初中简单事件的概率知识点
- 格式:docx
- 大小:39.14 KB
- 文档页数:2
初中数学知识点总结简单事件的概率初中数学中,简单事件的概率是一个重要的知识点。
简单事件指的是只有一个结果的事件,概率则是指一些事件发生的可能性。
在简单事件中,概率的计算可以通过统计频数来得出。
下面将对初中数学中的简单事件的概率进行总结。
首先,我们需要了解一些基本概念。
在概率中,我们常用的概念有样本空间、事件和概率。
样本空间是指一个试验中所有可能结果的集合。
在投掷一枚骰子的例子中,样本空间为{1,2,3,4,5,6}。
事件是指样本空间中的一个子集。
例如,投掷一枚骰子得到偶数的事件可以表示为{2,4,6}。
概率是指一些事件发生的可能性,通常用P(A)表示。
在投掷一枚骰子的例子中,得到偶数的概率可以表示为P(A)=3/6=1/2在计算概率时,有几个重要的概念和方法可以帮助我们进行计算。
1.等可能原则:在样本空间中,所有的结果都是等可能发生的。
在投掷一枚均匀的骰子的例子中,每个数字出现的概率都是1/62.频率和概率的关系:频率是指一个事件在试验中出现的次数除以总的试验次数。
当试验次数足够大时,频率会逐渐趋近于概率。
因此,我们可以通过实验的频率来估计概率。
3.概率的性质:-对于任意事件A,0≤P(A)≤1,即概率的取值范围在0到1之间。
-对于样本空间S,P(S)=1,即样本空间中的所有结果发生的概率之和为1-对于两个互斥事件A和B(即A和B不可能同时发生),P(A∪B)=P(A)+P(B)。
4.互斥事件的概率计算:两个事件A和B不可能同时发生,即A和B 是互斥事件。
在这种情况下,我们可以直接计算事件A和事件B的概率,并将它们相加。
例如,在投掷一枚骰子的例子中,得到偶数的事件A和得到奇数的事件B是互斥事件,因此P(A∪B)=P(A)+P(B)=1/2+1/2=15.非互斥事件的概率计算:当两个事件A和B可能同时发生时,我们需要使用概率的加法原理来计算它们的概率。
根据加法原理,P(A∪B)=P(A)+P(B)-P(A∩B)。
概率的简单应用一.可能性1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.3、确定事件:必然事件和不可能事件都是确定的。
4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。
5、一般来说,不确定事件发生的可能性是有大小的。
常见考法:判断哪些事件是必然事件,哪些是不可能事件例下列说法错误的是()• •A.同时抛两枚普通正方体骰子,点数都是4的概率为丄6B.不可能事件发生机会为0C.买一张彩票会中奖是可能事件D.一件事发生机会为0. 1%,这件事就有可能发生二、简单事件的概率1、概率的意义:表示一个爭件发生的町能性人小的这个数叫做该爭件的概率。
2、必然事件发生的概率为1,记作P (必然事件)=1.不可能事件发生的概率为0,记作P(不可能事件)=0,如果A为不确定爭件,那么0VP(A)<1。
3、一步试验事件发生的概率的计算公式:p = -(n为该爭件所有等町能出现的结果数,k为事件包含的结果数。
两步试验〃件发生的概率的计算有两种方法(列表法和画树状图)常见考法:直接求某个事件的概率例2:如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为三、求复杂事件的概率:1•对于作何-个随机事件都有一个固定的概率客观存在。
2.2. 有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的方法估计其发生的概率。
3.3. 对随机那件做人量试验时,根据重复试验的特征,我们确定概率时应当注意几点:(1)做实验时应当在相同条件下进行;(2)实验的次数要足够多,不能人少;(3)把每一次实验的结果准确,实时的做好记录;(4)分阶段分别从第一次起计算,爭件发生的频率,并把这些频率用折线统计图直观的表示出来:观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计爭件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法爭件预测。
简单概率计算知识点总结首先,让我们来了解一下概率的基本概念。
概率通常用一个介于0和1之间的数字来表示,其中0表示不可能事件发生,1表示一定会发生,而0.5表示发生和不发生的可能性相等。
我们可以用以下的公式来计算一个事件的概率:P(A) = n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的总次数,n(S)表示总的可能发生的次数。
这个公式告诉我们一个事件发生的概率等于这个事件发生的次数除以总的可能发生的次数。
接下来,让我们看一下一些常见的概率计算方法。
首先是求一个事件的概率。
我们可以通过直接统计来计算一个事件的概率,也可以通过给定的概率公式来计算。
例如,如果我们要计算掷一个骰子出现1的概率,我们可以通过计算出现1的次数除以总的出现次数来得到。
其次是条件概率的计算。
条件概率是指在某个条件下一个事件发生的概率,表示为P(A|B),读作在B条件下A的概率。
我们可以用以下的公式来计算条件概率:P(A|B) = P(A∩B)/P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
这个公式告诉我们在给定事件B发生的条件下,事件A发生的概率等于事件A和事件B同时发生的概率除以事件B发生的概率。
此外,我们还可以用加法法则和乘法法则来计算概率。
