [120/1] via 11.0.0.1, 00:00:16, Serial1/113.0.0.0/24 is subnetted, 1 subnetsR 13.0.0.0 [120/1] via 11.0.0.1, 00:00:16, Serial1/114.0.0.0/24 is subnetted, 1 subnetsR 14.0.0.0 [120/1] via 11.0.0.1, 00:00:16, Serial1/1-------------------------------------------------------------------------------------------------------- Router(config-router)#do sh ip proRouting Protocol is "rip"Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setSending updates every 30 seconds, next due in 23 secondsInvalid after 180 seconds, hold down 180, flushed after 240Redistributing: ripDefault version control: send version 1, receive any versionInterface Send Recv Triggered RIP Key-chainSerial1/1 1 1 2Loopback0 1 1 2Automatic network summarization is not in effectMaximum path: 4Routing for Networks:1.0.0.011.0.0.0Routing Information Sources:Gateway Distance Last Update11.0.0.1 120 00:00:03Distance: (default is 120)============================================================= R2Router(config-router)#do sh ip roGateway of last resort is not set2.0.0.0/24 is subnetted, 1 subnetsC 2.2.2.0 is directly connected, Loopback03.0.0.0/24 is subnetted, 1 subnetsR 3.3.3.0 [120/2] via 12.0.0.1, 00:00:12, Serial1/24.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/2] via 12.0.0.1, 00:00:12, Serial1/2R 5.5.5.0 [120/1] via 12.0.0.1, 00:00:12, Serial1/211.0.0.0/24 is subnetted, 1 subnetsR 11.0.0.0 [120/1] via 12.0.0.1, 00:00:12, Serial1/212.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, Serial1/213.0.0.0/24 is subnetted, 1 subnetsR 13.0.0.0 [120/1] via 12.0.0.1, 00:00:12, Serial1/214.0.0.0/24 is subnetted, 1 subnetsR 14.0.0.0 [120/1] via 12.0.0.1, 00:00:13, Serial1/2----------------------------------------------------------------------------------------- Router(config-router)#do sh ip proRouting Protocol is "rip"Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setSending updates every 30 seconds, next due in 18 secondsInvalid after 180 seconds, hold down 180, flushed after 240 Redistributing: ripDefault version control: send version 1, receive any versionInterface Send Recv Triggered RIP Key-chain Serial1/2 1 1 2Automatic network summarization is not in effectMaximum path: 4Routing for Networks:2.0.0.012.0.0.0Routing Information Sources:Gateway Distance Last Update12.0.0.1 120 00:00:01Distance: (default is 120)=================================================== R3Router(config-router)#do sh ip roGateway of last resort is not set3.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback04.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/2] via 13.0.0.1, 00:00:04, Serial1/3R 5.5.5.0 [120/1] via 13.0.0.1, 00:00:04, Serial1/311.0.0.0/24 is subnetted, 1 subnetsR 11.0.0.0 [120/1] via 13.0.0.1, 00:00:04, Serial1/312.0.0.0/24 is subnetted, 1 subnetsR 12.0.0.0 [120/1] via 13.0.0.1, 00:00:04, Serial1/313.0.0.0/24 is subnetted, 1 subnetsC 13.0.0.0 is directly connected, Serial1/314.0.0.0/24 is subnetted, 1 subnetsR 14.0.0.0 [120/1] via 13.0.0.1, 00:00:04, Serial1/3-----------------------------------------------------------------------------------------------Router(config-router)#do sh ip proRouting Protocol is "rip"Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setSending updates every 30 seconds, next due in 13 secondsInvalid after 180 seconds, hold down 180, flushed after 240 Redistributing: ripDefault version control: send version 2, receive version 2Interface Send Recv Triggered RIP Key-chainSerial1/3 2 2Loopback0 2 2Automatic network summarization is not in effectMaximum path: 4Routing for Networks:3.0.0.013.0.0.0Routing Information Sources:Gateway Distance Last Update13.0.0.1 120 00:00:13Distance: (default is 120)========================================================== R4Router(config-router)#do sh ip roGateway of last resort is not setR 3.3.3.0 [120/2] via 14.0.0.1, 00:00:24, Serial1/44.0.0.0/24 is subnetted, 1 subnetsC 4.4.4.0 is directly connected, Loopback05.0.0.0/24 is subnetted, 1 subnetsR 5.5.5.0 [120/1] via 14.0.0.1, 00:00:24, Serial1/411.0.0.0/24 is subnetted, 1 subnetsR 11.0.0.0 [120/1] via 14.0.0.1, 00:00:24, Serial1/412.0.0.0/24 is subnetted, 1 subnetsR 12.0.0.0 [120/1] via 14.0.0.1, 00:00:24, Serial1/413.0.0.0/24 is subnetted, 1 subnetsR 13.0.0.0 [120/1] via 14.0.0.1, 00:00:24, Serial1/414.0.0.0/24 is subnetted, 1 subnetsC 14.0.0.0 is directly connected, Serial1/4-----------------------------------------------------------------------------------------------------Router(config-router)#do sh ip proRouting Protocol is "rip"Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setSending updates every 30 seconds, next due in 14 secondsInvalid after 180 seconds, hold down 180, flushed after 240Redistributing: ripDefault version control: send version 2, receive version 2Interface Send Recv Triggered RIP Key-chainSerial1/4 2 2Loopback0 2 2Automatic network summarization is not in effectMaximum path: 4Routing for Networks:4.0.0.014.0.0.0Routing Information Sources:Gateway Distance Last Update14.0.0.1 120 00:00:19Distance: (default is 120)============================================================== R5Router(config-router)#do sh ip roGateway of last resort is not set3.0.0.0/24 is subnetted, 1 subnetsR 3.3.3.0 [120/1] via 13.0.0.2, 00:00:20, Serial1/34.