概率初步知识点
- 格式:doc
- 大小:102.50 KB
- 文档页数:9
2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
概率初步例题和知识点总结一、概率的定义在一定条件下,重复进行试验,如果随着试验次数的增加,事件 A 发生的频率稳定在某个常数 p 附近,那么这个常数 p 就叫做事件 A 的概率,记作 P(A) = p。
概率是对随机事件发生可能性大小的度量。
例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。
二、概率的基本性质1、0 ≤ P(A) ≤ 1:任何事件的概率都在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
2、P(Ω) = 1:必然事件的概率为 1,其中Ω 表示样本空间,即所有可能结果的集合。
3、 P(∅)= 0:不可能事件的概率为 0,∅表示空集。
4、如果事件 A 与事件 B 互斥(即 A 和 B 不能同时发生),那么P(A∪B) = P(A) + P(B)。
三、古典概型古典概型是一种最简单的概率模型,具有以下两个特点:1、试验中所有可能出现的基本事件只有有限个。
2、每个基本事件出现的可能性相等。
古典概型的概率计算公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球,求取出红球的概率。
基本事件的总数为 5(3 个红球+ 2 个白球),取出红球包含的基本事件个数为 3,所以取出红球的概率为 3/5。
四、例题解析例 1:掷一枚质地均匀的骰子,求点数为奇数的概率。
解:掷一枚骰子,出现的点数有 1、2、3、4、5、6 共 6 种可能,其中奇数有 1、3、5 共 3 种。
所以点数为奇数的概率为 3/6 = 1/2。
例 2:从 1、2、3、4 这 4 个数字中,任意取出两个数字,求取出的两个数字都是奇数的概率。
解:从4 个数字中任意取出两个数字,共有6 种可能的结果:(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4)。
其中两个数字都是奇数的结果有(1,3),共 1 种。
所以取出的两个数字都是奇数的概率为 1/6。
概率初步的知识点总结一、基本概念1. 随机试验和样本空间随机试验是指在一定条件下,试验的结果是随机的,无法预测的现象。
样本空间是指随机试验的所有可能结果的集合。
2. 事件事件是样本空间的一个子集,表示一种可能发生的结果。
事件的概率表示该事件发生的可能性大小。
3. 概率的定义概率是事件发生的可能性大小的度量,通常用P(A)来表示事件A发生的概率。
概率的取值范围是0到1,即0≤P(A)≤1。
4. 频率与概率频率是指事件发生的次数与总次数的比值,当试验次数足够大时,频率趋近于概率。
二、基本概率1. 古典概率古典概率是指在有限个等可能结果的随机试验中,事件发生的概率等于事件的发生方式数与总的可能方式数的比值。
2. 几何概率几何概率是指在连续型随机试验中,利用几何形状和相似性来求事件的概率。
3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。
其计算公式为P(A|B)=P(AB)/P(B)。
4. 乘法公式乘法公式是指用条件概率来计算复合事件的概率,其计算公式为P(AB)=P(A)P(B|A)=P(B)P(A|B)。
5. 全概率公式和贝叶斯定理全概率公式用于求解复杂事件的概率,贝叶斯定理则是在已知条件概率的情况下,用来求解逆向概率问题。
三、随机变量与概率分布1. 随机变量随机变量是指取值不确定,但在一定范围内有规律可循的变量。
随机变量可以是离散型的,也可以是连续型的。
2. 离散型随机变量离散型随机变量的取值是可数的,通常用概率分布列来表示其各个取值对应的概率。
3. 连续型随机变量连续型随机变量的取值是连续的,通常用概率密度函数来表示其取值的概率分布情况。
4. 期望和方差期望是随机变量的平均值,方差是随机变量取值偏离期望的平均程度。
四、常见概率分布1. 二项分布二项分布是指在n次独立试验中,事件发生的次数符合二项分布的概率分布。
2. 泊松分布泊松分布是指在单位时间或单位空间内,发生次数符合泊松分布的概率分布。
九年级数学上册第二十五章概率初步全部重要知识点单选题1、有4张分别印有实数0,-0.5,−√2,-2的纸牌,除数字外无其他差异。