加法法则是指对两个事件的概率求和,表示为P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
而乘法法则是指对两个事件的概率求积,表示为P(A∩B) = P(A) × P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
最后,让我们来看一些概率的应用。
概率不仅可以帮助我们计算事件发生的可能性,还可以帮助我们做出更好的决策。
关于概率知识点总结一、概率的定义概率是指某一事件发生的可能性。
在数学上,概率通常用一个介于0和1之间的数值来表示,其中0表示该事件不可能发生,1表示该事件一定会发生。
对于一个随机事件,它的概率通常表示为P(A),其中A代表某一特定的事件。
概率的基本性质:1. 非负性:任何事件的概率都不会小于0,即P(A)≥0。
2. 规范性:必然事件的概率为1,即P(S)=1。
这里S代表样本空间,即所有可能结果的集合。
3. 加法性:对于任意两个互斥事件A和B,它们的概率之和等于它们并集的概率,即P(A∪B)=P(A)+P(B)。
二、常见的概率分布1. 均匀分布均匀分布是一种最简单的概率分布,它假定每个可能的结果都是同等可能的。
例如,扔一枚公正的硬币,正反面出现的概率都是0.5,符合均匀分布的特性。
2. 正态分布正态分布是一种最常见的概率分布,它呈钟形曲线,均值和标准差对其形状起着决定性作用。
在现实生活中,许多自然现象都符合正态分布,如身高、体重等。
3. 泊松分布泊松分布用于描述单位时间或单位面积内事件发生次数的概率分布。
例如,在一段时间内电话的响铃次数、一天内超市的顾客数量等都可以用泊松分布来描述。
4. 指数分布指数分布用于描述连续事件之间的时间间隔,例如到达一次电话的时间间隔、设备故障间隔等。
三、概率统计方法1. 条件概率条件概率指的是在已知某一事件发生的条件下,另一事件发生的概率。
它的公式表示为P(A|B)=P(A∩B)/P(B),其中A|B表示在B条件下A的概率。
2. 贝叶斯定理贝叶斯定理是一种基于条件概率的统计方法,它描述的是在得知B事件发生的条件下,A事件发生的概率。
贝叶斯定理可以应用于各种领域,如医学诊断、金融风险评估等。
3. 离散型随机变量的期望和方差期望是描述随机变量平均取值的指标,它用E(X)表示。
方差是描述随机变量取值的离散程度,它用Var(X)表示。
计算期望和方差是统计学中非常重要的工作,它可以帮助我们了解随机变量的整体特征。
九年级简单事件概率知识点概率是数学中一个十分重要的概念,它与我们的生活息息相关。
在日常生活中,我们经常会遇到各种各样的事件,有些是随机事件,而有些则是确定性事件。
对于随机事件,我们往往需要用概率来描述其发生的可能性。
本文将针对九年级简单事件概率的知识点进行探讨。
一、概率的定义与表示方法概率可以理解为“事件发生的可能性大小”。
在数学上,我们用P(A)来表示事件A发生的概率。
当P(A)为0时,表示事件A不可能发生;当P(A)为1时,表示事件A肯定会发生;当0<P(A)<1时,表示事件A发生的可能性介于0和1之间。
二、样本空间与事件的关系在概率论中,我们常常需要描述事件的全体情况,这就是样本空间。
比如,我们投掷一颗骰子,样本空间就是{1,2,3,4,5,6}。
事件是样本空间中的某个子集,也就是我们想要研究的一个具体情况。
三、概率的计算方法1. 等可能概型事件的概率计算如果一个事件中的每个元素在样本空间中出现的可能性相同且排列均匀,我们称之为等可能概型事件。
对于这类事件,我们可以直接通过计数的方法来计算概率。
比如,投掷一颗骰子,出现1的可能性就是1/6,即P(1)=1/6。
2. 两个事件的和事件的概率计算当我们想要计算两个事件A和B同时发生的概率时,我们可以用加法法则来计算。
加法法则的公式为P(A∪B) = P(A) + P(B) -P(A∩B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率。
3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。
如果两个事件A和B是互斥事件,那么它们的交集为空集,即A∩B=∅。
这种情况下,我们可以直接使用加法法则来计算概率,即P(A∪B) = P(A) +P(B)。
四、条件概率和独立事件1. 条件概率的概念与计算方法条件概率是指在给定某个前提条件下,事件A发生的概率。
条件概率的计算方法为P(A|B) = P(A∩B) / P(B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
初中数学知识点总结:简单事件的概率 知识点总结【一】可能性:1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.【二】概率:1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P〔必然事件〕=1;不可能事件发生的概率为0,记作P〔不可能事件〕=0;如果A为不确定事件,那么0<P〔A〕<1。
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
常见考法〔1〕判断哪些事件是必然事件,哪些是不可能事件;〔2〕直接求某个事件的概率。
误区提醒对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。
【典型例题】〔2019福建宁德〕以下事件是必然事件的是〔〕.A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组这是一定的,所以此题选C。