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/1] via 14.0.0.2, 00:00:00, Serial1/45.0.0.0/24 is subnetted, 1 subnetsC 5.5.5.0 is directly connected, Loopback011.0.0.0/24 is subnetted, 1 subnetsC 11.0.0.0 is directly connected, Serial1/112.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, Serial1/213.0.0.0/24 is subnetted, 1 subnetsC 13.0.0.0 is directly connected, Serial1/314.0.0.0/24 is subnetted, 1 subnetsC 14.0.0.0 is directly connected, Serial1/4----------------------------------------------------------------------------------------------------------------Router(config-router)#do sh ip proRouting Protocol is "rip"Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setSending updates every 30 seconds, next due in 24 secondsInvalid after 180 seconds, hold down 180, flushed after 240Redistributing: ripDefault version control: send version 2, receive version 2Interface Send Recv Triggered RIP Key-chainSerial1/1 2 2Serial1/2 2 2Serial1/3 2 2Serial1/4 2 2Loopback0 2 2Automatic network summarization is not in effectMaximum path: 4Routing for Networks:5.0.0.011.0.0.012.0.0.013.0.0.014.0.0.0Routing Information Sources:Gateway Distance Last UpdateGateway Distance Last Update14.0.0.2 120 00:00:2413.0.0.2 120 00:00:26Distance: (default is 120)=============================================================目前的设置下左边的2台路由器能够接收到R5\R3\R4的路由信息但是却没有R1的信息右边的2台路由器只能够接收到R5\R3\R4的路由信息为什么会导致这种情况呢?下面分别看看R1\R4\R5上的debug ip rip的信息发现如下信息======================================================== R1*Apr 16 08:16:29.107: RIP: sending v1 update to 255.255.255.255 via Serial1/1 (11.0.0.2)*Apr 16 08:16:29.111: RIP: build update entries*Apr 16 08:16:29.111: network 1.0.0.0 metric 1Router(config-router)#*Apr 16 08:16:51.223: RIP: sending v1 update to 255.255.255.255 via Loopback0 (1.1.1.1) *Apr 16 08:16:51.227: RIP: build update entries*Apr 16 08:16:51.227: network 3.0.0.0 metric 3*Apr 16 08:16:51.231: network 4.0.0.0 metric 3*Apr 16 08:16:51.231: network 5.0.0.0 metric 2*Apr 16 08:16:51.235: network 11.0.0.0 metric 1*Apr 16 08:16:51.235: network 12.0.0.0 metric 2*Apr 16 08:16:51.239: network 13.0.0.0 metric 2*Apr 16 08:16:51.239: network 14.0.0.0 metric 2Router(config-router)#*Apr 16 08:16:54.123: RIP: received v2 update from 11.0.0.1 on Serial1/1*Apr 16 08:16:54.127: 3.3.3.0/24 via 0.0.0.0 in 2 hops*Apr 16 08:16:54.131: 4.4.4.0/24 via 0.0.0.0 in 2 hops*Apr 16 08:16:54.131: 5.5.5.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:16:54.135: 12.0.0.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:16:54.135: 13.0.0.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:16:54.139: 14.0.0.0/24 via 0.0.0.0 in 1 hops==================================================================== R4*Apr 16 08:44:34.123: RIP: sending v2 update to 224.0.0.9 via Serial1/4 (14.0.0.2)*Apr 16 08:44:34.127: RIP: build update entriesRouter(config-router)#*Apr 16 08:44:57.303: RIP: sending v2 update to 224.0.0.9 via Loopback0 (4.4.4.4)*Apr 16 08:44:57.307: RIP: build update entries*Apr 16 08:44:57.307: 3.3.3.0/24 via 0.0.0.0, metric 3, tag 0*Apr 16 08:44:57.311: 5.5.5.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:44:57.315: 11.0.0.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:44:57.315: 12.0.0.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:44:57.319: 13.0.0.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:44:57.323: 14.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:44:57.347: RIP: ignored v2 packet from 4.4.4.4 (sourced from one of our addresses) Router(config-router)#*Apr 16 08:44:58.707: RIP: received v2 update from 14.0.0.1 on Serial1/4*Apr 16 08:44:58.711: 3.3.3.0/24 via 0.0.0.0 in 2 hops*Apr 16 08:44:58.715: 5.5.5.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:44:58.715: 11.0.0.