从这4张纸牌中随机抽取2张,恰好抽到2张均印有负数的纸牌的概率为( ).A .12B .34C .35D .23答案:A分析:利用画树状图的方法计算即可.解:画树状图如下:一共有12种等可能性,其中同时负数的等可能性由6种,故恰好抽到2张均印有负数的纸牌的概率为612=12,故选:A .小提示:本题考查了概率的计算,熟练掌握画树状图法计算概率是解题的关键.2、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A .15B .14C .13D .12答案:C分析:用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率.解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是39=13,故选:C .小提示:本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键.3、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A .13B .16C .19D .127答案:B分析:根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,结合概率的计算公式可得答案.解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.小提示:本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.4、A 、B 、C 、D 四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档,若A 、B 两人各抽取了一张扑克牌,则两人恰好成为游戏搭档的概率为( )A .16B .13C .12D .34 答案:B分析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.解:根据题意画图如下:共有12种情况,从4张牌中任意摸出2张牌花色相同颜色有4种可能,所以两人恰好成为游戏搭档的概率=412=13. 故选:B小提示:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.6、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a+bB .b aC .a a+bD .ab答案:A分析:根据概率公式直接求解即可.∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是b a+b .故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.7、如图所示,甲乙两个转盘被等分成五个扇形区域,上面分别标有数字,同时自由转动两个转盘,转盘停止后,两个指针同时落在偶数上的概率是( ).A .425B .45C .35D .925 答案:A分析:根据题意列表,然后根据表格即可求得所有等可能的结果数与两个指针同时落在偶数上的情况数,再根据概率公式求解即可求得答案.解:列表得:∴一共有25种等可能的结果,两个指针同时落在偶数上的有4种情况,∴两个指针同时落在偶数上的概率是425. 故选:A .小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A .10B .15C .20D .都不对答案:B分析:由摸到红球的频率稳定在0.25附近,可以得出摸到红球的概率,即可求出白球个数.∵摸到红球的频率稳定在0.25附近,∴摸到红球的概率为0.25,∴总球数:5÷0.25=20(个)∴白球个数:20-5=15(个)所以答案是:B .小提示:本题考查了用频率估计概率、已知概率求数量,得出摸到红球的概率是本题的关键.9、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∵OA =OB =r ,∴△OAB 是等边三角形,∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2, ∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A . 小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.10、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19B .16C .13D .23 答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C ,列表如下:3种,所以两个组恰好抽到同一个小区的概率为39=13.故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.填空题11、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13 分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13. 所以答案是:13. 小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.12、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.答案:518 分析:根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率.