初中数学知识点归纳简单事件的概率数学中,概率是指其中一事件发生的可能性大小,常用数字来表征。
而简单事件是指一个试验中只有一个基本结果的事件。
本文将归纳初中数学中有关简单事件概率的知识点,以及相应的计算方法。
一、基本概念1.随机事件:在一定条件下可以发生或者不发生的事件。
2.样本空间:随机试验中所有可能的基本事件组成的集合,记作S。
3.随机事件的概率:事件A在随机试验中发生的可能性大小,记作P(A)。
4.概率的性质:a.非负性:对于任意事件A,P(A)≥0。
b.确定性:对于必然事件S,P(S)=1c.可列可加性:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
二、计算概率的方法1.等可能概型:当所有基本事件发生的可能性相等时,称为等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:抛一枚均匀硬币的正反面,事件A为正面朝上,样本空间S为{正面,反面}。
则P(A)=1/22.不等可能概型:当基本结果发生的可能性不相等时,称为不等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:从一副扑克牌中抽取一张牌,事件A为得到红心,样本空间S为{52张牌}。
则P(A)=26/52=1/2三、计算概率的性质1.对立事件:对于事件A,它的对立事件为A',表示A不发生。
a.概率计算公式:P(A')=1-P(A)。
b.例子:掷一颗骰子,事件A为得到奇数点数,对立事件A'为得到偶数点数。
则P(A')=1-P(A)=1-1/2=1/22.互斥事件:对于事件A和B,它们不能同时发生。
a.概率计算公式:P(A∪B)=P(A)+P(B)。
b.例子:掷一颗骰子,事件A为得到1点,事件B为得到2点。
则P(A∪B)=P(A)+P(B)=1/6+1/6=1/33.独立事件:对于事件A和B,它们的发生与否互不影响。
简单事件的概率1、简单事件类型:(1)必然事件:有些事件我们事先能肯定它一定会发生,这类事件称为必然事件;(2)不可能事件:有一些事件我们事先能肯定它一定不会发生,这类事件称为不可能事件;必然事件与不可能事件都是确定的。
(3)不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件。
2.概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
P 必然事件=1, P 不可能事件=0, 0<P 不确定事件<13.概率的计算方法(1)用试验估算: 此事件出现的次数试验的总次数某事件发生的概率 (2)常用的计算方法:① 直接列举 ; ② 列表法 树状图 。
4.频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。
频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率。
练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ).A .0B .1C .0.5D .不能确定3.关于频率与概率的关系,下列说法正确的是( ).A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等4.下列说法正确的是( ).A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .817.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ).A .31 B .32 C .61 D .91 8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小A .3B .2C .1D .010.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生概率的计算(重点)1、等可能事件的概率如果事件发生的各种结果的可能性相同,结果总数为n ,其中事件A 发生的可能的结果总数为m (m≤n),那么事件A 发生的概率为()nm A P =. 2、运用列表格、画树状图等列举方法来统计、计算等可能事件发生的结果总数和某种事件A 发生的可能的结果总数,从而计算简单事件发生的概率.【典例讲解】例1、袋中有1个红球,2个白球和3个黄球,球的质量与大小、外表均相同,搅匀后从中摸出一个球,则: ①任意从袋中摸得一个球,恰好是红球的概率. ②任意从袋中摸得一个球,恰好是白球的概率. ③任意从袋中摸两个球,恰好是红球和黄球的概率.直接列举由于6个球的外质均相同,所以任意摸出一球时,被摸出的球的概率为61,而红球只有一个,白球是2个,黄球是3个. ∴摸红球的概率为61;摸白球的概率为31,黄球为21. 而摸出两球时,所有的可能性为n=15种(如红白1,红白2,白1黄1,白1黄2,白1黄3,白2黄1,白2黄2,白2黄3,红黄1,红黄2,红黄3,白1白2,黄1黄2,黄1黄3,黄2黄3). 但事件“任意从袋中摸两个球,恰好是红球和黄球”的总数m=3,∴摸到红球和黄球的概率为51.例2、小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由.列表(1)从表中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平. 画树状图(1)从树状图中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平.例3、图为红心和梅花两组牌,每组牌面数字都分别是1,2,3.如果从每组牌中各抽一张,并将牌面数字相加,得数字和.求:(1)牌面数字和为奇数的概率;(2)牌面数字和为偶数的概率;(3)牌面数字和为6的概率;(4)牌面数字和为几的概率最大?这个概率是多少?例4.根据闯关游戏规则,请你探究“闯关游戏”的奥秘。