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:44:58.719: 12.0.0.0/24 via 0.0.0.0 in 1 hops*Apr 16 08:44:58.719: 13.0.0.0/24 via 0.0.0.0 in 1 hops========================================================R5*Apr 16 08:17:12.639: RIP: sending v2 update to 224.0.0.9 via Loopback0 (5.5.5.5)*Apr 16 08:17:12.643: RIP: build update entries*Apr 16 08:17:12.647: 3.3.3.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:12.647: 4.4.4.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:12.651: 11.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:12.651: 12.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:12.655: 13.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:12.655: 14.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:12.671: RIP: ignored v2 packet from 5.5.5.5 (sourced from one of our addresses) Router(config-router)#*Apr 16 08:17:17.531: RIP: sending v2 update to 224.0.0.9 via Serial1/2 (12.0.0.1)*Apr 16 08:17:17.535: RIP: build update entries*Apr 16 08:17:17.539: 3.3.3.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:17.539: 4.4.4.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:17.543: 5.5.5.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:17.543: 11.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:17.547: 13.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:17.551: 14.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:18.735: RIP: ignored v1 packet from 12.0.0.2 (illegal version)Router(config-router)#*Apr 16 08:17:20.359: RIP: sending v2 update to 224.0.0.9 via Serial1/1 (11.0.0.1)*Apr 16 08:17:20.363: RIP: build update entries*Apr 16 08:17:20.363: 3.3.3.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:20.367: 4.4.4.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:20.371: 12.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:20.375: 13.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:20.379: 14.0.0.0/24 via 0.0.0.0, metric 1, tag 0Router(config-router)#*Apr 16 08:17:21.567: RIP: ignored v1 packet from 11.0.0.2 (illegal version)*Apr 16 08:17:02.571: RIP: sending v2 update to 224.0.0.9 via Serial1/3 (13.0.0.1)*Apr 16 08:17:02.571: RIP: build update entries*Apr 16 08:17:02.571: 4.4.4.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:02.575: 5.5.5.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:02.575: 11.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:02.575: 12.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:02.575: 14.0.0.0/24 via 0.0.0.0, metric 1, tag 0Router(config-router)#*Apr 16 08:17:05.591: RIP: sending v2 update to 224.0.0.9 via Serial1/4 (14.0.0.1)*Apr 16 08:17:05.595: RIP: build update entries*Apr 16 08:17:05.595: 3.3.3.0/24 via 0.0.0.0, metric 2, tag 0*Apr 16 08:17:05.599: 5.5.5.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:05.603: 11.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:05.603: 12.0.0.0/24 via 0.0.0.0, metric 1, tag 0*Apr 16 08:17:05.607: 13.0.0.0/24 via 0.0.0.0, metric 1, tag 0===================================================================从上面可以看出R5给R1发送的信息没有R2的路由信息R5给R2发送的信息没有R1的路由信息R5给R3\R4发送的信息没有R1\R2的路由信息原因是因为*Apr 16 08:17:21.567: RIP: ignored v1 packet from 11.0.0.2 (illegal version)*Apr 16 08:17:51.735: RIP: ignored v1 packet from 12.0.0.2 (illegal version)说明RIPv1能够接受RIPv2的更新信息但是RIPv2却不能接受RIPv1的更新信息我们使用下面的命令在R5上面S1/1和S1/2开启接受v1和v2的RIP信息Router(config)#int s1/1Router(config-if)#ip rip receive version 1 2Router(config-if)#int s1/2Router(config-if)#ip rip receive version 1 2下面再SHOW一下R1\R3和R5的路由表========================================================== R11.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0R 2.0.0.0/8 [120/2] via 11.0.0.1, 00:00:11, Serial1/13.0.0.0/24 is subnetted, 1 subnetsR 3.3.3.0 [120/2] via 11.0.0.1, 00:00:11, Serial1/14.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/2] via 11.0.0.1, 00:00:11, Serial1/15.0.0.0/24 is subnetted, 1 subnetsR 5.5.5.0 [120/1] via 11.0.0.1, 00:00:11, Serial1/111.0.0.0/24 is subnetted, 1 subnetsC 11.0.0.0 is directly connected, Serial1/112.0.0.0/24 is subnetted, 1 subnetsR 12.0.0.0 [120/1] via 11.0.0.1, 00:00:11, Serial1/113.0.0.0/24 is subnetted, 1 subnetsR 13.0.0.0 [120/1] via 11.0.0.1, 00:00:12, Serial1/114.0.0.0/24 is subnetted, 1 subnetsR 14.0.0.0 [120/1] via 11.0.0.1, 00:00:12, Serial1/1======================================================== R3R 1.0.0.0/8 [120/2] via 13.0.0.1, 00:00:15, Serial1/3R 2.0.0.0/8 [120/2] via 13.0.0.1, 00:00:15, Serial1/33.0.0.0/24 is subnetted, 1 subnetsC 3.3.3.0 is directly connected, Loopback04.