设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:1036=518.故答案为5.18小提示:本题考查几何概率,解题的关键是熟练掌握几何概率的求法.13、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.答案:6分析:球的总数乘以红球所占球的总数的比例即为红球的个数.红球个数为:40×15%=6个,所以答案是:6.小提示:本题主要考查频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).答案:公平分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=24=12,P(小亮获胜)=24=12,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.15、为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.答案:2460分析:根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a,b,c的值代入计算即可;设上午黑、白、红摸到的次数分别是a,b,c,则下午摸到黑、白、红的次数是3a,2b,4c,晚上摸到黑、白、红的次数是a,4b,2c,晚上返现金额比上午多840,∴3b×60+c×20=840,∴180b+20c=840,总返现为:500a+420b+140c=5020,根据题意:a,b,c是大于零的正整数,当b=4时满足条件a,b,c为正整数,∴b=4,c=6,a=5,即下午返现的金额为15×100+8×60+24×20=2460元;故答案是2460.小提示:本题主要考查了三元一次方程的应用,理解题意,找准题目间数量关系,准确分析计算是解题的关键.解答题16、据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.答案:(1)200,7.2(2)3360(3)35分析:(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.(1)解:根据题意得:m=40÷20%=200人,∴“非常了解”的人数为200×28%=56人,∴“不太了解”的人数为200−56−100−40=4人,∴“不太了解”所对应扇形的圆心角4200×360°=7.2°,即n=7.2;(2)解:“非常了解”的人数有12000×28%=3360人;(3)解:根据题意,列出表格,如下:∴恰好抽到一男一女的概率为1220=35.小提示:本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.17、盒中装有红球、黄球共10个,每个球除颜色外其余都相同,每次从盒中摸到一个球,摸三次,不放回,请你按要求设计出摸球方案:(1)“摸到三个球都是红球”是不可能事件;(2)“摸到红球”是必然事件;(3)“摸到两个黄球”是随机事件;(4)“摸到两个黄球”是确定事件.答案:(1)盒中装有红球2个、黄球8个(答案不唯一);(2)盒中装有红球8个、黄球2个(答案不唯一);(3)盒中装有红球8个、黄球2个(答案不唯一);(4)盒中装有红球9个、黄球1个(答案不唯一).分析:(1)要使“摸出的3个球都是红球”是不可能事件,只要盒子中的红球数不足3个即可;(2)要使“摸出红球”是必然事件,只要盒子中的黄球数最多为2个,则摸三次,必然会摸到红球;(3)要使“摸出2个黄球”是随机事件,即可能摸出2个黄球,也可能摸不出2个黄球,则黄球最少有2个,才能保证摸出2个黄球,但是最多有8个,否则一定可以摸出2个黄球;(4)确定事件包含不可能事件和必然事件,要使“摸出2个黄球”是必然事件,即一定可以摸出2个黄球,要使“摸出2个黄球”是不可能事件,即一定摸不出2个黄球.(1)解:盒中装有红球2个、黄球8个,则“摸到三个球都是红球”是不可能事件;(2)解:盒中装有红球8个、黄球2个,则“摸到红球”是必然事件;(3)解:盒中装有红球8个、黄球2个,则“摸到两个黄球”是随机事件;(4)解:盒中装有红球9个、黄球1个,则“摸到两个黄球”是不可能事件,属于确定事件.小提示:本题主要考查了随机事件、必然事件以及不可能事件,解答此题要注意:不可能事件的概率为0,必然事件的概率为1,随机事件的概率在0和1之间.18、某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=________度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.答案:(1)①200;②见解析;③54(2)1120(3)16分析:(1)①由B组的人数及其所占百分比可得样本容量;②由总人数减去除C组的人数即可得到C组的人数;③用360°乘以C组人数所占比例即可;(2)用3200乘以D组人数所占比例即可;(3)根据题意列出树状图即可求解(1)解:(1)①50÷25%=200;②C组人数=200−30−50−70−20=30,补全的条形统计图如图所示:③360°×30200=54°;(2)解:3200×70200=1120;(3)解:画树状图如下:从甲、乙、丙、四位学生中随机抽取两人共有12种等可能性的结果,恰好抽中甲、乙两人的所有等可能性结果有2种,因此,P(恰好抽中甲、乙两人)=212=16.小提示:本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。