初中数学同步知识点:简单事件的概率
初中数学同步知识点简单事件的概率
一、可能性
1. 必然事件有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件必然事件和不可能事件都是确定的;
4.不确定事件有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.
二、概率
1.概率的意义表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算有两种,一种是列表法,另一种是画树状图,利用这两种计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
常见考法
(1)判断哪些事件是必然事件,哪些是不可能事件;。
初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。
2. 样本空间:随机试验的所有可能结果组成的集合。
3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。
4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。
5. 等可能事件:指所有事件发生的可能性相等。
6. 概率:事件发生的可能性大小。
用符号 P(A) 表示事件 A 的概率。
二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。
例如:掷一枚骰子,求点数为偶数的概率。
样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。
所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。
2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。
例如:在一个圆形的靶子上打靶,求打在靶心的概率。
由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。
3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。
例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。
4. 排列和组合排列和组合是概率计算中常用的计算方法。
排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。
排列数用 P(n, m) 或 n!/(n-m)! 表示。
组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。
组合数用 C(n, m) 或 n!/m!(n-m)! 表示。
三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。
初中《概率》知识点归纳概率是数学中的一个分支,研究随机事件的发生概率和可能性的科学。
初中阶段,学生会学习一些基础的概率知识,本文将对初中《概率》知识点进行归纳总结。
一、随机事件和样本空间1.随机事件:具有不确定性的事件称为随机事件,如抛掷一枚硬币的结果、掷骰子的点数等。
2.样本空间:随机试验的所有可能结果的集合称为样本空间,用S表示。
例如,抛掷一枚硬币的样本空间为{正面,反面}。
二、事件的概率1.定义:事件A的概率是指在一次随机试验中,事件A发生的可能性,用P(A)表示。
2.概率的性质:-非负性:对于任意事件A,0≤P(A)≤1-必然事件:对于一定发生的事件,概率为1-不可能事件:对于一定不发生的事件,概率为0。
-加法公式:若A、B为互斥事件,则P(A∪B)=P(A)+P(B)。
3.等可能概率:在样本空间中,每个事件的发生概率相等。
例如,抛掷一枚硬币正面朝上的概率为1/24.事件的互斥与独立:-互斥事件:两个事件不能同时发生,P(A∩B)=0。
-独立事件:两个事件的发生不会相互影响,P(A∩B)=P(A)×P(B)。
三、事件的确定性和可能性1.确定性事件:在一次随机试验中,一定会发生的事件。
2.可能性事件:在一次随机试验中,可能发生也可能不发生的事件。
四、频率与概率1.频率:在大量重复试验中,事件A发生的频次与总试验次数的比值称为事件A的频率,记作f(A)。
2.大数定律:在试验次数很大时,事件A的频率趋近于事件A的概率。
五、排列和组合1.排列:从n个不同元素中,按照一定顺序取出m(m≤n)个元素,称为从n个不同元素中选取m个元素的排列数,记作A(n,m)。
2.组合:从n个不同元素中,取出m(m≤n)个元素,不考虑其顺序,称为从n个不同元素中选取m个元素的组合数,记作C(n,m)。
3.公式:-A(n,m)=n!/(n-m)!-C(n,m)=n!/(m!(n-m)!)六、概率的计算1.等可能概率的计算:P(A)=有利的结果数/总结果数。