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/2] via 13.0.0.1, 00:00:15, Serial1/35.0.0.0/24 is subnetted, 1 subnetsR 5.5.5.0 [120/1] via 13.0.0.1, 00:00:15, Serial1/311.0.0.0/24 is subnetted, 1 subnetsR 11.0.0.0 [120/1] via 13.0.0.1, 00:00:15, Serial1/312.0.0.0/24 is subnetted, 1 subnetsR 12.0.0.0 [120/1] via 13.0.0.1, 00:00:15, Serial1/313.0.0.0/24 is subnetted, 1 subnetsC 13.0.0.0 is directly connected, Serial1/314.0.0.0/24 is subnetted, 1 subnetsR 14.0.0.0 [120/1] via 13.0.0.1, 00:00:16, Serial1/3=================================================================== R5R 1.0.0.0/8 [120/1] via 11.0.0.2, 00:00:19, Serial1/1R 2.0.0.0/8 [120/1] via 12.0.0.2, 00:00:09, Serial1/23.0.0.0/24 is subnetted, 1 subnetsR 3.3.3.0 [120/1] via 13.0.0.2, 00:00:13, Serial1/34.0.0.0/24 is subnetted, 1 subnetsR 4.4.4.0 [120/1] via 14.0.0.2, 00:00:10, Serial1/45.0.0.0/24 is subnetted, 1 subnetsC 5.5.5.0 is directly connected, Loopback011.0.0.0/24 is subnetted, 1 subnetsC 11.0.0.0 is directly connected, Serial1/112.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, Serial1/213.0.0.0/24 is subnetted, 1 subnetsC 13.0.0.0 is directly connected, Serial1/314.0.0.0/24 is subnetted, 1 subnetsC 14.0.0.0 is directly connected, Serial1/4===================================================================实验结果及总结:RIPv1可以接受RIPv2的路由更新,但是RIPv2却不能接受RIPv1的更新信息,所以RIPv1和RIPv2可以共存,但是需要让配置了RIPv2的路由器上的与启用RIPv1的路由器相连的接口上使用Router(config-if)#ip rip receive version 1 2来使RIPv2的路由器接受RIPv1的信息。
rip1与rip2的区别和联系Routing information protocol (RIP)Introduction to the(RIP/RIP2 / RIPng: Routing Information Protocol) AS an internal gateway Protocol or IGP (internal gateway Protocol), the Routing choice Protocol applies to the AS system. Connected the AS system have special agreement, including the earliest such an agreement is "taking" (external gateway protocol), are still applied to the Internet, such contracts are usually regarded AS internal AS routing protocols. RIP's main design is to use the same technology to work with a moderately sized network. Therefore, the RIP comparison is suitable for the simple campus network and the regional network, but does not apply to the situation of complex network. RIP 2 by RIP, belongs to the supplementary agreement of RIP protocol, it is mainly used for expanding RIP 2 load information of the number of useful information, at the same time, increase its safety performance. RIP 2 is a UDP protocol. Under the RIP2, each host sends and accepts packets from the UDP port 520 through the routing selection process. RIP protocol's default routing update period is 30S. RIP's features (1) exchange information only with adjacent routers. If the communication between two routers does not pass another router, the two routers are adjacent. RIP protocol specifies that no information is exchanged between adjacent routers. (2) the information exchanged by the router is the complete information known to the current router. That is my own routing table. (3) the routing information is exchanged at a fixed time, for example, every 30 seconds, and the router updates the routing table according to the routinginformation received.applyRIP and RIP 2 are primarily available for IPv4 networks, while RIPng is primarily applicable to IPv6 networks. This article focuses on RIP and RIP 2. RIPng: the route selection information protocol next generation (RIPng: RIP for IPv6) RIPng is incompatible with RIP 1 and RIP 2. The "distance" of the RIP agreement is also called "hop count," because each router has a jump count of 1. RIP believes that a good route is the number of routers it passes, namely "short distances." RIP allows one path to contain up to 15 routers. So "distance" is equal to 16. Visible RIP only applies to the small Internet.applicationRIP (Routing information Protocol) is used earlier, use the common internal Gateway Protocol (Interior Gateway Protocol, IGP), applicable to small similar network, is a typical distance vector (short - vector) agreement. See RFC1058, RFC1723 document. RIP transmits the routing information by broadcasting UDP messages, sending a routing information update every 30 seconds. RIP provides a jump count (hop count) as a measure of the route distance, and the jump count is the number of routers that a packet must pass to reach the target. If the same target has two routers that are not equally fast or different bandwidth, but the jump count is the same, then RIP thinks the two routes are equally spaced. The maximum number of jumps that RIP supports is 15, which is the maximum number of routers you need to pass between the source and destinationnetwork 15.RIP overview-rfc 1058-rip is using the bellman-ford algorithm - currently RIP has two versions of RIPv1 and