智能变电站时间同步系统方案
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
智能化变电站差动保护数据的同步方法
智能化变电站作为电网重要的能量转换与分配中心,对于其运行可靠性和安全性的保障,差动保护至关重要。
而差动保护数据的同步则是保障差动保护的一项重要工作。
智能化变电站差动保护数据的同步方法有两种,一种是使用同步技术(同步采样和同步通讯),另一种是使用互联网通信技术实现保护数据的同步。
第一种方法需要使用同步技术来保证差动保护数据的同步。
同步采样可以通过GPS时钟或PTP(精确时间协议)实现,并通过同步通讯协议(如IEEE 1588、IEC 61850-9-3、GOOSE 等)将采样数据精确同步。
同步通信协议规定了每个通讯数据包传输的时间、格式等信息,使得数据同步且维护了实时性。
这种方法能确保保护设备以相同的时间采集数据,从而保证保护数据的同步和一致性,提高了保护的可靠性和准确性。
第二种方法是利用互联网通信技术实现保护数据的同步。
这种方法利用了现代信息技术的优势,通过局域网或宽带互联网的技术手段,将不同设备、不同地点的差动保护数据进行实时同步。
通过使用云服务提供商的平台,多个变电站之间的数据可以实现互联,极大地方便了数据汇总和集成。
此外,还可以利用大数据技术对产生的海量数据进行分析,成为后续优化工作的依据。
总的来说,差动保护数据的同步是智能化变电站的关键之一。
使用同步技术和互联网通信技术,可以将差动保护数据精确同
步,保证了保护的可靠性和准确性,从而保障了整个电网的运行安全和稳定性。
智能变电站一体化监控系统建_设技术规范(正式发布版)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-ICSQ/GDW 国家电网公司企业标准Q / GDW679 — 2011智能变电站一体化监控系统建设技术规范Technical specifications for construction of integrated supervision and controlsystem of smart substation2011-02-07发布 2011-02-07实施国家电网公司发布目次前言 .................................................................................................................................................. I I 1范围 . (1)2规范性引用文件 (1)3术语和定义 (1)4 总则 (2)5 体系架构及功能要求 (2)智能变电站自动化体系架构 (2)一体化监控系统架构 (2)系统功能要求 (3)应用间数据流向 (6)6 一体化监控系统结构 (7)系统结构 (7)网络结构 (9)7 系统配置 (9)硬件配置 (9)系统软件配置 (10)时间同步 (11)性能要求 (11)8 数据采集与信息传输 (12)9 二次系统安全防护 (12)编制说明 (13)前言智能变电站是智能电网的重要环节,一体化监控系统是智能电网调度控制和生产管理的基础,是大运行体系建设的基础,是备用调度体系建设的基础。
为规范智能变电站建设,按照“统一规划、统一标准、统一建设”的原则,国家电网公司组织编写了《智能变电站一体化监控系统建设技术规范》。
本标准规定了智能变电站一体化监控系统体系架构、功能要求和系统配置等,为智能变电站设计和建设提供技术标准和依据。
第41卷第2期2021年2月电力自动化设备Electric Power Automation Equipment Vol.41No.2 Feb.2021智能变电站时间同步与时间同步监测集成装置的研制及应用陈志刚1,熊慕文1,刘东超1,赵晓东1,咸光全1,张道农2(1.南京南瑞继保电气有限公司,江苏南京211102;2.华北电力设计院工程有限公司,北京100120)摘要:针对目前智能变电站对全站时间同步系统以及二次设备缺乏在线监测的现状,研制了一种时间同步与时间同步监测集成装置。