概率初步例题和知识点总结在我们的日常生活中,概率无处不在。
比如抽奖时中奖的可能性、明天是否会下雨的预测、体育比赛中获胜的概率等等。
概率是研究随机现象规律的数学分支,它能帮助我们更好地理解和应对不确定性。
接下来,让我们通过一些例题来深入了解概率的初步知识。
一、知识点回顾1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷一枚骰子,出现的点数就是一个随机事件。
2、概率的定义概率是指某个事件发生的可能性大小的数值度量。
通常用 0 到 1 之间的数来表示,0 表示不可能发生,1 表示必然发生。
3、古典概型如果一个随机试验具有以下两个特征:(1)试验的样本空间中样本点的总数是有限的;(2)每个样本点出现的可能性相等。
那么这样的随机试验称为古典概型。
在古典概型中,事件 A 的概率可以通过计算 A 包含的样本点个数与样本空间中样本点的总数之比得到。
4、概率的基本性质(1)对于任意事件 A,0 ≤ P(A) ≤ 1。
(2)必然事件的概率为 1,不可能事件的概率为 0。
(3)如果事件 A 与事件 B 互斥(即 A 和 B 不可能同时发生),则P(A∪B) = P(A) + P(B)。
二、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10。
取出 2 个红球的组合数为 C(3, 2) = 3。
所以取出的 2 个球都是红球的概率为 3/10。
例 2:掷一枚均匀的骰子,求点数大于 4 的概率。
解:骰子的点数有 1、2、3、4、5、6,点数大于 4 的有 5、6 两种情况,所以点数大于 4 的概率为 2/6 = 1/3。
例 3:同时掷两枚均匀的骰子,求点数之和为 7 的概率。
解:同时掷两枚骰子,所有可能的结果有 6×6 = 36 种。
小初高个性化辅导,助你提升学习力! 1 高中数学必修3-第12章:概率初步-知识点
1、①概率:事件发生的 可能性大小 ;②随机现象:具有 不确定性 的现象;③随机试验:可随意重复 的实验。
2、样本空间:一个随机实验中所有可能出现的结果 所组成的集合 ,用Ω 表示。
其中的元素称为 基本事件 或者 样本点 ,事件是样本空间的 子集 。
3、常见的三种事件:①必然发生的 必然 事件,②必然不发生的不可能 事件,③可能发生也可能不发生的 不确定 事件,也叫 随机 事件。
4、古典概率模型:①包含 有限个 基本事件,②每一个事件的发生都 等可能 。
古典概率中,随机事件A 发生的概率P (A )= 总个数样本空间中基本事件的中的基本事件个数
事件A 。
5、事件的相互关系:若事件A 发生,事件B 必发生,则A 是B 的子集 ,表示为
6
7
8
9
10
11
件是否相互独立。
12。
九年级概率初步知识点包括:1. 概率的基本性质:概率是非负数,并且所有概率的和必须等于1。
2. 必然事件和不可能事件:必然事件发生的概率为1,不可能事件发生的概率为0。
3. 独立事件:一个事件的发生不受另一个事件是否发生的影响,这样的两个事件称为独立事件。
独立事件同时发生的概率是各自概率的乘积。
4. 条件概率:在某个事件B已经发生的情况下,另一个事件A发生的概率叫做条件概率,记作P(A|B)。
5. 事件的概率:一般地,如果一个试验有n个等可能的结果,事件A包含其中的k个结果,那么事件A发生的概率为P(A)=k/n。
6. 概率的加法公式:如果两个事件A和B是互斥的(即两个事件不能同时发生),那么P(A∪B)=P(A)+P(B)。
7. 概率的乘法公式:对于任意两个事件A和B,如果它们是独立的,那么P(A∩B)=P(A)×P(B)。
8. 贝叶斯定理:在已知某个事件的概率和一些条件概率的情况下,可以使用贝叶斯定理计算其他条件概率。
以上是九年级概率初步知识点,可以通过做题来巩固这些知识点。
例如:1. 小明和小颖按如下规则作游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后一次取完铅笔的人获胜。
如果小明获胜的概率为1,那么小明第一次应该取走几支铅笔?根据题意,我们知道小明获胜的概率为1,即他一定会赢。
所以我们需要找出小明第一次应该取走几支铅笔才能确保他获胜。
根据游戏规则,每次只能取1支或2支铅笔,如果小明第一次取走2支铅笔,那么无论小颖取走几支(1支或0支),小明都能在第二次取完剩下的所有铅笔,从而获胜。
因此,小明第一次应该取走2支铅笔。
概率初步例题和知识点总结在我们的日常生活中,概率无处不在。
无论是在玩游戏、抽奖,还是在进行科学研究、经济决策时,概率都起着重要的作用。