RIPv2. -rip has the following key features: -rip is a typical distance vector routing protocol. The -rip message is sent via the broadcast address 255.255.255.255, using the UDP protocol's 520 port. -rip takes the minimum number of hops to the destination network as the routing metric, rather than choosing between the bandwidth and latency of the link. -rip is designed for small networks. Its jump count is limited to 15 and 16 is not accessible. The -rip-1 is a class routing protocol that does not support a discontinuous subnet design.Rip-2 supports the CIDR and VLSM variable long subnet masks, which support discontinuous subnet design. -rip periodically takes full routing updates, broadcasts the routing table to the neighbor's router, and the broadcast cycle defaults to 30 seconds. -rip has a management distance of 120. RIP is an abbreviation for Routing Information Protocol, the most widely used internal gateway Protocol today, using the distance vector algorithm. By default, RIP measurement system using a very simple: distance is required after the link to the destination number, value of 1 ~ 15, number 16 represents infinity. The RIP process USES the UDP's 520 port to send and receive RIP packets. The RIP grouping is sent in the form of a broadcast every third of the time, and in order to prevent a "broadcast storm", the subsequent grouping will be sent after a random delay. In RIP, if a route is not brushed in 180s, the corresponding distanceis set to infinity, and the table item is removed from the routing table. RIP groups are divided into two categories: request grouping and response grouping. Rip-1 was proposed earlier, with many defects. In order to improve the deficit of rip-1, the improved rip-2 was proposed in RFC1388 and was revised in RFC 1723 and RFC 2453. The rip-2 defines an effective set of improvements, the new rip-2 supports subnet routing, supports CIDR, supports group seeding, and provides validation mechanisms. Rip-2 features: rip-2 is a Classless Routing Protocol. The rip-2 protocol message carries a mask message that supports VLSM (variable long subnet mask) and CIDR. Rip-2 supports a multicast routing update message with a multicast address of 224.0.0.9, reducing network and system resource consumption. The rip-2 supports validation of the protocol message and provides clear validation and MD5 authentication both ways to enhance security. Rip-2 can support VLSM as OSPF and is-is appear, and many people think RIP IS out of date. But in fact, RIP has its own advantages. For small networks, RIP is a small overhead for bandwidth, easy to configure, manage, and implement, and RIP is still in use. But RIP also has a clear deficit, which is when there are multiple networks that ring road problems. In order to solve the loop problem, the IETF has proposed a horizontal partitioning method, where the routing information received by the interface will not be separated from the interface (split-horizon). The split scope solves the routing loop problem between two routers, but it does not prevent the routing of three or more routers. Triggering updates is another way to solve the loop problem, which requires the router to transmit its routing table immediately when the link changes. This speeds up the aggregation of the web, but it is easy to generate a broadcast deluge. In short, thesolution to the loop problem requires a certain amount of time and bandwidth. Using the RIP protocol, the number of links within its network cannot exceed 15, which makes the RIP protocol unsuitable for large networks.RIP mechanism of the ringMaximum hop count (maximum hop count) : defines the maximum number of jumps (the maximum 15 jumps), and when the number of jumps is 16, the target is undaable. 2 - split horizon: the route learned from an interface will not be broadcast back to the interface. Cisco can close the horizontal partitioning feature for each interface. This feature is useful in the (N B M A) non-multicast access hub - and spoke environment. 