简单事件的概率(5种题型)与测试【知识梳理】一.可能性的大小随机事件发生的可能性(概率)的计算方法:(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.二.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.三.概率公式(1)随机事件A的概率P(A)=.(2)P(必然事件)=1.(3)P(不可能事件)=0.四.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=.五.利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.【考点剖析】一.可能性的大小(共2小题)1.(2022秋•武义县期末)按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教育”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大【分析】根据概率公式求出抽到“主持人”的概率,然后进行比较,即可得出答案.【解答】解:∵抽到“主持人”的概率都是,∴三人的可能性一样大.故选:D.【点评】此题考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.2.(2023•宁波模拟)袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1B.3C.5D.10【分析】摸到红球的可能性最大,即白球的个数比红球的少.【解答】解:袋子里有8个红球,m个白球,3个黑球,若摸到红球的可能性最大,则m的值不可能大于8.观察选项,只有选项D符合题意.故选:D .【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二.概率的意义(共2小题)3.(2023•舟山三模)如图,某天气预报软件显示“舟山市定海区明天的降水概率为85%”,对这条信息的下列说法中,正确的是( )A .定海区明天下雨的可能性较大B .定海区明天下雨的可能性较小C .定海区明天将有85%的时间下雨D .定海区明天将有85%的地区下雨【分析】根据概率反映随机事件出现的可能性大小,即可进行解答.【解答】解:“舟山市定海区明天的降水概率为85%”表示“舟山市区明天下雨的可能性较大”. 故选:A .【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.4.(2022•宁波模拟)一枚正方体骰子六个面上分别标有数字1,2,3,4,5,6,若连续抛掷四次,朝上一面的点数都为6,则第五次抛掷朝上一面的点数为6的概率为 .【解答】解:一枚正方体骰子六个面上分别标有数字1,2,3,4,5,6,若连续抛掷四次,朝上一面的点数都为6,则第五次抛掷朝上一面的点数为6的概率为:,故答案为:.【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.三.概率公式(共9小题)5.(2023春•乐清市月考)一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次,向上一面的数字是偶数的概率为( )A .B .C .D . 【分析】一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次共有6种等可能结果,其中向上一面的数字是偶数的有3种结果,再根据概率公式求解即可.【解答】解:一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次共有6种等可能结果,其中向上一面的数字是偶数的有3种结果,所以向上一面的数字是偶数的概率为=,故选:B.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.(2023•鹿城区校级三模)在一个不透明的袋中装有9个只有颜色不同的球,其中2个白球、3个黄球和4个红球.从袋中任意摸出一个球,是黄球的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有9个小球,其中黄球有3个,∴摸出一个球是黄球的概率是.故选:B.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率(A)=.7.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.【分析】根据红球的概率公式,列出方程求解即可.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.【点评】本题考查概率公式,根据公式列出方程求解则可.用到的知识点为:概率=所求情况数与总情况数之比.8.(2023•南湖区二模)一个不透明的袋子里装有5个红球和3个黑球,它们除了颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.【分析】从袋中任意摸出一个球共有8种等可能结果,其中是红球的有5种结果,再根据概率公式求解即可.【解答】解:从袋中任意摸出一个球共有8种等可能结果,其中是红球的有5种结果,所以从袋中任意摸出一个球是红球的概率为,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.(2023•义乌市模拟)一个布袋里装有5个黑球、4个白球,它们除颜色外都相同,从中任意摸出一个球,摸到黑球的概率是.【分析】共有9个球,其中黑球5个,即可求出任意摸出1球是黑球的概率.【解答】解:袋子中共有9个球,其中黑球有5个,所以从中任意摸出1个球,摸到红球的概率是,故答案为:.【点评】本题考查概率公式,理解概率的定义和计算方法是解决问题的关键.10.(2023•衢州二模)一枚均匀的立方体骰子(六个面的点数分别是1,2,3,4,5,6),抛掷1次,则朝上一面的点数大于4的概率是.