按照集成装置功能子模块详细介绍了硬件、软件算法,以及装置模型的构成和装置配置文件的生成流程,同时研究了由集成装置与主站端软件系统构成的智能变电站时间同步监测系统的应用。
所研制的集成装置已在实际工程中得到了应用。
关键词:智能变电站;时间同步;监测;网络时间协议;面向通用对象的变电站事件中图分类号:TM73文献标志码:A DOI:10.16081/j.epae.2020110200引言随着我国电网的高速发展和站内自动化设备的大规模应用,诸多自动控制以时间作为触发条件,电力系统生产、控制业务对时间同步精度的要求愈来愈高。
电力系统时间同步的准确性是保障电网运行控制及故障分析的重要基础,是提高电网事故分析和稳定控制水平的根本保证[1]。
时间同步在智能变电站中的作用日趋重要,时间同步的准确度以及稳定性直接影响保护设备的正常工作。
智能变电站保护和控制设备需要采集多个交流量信息,这些信息都需要严格同步以实现相应功能。
因此智能变电站过程层数字化后,各种差动保护(如不出站的母线差动保护、主变差动保护,出站的线路差动保护)、距离保护与功率测量、合并单元、相量测量单元(PMU)、故障录波器等二次设备对采样同步提出了更新、更高的要求[2-3]。
目前智能变电站对时间同步系统的同步状态及对时精度尚缺乏必要的检测措施及手段,一般采用离线检测的方式来判别时间同步设备和被授时设备是否满足时间同步性能的要求,该方式无法长时间监测时间同步系统的性能,不能满足智能变电站对时间同步系统精度要求的日益增长。
变电站对时解决方案一、引言变电站作为电力系统中重要的组成部分,其运行稳定性和安全性对整个电网的运行起着至关重要的作用。
而变电站对时问题是保证变电站运行稳定的关键环节之一。
本文将介绍变电站对时的重要性,分析目前存在的问题,并提出一种解决方案。
二、变电站对时的重要性变电站对时是指确保变电站时钟与标准时钟同步,保证变电站内各设备的时间准确性和一致性。
准确的对时可以保证变电站各测量设备、保护设备以及通信设备的正常运行,提高变电站的自动化程度和可靠性。
同时,对时还可以提供准确的数据支持,便于故障分析、设备运行管理和系统运行调度。
三、目前存在的问题在现实应用中,变电站对时面临以下问题:1. 传统对时方式麻烦:传统的变电站对时方式主要采用人工巡视、手动校时的方式,存在工作量大、效率低、易出错等问题。
2. 定时误差较大:由于设备自身的时钟漂移以及通信延时等原因,变电站的设备时钟与标准时钟之间存在一定的误差,对设备运行产生一定的影响。
3. 对时不一致:由于变电站内设备众多,设备的时钟同步存在困难,导致不同设备的时钟不一致,影响设备间的协同工作。
四、解决方案为了解决变电站对时问题,提高变电站的运行效率和可靠性,可以采用以下解决方案:1. 引入GPS对时技术:通过引入GPS对时技术,可以实现对变电站内设备的高精度对时。
GPS对时技术利用卫星信号进行时间同步,具有高精度、高可靠性和自动化的特点,可以有效解决传统对时方式的问题。
2. 建立时钟同步系统:在变电站内部建立时钟同步系统,通过主时钟和从时钟的方式,实现设备时钟的同步。
主时钟通过GPS对时,将准确的时间信号传输给从时钟,从时钟根据接收到的时间信号进行校时,保证设备时钟的一致性。
3. 优化设备通信延时:设备通信延时是导致设备时钟误差的重要因素之一。
可以通过优化设备通信协议、提高通信速率等方式,减小设备通信延时,提高设备时钟的准确性。
4. 定期校准设备时钟:对于设备时钟的漂移问题,可以定期进行校准。
智能变电站时钟同步系统分析摘要:时钟同步系统是智能变电站的重要组成部分,在故障监测、变电站运维方便发挥着重要作用。
本文运用文献法、调查法等对智能变电站时钟同步系统的作用、关键技术及运维要点等展开探究论述,提出几项观点建议,以供借鉴参考。