3-toxicity reversal (poison reverse) : the route that learns from an interface will be sent back to the interface, but has been poisoned, and the number of jumps is set to 16, which is not to be reached. Trigger update: once the routing crashes are detected, the broadcast route refreshes the message without waiting until the next refresh cycle. Holddown timer: prevents the routing table from turning frequently, increasing the stability of the network. The above circuit mechanism is open by default.The Routing Information Protocol is an internal dynamic Routing Protocol based on the d-v algorithm. It is the first standard for all major manufacturers support IP routing protocol, has now become one of the standard of routers, host routing information transmission, suitable for most of the small campus network and the use rate of continuous regional networks. For more complex environments, RIP is not normally used. RIP1 asdistance vector routing protocols, with all associated with D - V algorithm restrictions, such as slow convergence and easy to produce and broadcast routing loop update takes up too much bandwidth, etc.; As a category routing protocol, the update message is not carrying a subnet mask, which means it is automatically aggregated on the main network boundary and does not support VLSM and CIDR. Similarly, RIP1 is an ancient protocol that does not provide authentication, which may pose a potential risk. In short, simplicity is one of the reasons why it is widely used, but some of the problems of simplicity are also the ones that need to be addressed in the fault processing of RIP.versionRIP, in the process of continuous development, came up with a second version: RIP2. The biggest difference with the RIP1 is that the RIP2 is a classless routing protocol that carries a subnet mask in the update message, which supports VLSM, CIDR, authentication, and multicast. Currently both versions are widely used, and the difference between the two requires special attention when the RIP fault is processed.RIP the types of informationRequest information (which can be a message requesting a route), reply information (must be all routing). RIP is one of the most commonly used internal gateway protocols, a typical dynamic routing protocol based on distance vector algorithms. The RIP is implemented in different network systems such as the Internet, AppleTalk, NOVELL, etc. They all adopted the samealgorithm, but they made small changes in some detail to suit the needs of different network systems. RIP has rip-1 and RIP - 2 versions, and it's important to note that the rip-2 is not a replacement for rip-1, but a rip-1 extension. RIP -2, for example, better USES the original rip-1 grouping to add functionality to a domain that must be zero, not only for variable length subnet masks, but also for routing object flags. In addition, rip-2 supports clear authentication and MD5 authentication to ensure that routing information is correct. RIP USES the user datagram protocol (UDP) message exchange to exchange routing information, using the hop count to measure the distance to the destination. As a result of greater than 15 in the RIP) is defined as infinity, so RIP is commonly used in the similar technology medium-sized network, such as campus network and a region within the scope of the network, RIP is not designed for complex, large network. But because RIP is simple and flexible, it is widely used in today's web devices and the Internet.limitationsRIP also has his limitations. For example, RIP supports a limited number of sites, which allows RIP to only apply to smaller autonomous systems and cannot support more than 15 hops. Again, such as, routing table updates will occupy larger network bandwidth, because RIP at regular intervals to broadcast routing updates, there are many nodes in the network, it will consume considerable network bandwidth. In addition, RIP convergence speed is slow, because an update to the 30 s, and announced a road has invalid must wait for the 180 s, and it is only a road closed chain it needs time, is likely to takeseveral updates to converge to completely new topology, RIP these limitations obviously weaken the performance of network. RIP's management distance is 120. The RIPV1 is the same as that of the RIPV2.Different versions of the RIPV1 RIPV2Class 1 has routing classful routing 2 does not support VLSM support VLSM 3 radio update (255.255.255.255) multicast update (224.0.0.9) 4 automatic summary, does not support manual summary support manual summary 5 does not support support authentication CIDR does not produce the CIDR 6The same1 inhibit timer2 measurements (hop count)34 summary (the default) same ring mechanism, on the border routing summary5 using UDP port 520 article6 load balance defaults to 4. The six greatly. The default of the routing table RIP is updated every 30 seconds by defaultdifferentWritten into the database, and other written into the routing table to write again after 180 seconds into the database in the small write into the routing table to replace the original at