下面,让我们一起来学习概率的初步知识,并通过一些例题来加深对概率的理解。
一、概率的基本概念概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。
它的取值范围在 0 到 1 之间。
如果一个事件完全不可能发生,那么它的概率就是 0;如果一个事件肯定会发生,那么它的概率就是 1。
例如,抛一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且两面出现的可能性相同。
二、概率的计算方法1、古典概型如果一个试验中所有可能的结果是有限的,并且每个结果出现的可能性相等,那么我们就可以使用古典概型来计算概率。
计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数例如,从装有 3 个红球和 2 个白球的袋子中随机取出一个球,取出红球的概率是多少?基本事件总数为 5(3 个红球+ 2 个白球),事件“取出红球”包含的基本事件数为 3,所以取出红球的概率 P(取出红球) = 3 / 5 = 062、几何概型如果一个试验的结果是无限的,且每个结果出现的可能性相等,那么我们就可以使用几何概型来计算概率。
计算公式为:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)例如,在一个边长为 1 的正方形内随机取一点,该点落在正方形内一个半径为 05 的圆内的概率是多少?圆的面积为π×(05)²=025π,正方形的面积为 1×1 = 1,所以该点落在圆内的概率 P(落在圆内) =025π / 1 =025π三、独立事件与条件概率1、独立事件如果事件 A 的发生与否不影响事件 B 发生的概率,那么事件 A 和事件 B 就是相互独立的事件。
例如,抛两次硬币,第一次抛硬币正面朝上和第二次抛硬币正面朝上就是两个独立事件。
高中数学选修二第7章:概率初步-知识点1、条件概率:在事件A发生的条件下考虑事件B发生的概率,叫做A已发生的条件下B的条件概率,记作P(BǀA) 。
★注意与P(AB)的区别,P(AB)表示事件A和事件B同时发生的概率,无附加条件。
2、条件概率P(BǀA) =。
两个事件同时发生的概率P(A∩B) = P(A) P(BǀA) 。
两个事件A、B独立的充要条件是P(BǀA) = P(B) 。
3、全概率公式:假设样本空间Ω由n个两两互斥的事件组成,即Ω=Ω1∪Ω2∪...∪Ωn,则事件A发生的概率P(A)= P(A∩Ω1)+P(A∩Ω2)+...+P(A∩Ωn) 。
全概率公式是将事件分成n种情况下的概率相加,本质上是计数原理中的加法原理的概率版本。
4、随机变量:样本空间中任意给定的元素都有唯一的实数X 与之对应,则X称为样本的一个随机变量。
比如抛掷一枚硬币,X=0表示反面朝上,X=1表示正面朝上,则0和1 都是事件“抛掷一枚硬币”的随机变量。
5、随机变量的分布:随机变量所有可能的取值以及相应的概率,常用图表表示。
第一行x1,x2,...,x n表示随机变量的取值,是互异的实数;第二行表示相应取值的概率,概率值都≥0 ,且p1+p2+...+p n= 1 。
6、随机变量所有取值的概率均相等时,称为等可能分布或均匀分布。
只取两个值的随机变量称为伯努利型,其分布称为伯努利分布。
7、随机变量的期望:如果随机变量X的分布是,那么它的期望是随机变量取值的加权平均数,即E[X]= x1p1 +x2p2+...+x n p n ,表示随机变量取值的平均水平,也叫做随机变量的均值。
期望的线性性质:①E[aX]= aE[X] ;②E[X+Y]= E[X]+E[Y] 。
8、随机变量的方差:D[X]= E[(X-E[X])2] 。
即随机变量X与其期望的偏差的平方的期望。
方差的性质:①D[aX]= a2D[X] ;②D[X+Y]= D[X]+D[Y] 。
九年级数学概率初步知识点
九年级数学概率初步的知识点包括以下内容:
1. 事件与样本空间:事件是指在一次随机实验中可能发生的结果,样本空间是指随机实验的所有可能结果组成的集合。
2. 事件的概率:事件A的概率表示为P(A),计算方法为P(A) = 事件A的有利结果数/样本空间的总结果数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件只能发生其中一个。
4. 事件的并、交与差:事件A和事件B的并集是指事件A和事件B中至少有一个事件发生的情况,事件A和事件B的交集是指事件A和事件B同时发生的情况,事件A对事件B的差是指事件A发生但事件B不发生的情况。
5. 等可能事件:指在一个随机实验中,每个结果发生的概率相等。
6. 事件的组合:指将多个事件进行排列组合,计算不同情况发生的概率。
7. 古典概型:指样本空间有限,且每个样本发生的概率相等的情况。
8. 条件概率:指在已知事件A发生的情况下,事件B发生的概率,表示为P(B|A),计算方法为P(B|A) = P(A并B)/P(A)。
9. 独立事件:指事件A的发生与事件B的发生没有相互影响,即P(A并B) = P(A) ×P(B)。