关键词:智能变电站;时钟同步系统;时钟同步技术时间同步系统为我国电网各级调度机构、发电厂、变电站、集控中心等提供统一的时间基准,以满足各种系统和时钟装置及时钟同步系统对时间同步的要求,确保数据采集时间的一致性【1】。
下面结合实际,对智能变电站时钟同步系统做具体分析。
1智能变电站时钟同步系统作用时钟同步技术是随着智能变电站发展与成熟起来的一项重要技术。
传统变电站不需要时钟同步技术,这是因为,在传统变电站中,二次侧通常采用电磁式互感器采集电流电压模拟量,再由电缆并行送入保护、测控等二次时钟装置及时钟同步系统,这样保护装置就能直接同步采集多路模拟量,故而变电站对时钟的同步性无过高要求。
但智能变电站与传统变电站不同,智能变电站中采用了许多传统变电站所没有的先进技术,如故障定位技术、事件顺序记录技术、故障录波技术、电网同步相量测量技术等,这些技术的运用,大大提高了电网运行的稳定性、安全性与可靠性,但也对电网的时钟同步提出了更高要求。
在智能变电站中,时钟同步技术与上述几种技术同等重要,只有时钟同步技术正常发挥作用,故障定位、故障录波等技术才能发挥作用。
可以说智能变电站的安全稳定运行离不开时钟同步技术【2】。
智能变电站以数字化变电站为基础,在站内二次侧采用数字报文进行信息的传递。
智能变电站内二次回路从信号采样到动作跳闸,其数据流经过以下几个环节:合并单元的同步采集信号由电子式互感器接收→合并单元接收到模拟量信号(模拟量信号经过采样、调理与转换处理)→多路同步采样值由合并单元接收→合并单元进行相位差补偿、内同步、打时标处理→合并单元按采样值报文格式将数据组帧发送给交换机网络→数据组帧经过交换机处理在网络中传播(按通信规约)→保护装置获得数据包对数据包进行处理(包括解包、数据分析)→保护装置将含有跳闸命令的GOOSE报文发送回交换机网络→GOOSE报文被智能终端获取并得到解析→智能终端按照解析到信息将相应开关跳开。
智能变电站时间同步系统研究作者:林彬赵亮乔中智来源:《数字技术与应用》2012年第10期摘要:本专题针对智能变电站中时间同步系统的配置和应用进行研究。
专题首先对时间同步系统在智能变电站的应用情况进行了研究和分析;其次对保护直采直跳、直采网跳、网采网跳三种方案下对外部时钟的需求分别进行研究。
本工程最终对时方案:站控层SNTP授时、过程层和间隔层IEC61588授时。
提出时间同步系统的配置方案,并进行技术经济比较和系统可靠性的论证;最后展望了时间同步网的建立,可作为未来智能变电站时间同步系统建设的参考方案。
关键词:智能变电站同步系统中图分类号:TM76 文献标识码:A 文章编号:1007-9416(2012)10-0015-011、概述对于电网的运行和事故系统性分析需要有描述电网暂态过程的电流、电压波形,断路器、保护装置动作时序的时间,各种事件发生的时间序列在电网运行或故障分析过程中起着决定性的作用,同时全站的时间同步技术也是智能化变电站乃至智能电网稳定运行的关键技术之一。
与常规变电站相比,智能变电站的结构体系存在巨大的差异。
智能变电站的二次系统通常包含电子式互感器、合并单元、交换机、保护测控等设备。
传统互感器、保护以及断路器之间复杂的电缆硬导线连接被光纤代替,保护测控设备的电流电压等采样值输入也由模拟信号转变为数字信号输入,信息的共享程度和数据的实时性大幅度提高,这些变化对智能变电站的时钟同步系统提出严格的要求。
2、智能变电站时间同步系统应用现况分析2.1 时间同步系统应用现况目前在已经投运和在建站的智能变电站中,时间同步系统主要技术方案并不统一,主要有:(1)主时钟双重化配置,支持北斗系统和GPS标准授时信号,优先采用北斗系统。
站控层设备宜采用SNTP对时方式。
间隔层和过程层设备采用IRIG-B(DC)对时方式。
(2)站控层设备采用SNTP对时方式。
(3)间隔层和过程层设备采用B码和IEC61588网络对时。
智能变电站时间同步系统方案
1智能变电站定义
采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。
2时间同步在智能变电中的地位