the same route Do not send in response to the load balance RIPV1 RIPV1 information, accept information RIPV1, V2. Let the RIPV1 send the RIPV2: IP rip send version 2 RIPV2 send and receive the RIPV2 information. Ip rip sen version 1 2The deficiency of RIP(1) it is too simple to calculate the number of jumps based on the number of jumps, and often leads to non-optimal routing. For example: 2 jump 64K special line, and 3 jump 1000M optical fiber, it's not bad to jump a little bit. (2) the measurements are limited to 16, not suitable for large networks. To solve the problem of routing loop, the 16 jump is considered to be infinite in rip, which is an autonomous routing algorithm for routing algorithms in the domain, which is used in the campus network and enterprise network. (3) poor security, accepting routing updates from any device. A non-password authentication mechanism, which accepts that the route of any device anywhere is more acceptable by default. Don't prevent the malicious rip from cheating. (4) no class IP address and VLSM < ripv1 >. (5) the difference in convergence is often greater than five minutes. (6) the bandwidth is very high. A complete replication routing table that copies its routing table to all the neighbors, especially on the low-speed wan link, with an explicit full scale update.Working principle of the RIPInitialization - when RIP [1] is initialized, the request packet is sent from each participating interface. The request packet requests a full routing table to all RIP routers. This request is sent by a LAN on the broadcast form or by the point-to-point link to the next jump address. This is a special request that requests the complete routing update to the adjacent device. Receive requests -- RIP has two types of messages, responses and receive messages. Each route entry inthe request packet is processed to establish the measurement and path for the routing. RIP takes a number of leaps, and the value of 1 means a direct network, 16, for the network. The router will return the entire routing table as a reply to the receiving message. Receiving the response - the router receives and processes the response, which is added, deleted, or modified by the right path. Regular routing updates and timing - the router sends the entire routing table to the neighbor's router in the form of a reply message in 30 seconds. A router will set up a timeout of 180 seconds when the new path is received or updated by an existing route. If no update information is available for 180 seconds, the route number is set to 16. The router declares the path by measure value 16 until the refresh timer deletes the path from the routing table. The timer is set for 240 seconds, or 60 seconds longer than the expired timer. Cisco also used a third timer, called the suppression timer. Receives a measure higher after routing time is to suppress the timer 180 seconds, in the meantime, the router will not use it to receive new information by table is updated, it can provide a network convergence of extra time. 5, triggered routing updates - when a routing metric is changed, the router to send only related with the change of route, not send entire routing table.。
ripV1和ripV2比较实验目的:1 、明确动态路由rip协议原理2、掌握ripV1和ripV2的基本配置3、明确ripV1和ripV2的区别实验拓扑:实验步骤:ripV1基本配置(首先在Router 0 中启用rip V1 协议)(1). Router(config)#router rip(2). Router(config-router)#version 1(3). Router(config-router)#network 10.10.10.0(4). Router(config-router)#network 10.10.20.0(5). Router(config-router)#network 11.11.11.0(6). Router(config-router)#network 11.11.22.0(在router 1中启用ripV1协议)(1). Router(config)#router rip(2). Router(config-router)#version 1(3). Router(config-router)#network 10.10.30.0查看路由表信息:ripV2基本配置(在router 0中启用ripV2协议)1、Router(config)#router rip2、Router(config-router)#version 23、Router(config-router)#nEtwork 10.10.10.04、Router(config-router)#nEtwork 10.10.20.05、Router(config-router)#nEtwork 11.11.11.06、Router(config-router)#nEtwork 11.11.22.0(在router 1中启用ripV2协议)1、Router(config)#router rip2、Router(config-router)#version 23、Router(config-router)#nEtwork 10.10.10.0查看当前路由表信息:注意: Router(config-router)#no auto-summary (关闭自动汇总)实验总结:1、ripV1是有类别路由协议,不支持可变长子网掩码,发布路由跟新无法自动汇总2、ripV2是无类别路由协议,支持可变长子网掩码,发布路由跟新时可关闭自动汇总.。
RIP V1 、V2 实验报告实验题目: Rip v1 v2 实验实验内容:1、对Rip v1 v2进行基本配置并达到网络通信。
2、比较Rip v1 v2配置及功能的异同。
实验环境:Cisco 2620路由器二台、Pc机二台及配置网线三根。
实验组网图:实验步骤:RIP(Routing Information Protocol)路由信息协议,是IGP (Interior Gateway protocol)内部网关协议的一种,适用于较小类型的同步网络(Rip v1版本)及异步网络(Rip v2版本)。
缺省情况下,路由器每个30秒向与之相连的网络广播自己的路由表,接到广播的路由器将它加入到自己的路由表中。