10. 事件系列:指多个事件相继进行,每个事件的发生与否会影响下一个事件的发生概率计算。
这些知识点是九年级数学概率初步的基础,通过掌握这些知识,可以进行一些简单的概率计算与推理。
概率初步知识点归纳1、概率的有关概念1.概率的定义:*种事件在*一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划〔描述〕事件发生的可能性的大小的量叫做概率.2、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.○3不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件.不确定事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为随机事件。
练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A.让比赛更富有情趣B.让比赛更具有神秘色彩C.表达比赛的公平性D.让比赛更有挑战性2.小掷一枚硬币,结果是一连9次掷出正面向上,则他第10次掷硬币时,出现正面向上的概率是( ).A.0 B.1 C.0.5 D.不能确定3.关于频率与概率的关系,以下说确的是( ).A.频率等于概率B.当试验次数很多时,频率会稳定在概率附近C.当试验次数很多时,概率会稳定在频率附近D.试验得到的频率与概率不可能相等4.以下说确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.*种彩票中奖的概率是1%,因此买100该种彩票一定会中奖C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.以下说确的是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B."从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀) D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,则一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全一样的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测工程为耐力类,抽测工程为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进展测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31B .32C .61D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,则一次过关的概率为( ). A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)"从袋中取出一只红球的概率是99%〞,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差异,因为小对取出一只红球没有把握,所以小说:"从袋中取出一只红球的概率是50%〞 (3)小说,这次考试我得90分以上的概率是200% (4)"从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.以下说确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 3、〔重点〕概率的计算1、概率的计算方式:概率的计算有理论计算和实验计算两种方式,根据概率获得的方式不同,它的计算方法也不同.2、如何求具有上述特点的随机事件的概率呢.如果一次试验中共有n 种可能出现的结果,而且这些结果出现的可能性都一样,其中事件A 包含的结果有m 种,则事件A 发生的概率P(A)=n m。
在求随机事件的概率时,我们常常利用列表法或树状图来求其中的m 、n ,从而得到事件A 的概率.由此我们可以得到:不可能事件发生的概率为0;即P(不可能事件)=0; 必然事件发生的概率为1;即P(必然事件)=1; 如果A 为不确定事件;则0<P(A)<1.练习:1.在一个不透明的箱子里放有除颜色外,其余都一样的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.2.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______.3.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,假设从中随机地取出1个球,记事件A 为"取出的是红球〞,事件B 为"取出的是黄球〞,事件C 为"取出的是蓝球〞,则P (A )=______,P (B )=______,P (C )=______.4.