近年来国家电网公司正在全面建设坚强的智能电网,即建设以特高压电网为骨干网架、各级电网协调发展的坚强电网,并实现电网的信息化、数字化、自动化、互动化。
网络智能节点的正常工作和作用的发挥,离不开统一的全网时间基准
3智能变电站的结构
智能变电站分为三个层:站控层、间隔层、过程层
站控层包括自动化站级监视控制系统、站域控制、通信系统、对时系统等,实现面向全站设备的监视、控制、告警及信息交互功能,完成数据采集和监视控制(SCADA)、操作闭锁以及同步相量采集、电能量采集、保护信息管理等相关功能。
间隔层设备一般指继电保护装置、系统测控装置、监测功能组主IED等二次设备,实现使用一个间隔的数据并且作用于该间隔一次设备的功能,即与各种远方输入/输出、传感器和控制器通信。
遵守安全防护总体方案。
过程层包括变压器、断路器、隔离开关、电流/电压互感器等一次设备及其所属的智能组件以及独立的智能电子装置。
4智能变电站时间同步系统
时间同步系统主时钟源设置在站控层。
全站建立统一的时间同步系统。
全站采用基于卫星时钟与地面时钟互备方式获取精确时间;地面时钟系统支持通信光传输设备提供的时钟信号;数据采样设备通过不同接口方式获取时间同步系统的统一时钟,使得数据采样的同步脉冲源全站唯一。
智能变电站站控层设备选择SNTP方式对时;
间隔层和过程层网络采用IEEE1588(PTP)对时方式;
同时可扩展IRIG-B码(光B码、DC码、AC码)、串行口、秒脉冲、网络PTP/NTP/SNTP等授时方式输出,对需要授时的传统设备进行授时。
5时间同步系统关键技术及其特点
由于各种时间源与UTC本身存在的一定的误差,误差的精度范围是小于1us以内,所以在现阶段电力行业运用中可以接受,但随着智能变电站一次设备,二次设备等的全面智能的使用,对时间的精度和稳定就更提出了更苛刻的要求,那么在这几种时间源中,就不能像现在变电站任意选择一个时间源作为基准源,其它时间源作为备份的方式。
实质上哪一个时间源最能接近UTC时间,这就需要对这几种时间源采取科学对比和处理方法,最终选择一个最精确的时间源作为UTC基准源为各需要对时的设备进行授时。
●主时钟源采用多源比对技术
每台主时钟采用多源(CBD、GPS、PTP、B码、守时源)高精度测量比对技术,保证输出时间基准的稳定性和高精度。
●高精度时间测量技术
高精度时间测量采用单路控制的内插脉冲测量技术(分辨率:0.1ns),提高了系统的时间测量精度,而且电路简单具有很高的可靠性。
保证了系统同步精度的需要。
也能满足未来相当长时间发展的需要(空间信号精度的提高)。
●高精度守时性能
智能变电站对时间同步系统守时提出了更高的要求,建议恒温晶振必须守时24小时,守时精度需达到<1us/h.甚至更高的要求。
●授时方式的灵活性
具备IEEE1588(PTP)授时方式,对智能变电站间隔层、过程层的智能设备授时;随着IEEE1588技术的发展,PTP守时方式有对时精度高,适合全网时间同步传输协议。
而传统B码采用单向传输方式,有一定的传输时延,而PTP采用双向传输方式,授时精度更高。
PTP属于网络守时方式,接线更简单,通过网络交换机传递方式就可以完成守时,节省资源。
具备NTP/SNTP授时方式,对智能变电站站控层设备授时;
具备IRIG-B授时方式,通过扩展装置可提供脉冲、串口、B码、网络等对各种传统设备进行授时;采用先进的不受损切换模式及智能切换方案,保障时间输出的稳定性;采用模块化插卡式结构设计,保障时间输出的任意扩展性
●支持地面链路
具备地面链路接口,具有接收PTP,E1及IRIG-B码功能,可接入电力系统整体时间频率同步网实现全网时间频率同步(如成都可为公司CT-WTFS9000整体时间频率同步系统)
6IRIG-B码和PTP(IEEE1588)区别
A.IRIG-B码采用单向传输方式,需要人工手动方式对误差进行时差延迟进行补偿。
PTP(IEEE1588)采用双向授时方式,会自动计算主从时钟误差以及路径时延。
授时精度及可靠性高。
B.PTP属于网络授时方式,变电站内配线方式比IRIG-B码简单。