如果经过180秒,6个周期一个路由器还没有收到确认信息,哪么路由器就认为他失效。
如果经过240秒,8个周期一个路由器还没有收到确认信息,哪么路由器就把它从自身的路由表中删除。
1、正确连接各设备的连接线:二台路由器之间用专用的DCE线连接,二台PC到路由器之间用交叉线进行连接。
2、对ROUTERA及ROUTERB进行基本的配置:A、在ROUTERA及ROUTERB上配置路由器的名称、登录密码、进入特权模式的密码等。
这里ROUTERA为例:Router#conf tRouter(config)#host ROUTERAROUTERA(config)#ena pass 123ROUTERA(config)#lin co 0ROUTERA(config-line)#pass 123ROUTERA(config-line)#endROUTERA#B、给ROUTERA及ROUTERB配置IP地址。
ROUTERA#conf tROUTERA(config)#ROUTERA(config)#int fa 0/0ROUTERA(config-if)#ip add 192.168.1.1 255.255.255.0ROUTERA(config-if)#no shutPC机配置IP地址并用Ping测试是否相连。
路由协议(RIP)实验报告RIP版本:RIPv1,RIPv2 这两个版本我们一个一个来。
实验目的:用RIP协议实现全网互通。
RIPv1:这是RIPv1的拓扑图,RIPv1路由协议只支持有类子网掩码的网段,就是A,B,C这三类的IP的,对加长的子网掩码不考虑。
RIP协议计算度量值(metric)方式是跳数,就是过了几个三层设备就是几跳。
RIP发送数据的形式为广播发送,其广播地址为255.255.255.255。
RIP采用的是UDO 的520端口。
我们先把其每个端口的IP都配置上。
R1:R1>enableR1#configure terminalR1(config)#interface loopback 0R1(config-if)#ip address 192.168.1.1 255.255.255.0R1(config-if)#interface serial 0/0R1(config-if)#ip address 192.168.5.1 255.255.255.0R1(config-if)#no shutdown这个是查看每个端口的IP是多少和是否开启。
一清二楚。
R2:R2>enableR2#configure terminalR2(config)#interface loopback 0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#interface loopback 1R2(config-if)#ip address 192.168.4.1 255.255.255.0R2(config-if)#interface serial 0/0R2(config-if)#ip address 192.168.5.2 255.255.255.0R2(config-if)#no shutdownR2(config-if)#interface serial 0/1R2(config-if)#ip address 192.168.6.1 255.255.255.0R2(config-if)#no shutdownR3:R3>enableR3#configure terminalR3(config)#interface loopback 0R3(config-if)#ip address 192.168.3.1 255.255.255.0R3(config-if)#interface serial 0/0R3(config-if)#ip address 192.168.6.2 255.255.255.0R3(config-if)#no shutdown因为RIP只支持有类子网掩码的IP所以这里都是设置的24位的子网掩码。
实验三RIPv1+VLSM+RIPv2【实验目的】一、设计网络拓扑结构及按拓扑结构组网二、学习划分子网,计算子网地址三、配置动态路由(RIP作为动态路由协议),实现子网之间的通信四、观察路由更新过程,掌握水平分割原理五、利用RIPv2配置VLSM【实验拓扑及器材】路由器三台,计算机三台,设备自带数据线若干,网线若干,电源【实验注意事项】1.遵循设备使用规则,避免损坏设备。
2.对于串行链路上的DCE口,要配置时钟频率。
3.在使用show、debug等命令观察实验现象时,注意分别用RIPv1和RIPv2的特点解释所观察到的现象。
【实验重难点】1.路由信息协议(RIP):一种内部网关协议(Interior Gateway Protocol),即在自治系统内部执行路由选择功能。
RIP协议分为版本1和版本2,它们具有以下共同特征:①是距离向量路由协议;②使用跳数(Hop Count)作为度量值(metric 值);③默认路由更新周期为30s;④管理距离(AD)为120;⑤支持触发更新;⑥最大跳数为15跳;⑦支持等价路径,默认为4条,最大可设置为6条;⑧使用UDP520端口进行路由更新。
2.可变长子网掩码(VLSM):使网络设计人员能够根据每个子网的特定需求制定该子网掩码的长度,以避免IP地址的浪费(如在串行链路中的情景)。
这样使得划分子网后的网络使用不止一个长度的子网掩码以适应不同的IP地址需求,从而可以更加高效地利用一个组织的IP地址空间。
3.水平分割规则:水平分割是路由器用以避免路由环路的一种机制。
它规定,若路由器从一个接口学习到一个网段,则该路由器不向这个接口回传关于这个网段的路由信息。
当启动RIP并激活路由器接口后,路由器会记录路由更新包是从哪个接口进来的,并且会提取该更新包中所携带的关于目的网段的信息。
为了避免形成路由环路,当这台路由器随后发送路由更新信息时,它就不会再向该接口发送此前在这个接口接收到的路由更新包中所包含的目的网段的信息。
RIPRIP一个更新报文最多最能承载25条路由条目,RIP载和512字节,UDP占8个,RIP报头4个(认证、认证类型等),一条路由条目占20个字节RIP有两类报文:1.查询报文。
2.更新报文。
3.应答报文一台路由器新加入一个RIP域,为了与域内所有路由器的路由表同步,会向域内路由器发送REQUEST报文。
RIP:失效计时器180s,抑制计时器180s,更新计时器30s,刷新计时器240s。
RIPv1和RIPv2的不同点:1.有类无类、2.发送更新的地址、3、v1只支持自动汇总,V2支持手工汇总和自动汇总。
4、RIPv2支持认证,V1不支持不连续子网如果开启了自动汇总,R1将172.16.10.0汇总为172.16.0.0/16发送给R2,R3将172.16.12.0/24汇总为172.16.0.0/16发送给R2。
这样会形成路由黑洞。
因为如果R2收到了去往172.16.10.1的包,会执行负载均衡,R1发一条,R3发一条。
Show ip protocols 查看运行的路由选择协议的详细信息实验1:修改RIP计时器进入RIP进程:timers basic 更新计时器失效计时器抑制计时器刷新计时器(各计时器的数值建议与默认值之间的倍数相同)如果修改了一台RIP路由器的计时器,建议修改域内所有路由器的计时器,并保持相同特性1:自动汇总当启用RIPv1的时候,自动汇总是默认开启的,并且无法关闭,当启用自动汇总特性之后,路由器会将下述两类路由进行自动汇总发送自动汇总:当一台路由器通过一个接口发送一条路由条目,会优先比较这条路由条目的前缀与发送路由条目的接口的IP地址是否属于同一个主类网段,如果不是,会把这个明细路由丢弃,并把这个明细路由汇总成主类路由条目后发送出去,如果是,会直接把路由条目以明细的方式发送出去。
路由器不仅会汇总本地路由,还会汇总邻居传递过来的非本地路由1:该路由器的本地路由2:通过邻居获悉的RIP路由实验2:自动汇总在R2上开启自动汇总,查看R1自动是否会收到R2传递过来的2.0.0.0/8的主类网段在R1上开启自动汇总,R3将3.3.3.0明细路由传递给R1,查看R1是否会将邻居R3传递过来的明细路由,汇总为主类路由发送给R2。
ripV1和ripV2比较
实验目的:1 、明确动态路由rip协议原理
2、掌握ripV1和ripV2的基本配置
3、明确ripV1和ripV2的区别
实验拓扑:
实验步骤:
ripV1基本配置
(首先在Router 0 中启用rip V1 协议)
(1). Router(config)#router rip
(2). Router(config-router)#version 1
(3). Router(config-router)#network 10.10.10.0
(4). Router(config-router)#network 10.10.20.0
(5). Router(config-router)#network 11.11.11.0
(6). Router(config-router)#network 11.11.22.0
(在router 1中启用ripV1协议)
(1). Router(config)#router rip
(2). Router(config-router)#version 1
(3). Router(config-router)#network 10.10.30.0
查看路由表信息:
ripV2基本配置
(在router 0中启用ripV2协议)
1、Router(config)#router rip
2、Router(config-router)#version 2
3、Router(config-router)#nEtwork 10.10.10.0
4、Router(config-router)#nEtwork 10.10.20.0
5、Router(config-router)#nEtwork 11.11.11.0
6、Router(config-router)#nEtwork 11.11.22.0 (在router 1中启用ripV2协议)
1、Router(config)#router rip
2、Router(config-router)#version 2
3、Router(config-router)#nEtwork 10.10.10.0
查看当前路由表信息:
注意: Router(config-router)#no auto-summary (关闭自动汇总)
实验总结:1、ripV1是有类别路由协议,不支持可变长子网掩码,发布路由跟新无法自动汇总
2、ripV2是无类别路由协议,支持可变长子网掩码,发布路由跟新时可关闭自动汇总。