有大小、形状、颜色完全一样的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.5.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.6.从下面的6牌中,一次任意抽取两,则其点数和是奇数的概率为______.7.在一个袋子中装有除颜色外其他均一样的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是______.8.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均一样.假设从中随机摸出一个球,它是白球的概率为32,则n =______. 9.(2)读者对该杂志满意的概率约是多少" (3)从中你能说明频率与概率的关系吗"易错点解析:易错点1:随机事件概率的有关概念例1 题目1:〔2021·13〕在*校艺体节的乒乓球比赛中,东同学顺利进入总决赛,且个人技艺高超.有同学预测"东夺冠的可能性是80%〞,对该同学的说法理解正确的选项是 A .东夺冠的可能性较小B .东和他的对手比赛l0局时,他一定赢8局C .东夺冠的可能性较大D .东肯定会赢 【答案】C【分析】题目1考察对随机事件发生的可能性大小的理解,学生对"东夺冠的可能性是80%〞这一随机事件发生的可能性理解不清,学生会错误地选择答案B ,其实80%只能意味着夺冠的可能性较大。
易错点2:计算简单随机事件的概率例2 题目1:〔2021·12〕*一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为。
【答案】121【分析】题目1以交通信号灯为背景,考察求简单随机事件的概率,可得出概率121525305=++=P ,属于中考中的容易题。
易错点3:结合其他知识点考察简单随机事件概率的求法例3 题目1:〔2021·13〕在1-,1,2这三个数中任选2个数分别作为P 点的横坐标和纵坐标,过P 点画双曲线xky =,该双曲线位于第一、三象限的概率是.【答案】31【分析】题目1与反比例函数结合考察简单随机事件概率的求法。
该题学生易错点:横纵坐标交换变成新点,包括〔-1,1〕、〔1,-1〕、〔-1,2〕、〔2,-1〕、〔1,2〕、〔2,1〕这6个点,而双曲线位于第一、三象限要求k 为正数,点P 的横纵坐标同号,只有〔1,2〕、〔2,1〕这两点符合要求,所以答案为31,学生要注意对相结合知识点的掌握。
易错点4:用树状图或列表法求随机事件的概率例4: 题目1:〔2021·14〕两个袋子中分别装着写有1、2、3、4的四卡片,从每一个袋子中各抽取一,则两卡片上的数字之和是6的时机是 .【答案】163【分析】要注意条件"从每一个袋子中各抽取一〞,采用表格法可以清楚地找到答案。
1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678题目2:〔2021·20〕在1个不透明的口袋里,装有红、白、黄三中颜色的乒乓球〔除颜色外其余都一样〕,其中有白球2个,黄球1个,假设从中任意摸出一个球,这个球是白球的概率为0.5. (1)求口袋中红球的个数。
〔2〕假设摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一球,不放回,再摸出一个。
请用画树状图或列表的方法求甲摸得两个球且得2分的概率。
【答案】〔1〕设口袋中红球的个数为*个,则由题意知:21122=++x ,所以*=1.第 一袋第 二袋〔2〕31124==(甲)P 【分析】本例第〔2〕问中没有很好的理解摸球的操作程序,忽略了关键词"不放回,再摸出一个〞,从而导致失误。
下面用树状图和列表法来解答。
法一:树状图所以31124==(甲)P 法二:列表法所以31124==(甲)P中考考点解读:考点一、确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进展试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能白1白2 红黄白1〔白2,白1〕2〔红,白1〕1〔黄,白1〕3白2〔白1,白2〕2〔红,白2〕1〔黄,白2〕3 红〔白1,红〕1〔白2,红〕1〔黄,红〕2黄〔白1,黄〕3〔白2,黄〕3〔红,黄〕2的事件。
2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点二、随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经历数据可以预测它们发生时机的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否一样,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点三、概率的意义与表示方法 1、概率的意义一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在*个常数p 附近,则这个常数p 就叫做事件A 的概率。