【分析】抛掷一枚均匀的立方体骰子1次共有6种等可能结果,其中朝上一面的点数大于4的有2种结果,再根据概率公式求解即可.【解答】解:抛掷一枚均匀的立方体骰子1次共有6种等可能结果,其中朝上一面的点数大于4的有2种结果,所以朝上一面的点数大于4的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.11.(2023•西湖区校级二模)一个不透明的袋子里面装着3个白球和4个黑球,它们除颜色以外,其余全部相同,从袋子里面摸出一个黑球的概率等于.【分析】直接利用概率公式计算可得.【解答】解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.(2023•义乌市校级模拟)上海某高校青年志愿者协会对报名参加2010年上海世博会志愿者选拔活动的学生进行了一次与世博会知识有关的测试,他们对测试的成绩作了适当的处理,将成绩分成三个等级:一般,良好,优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)一共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么有人将参加下轮测试;(3)该校的小亮也参加了这次测试,并且获得了参加下一轮测试的资格.若学校最终只能从参加下一轮测试的人中推荐50人成为上海世博会志愿者,则小亮被选中的概率是多少?【分析】(1)测试一般的有100人,所占百分比为20%,则可求出参加测试的总人数,故优秀人数可求,测试良好所占百分比为1﹣20%﹣50%;(2)测试一般的有100人,所占百分比为20%,则可求出参加测试的总人数,用总人数×成绩为“优秀”的学生所占百分比即可;(3)用全校学生数×测试成绩为优秀的人数所占百分比,再根据概率公式,即可求出答案.【解答】解:(1)100÷20%=500(名),∴优秀人数为500×50%=250(人),良好所事百分比为1﹣20%﹣50%=30%;补全图形,如图所示:(2)100÷20%=500(名),500×50%=250(人);故答案为:500,250;(3)因为该校学生测试成绩为优秀的人数为500×50%=250人,又因为参加下一轮测试中推荐50人参加志愿者活动,所以小亮被选中的概率是=.【点评】本题考查的是条形统计图,扇形统计图和概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.(2023•慈溪市模拟)从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由.【分析】(1)用360°乘以“6千元”所占的的百分比即可;(2)利用概率公式计算即可;(3)分别根据加权平均数和算术平均数的计算方法求出甲企业和乙企业的平均工资,然后可作出判断.【解答】解:(1)360°×(1−10%−10%−20%−20%)=144°,故答案为:144°;(2)由条形图可得:乙企业共抽取10人,其中月收入超过5千元的有3人,∴该职工月收入超过5千元的概率为:;(3)小明的说法正确,设甲企业的调查人数为m,∵“6千元”所占的百分比为:1−10%−10%−20%−20%=40%,∴甲企业的平均工资为:×(20%m×5+10%m×4+10%m×8+20%m×7+40%m×6)=6(千元),乙企业的平均工资为:=6(千元),∴甲企业的平均工资与乙企业的平均工资相等.【点评】本题考查的是条形统计图和扇形统计图的综合运用,概率公式,求加权平均数和算术平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.游戏公平性(共3小题)14.(2022秋•西湖区校级月考)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个材质均匀的转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到4的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,(1)转盘转到4的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.【分析】(1)直接根据概率公式计算可得;(2)利用概率公式计算出两人获胜的概率即可判断.【解答】解:(1)∵共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中4的倍数有2个,∴P(转到4的倍数)=;(2)游戏不公平,∴小亮去参加活动的概率为,小芳去参加活动的概率为:=,∵≠,∴游戏不公平.【点评】本题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.15.(2022秋•萧山区月考)有一盒子中装有6个乒乓球,除颜色外形状和大小完全一样,其中3个黑色乒乓球,2个白色乒乓球,1个红色乒乓球.王海同学从盒子中任意摸出一乒乓球.(1)你认为王海同学摸出的球,最有可能是颜色;(2则陈星获胜.请问这个游戏对双方公平吗?为什么?【分析】(1)因为黑色的乒乓球数量最多,所以最有可能是黑色;(2)公平,因为黑色球的数量和白色乒乓球以及红色乒乓球的数量一样多.【解答】解:(1)因为黑色的乒乓球数量最多,所以最有可能是黑色.故答案为:黑;(2)公平,理由如下:因为P(摸到黑球)==,P(摸到其他球)=,又∵=,∴这个游戏对双方公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.16.(2023春•鄞州区校级月考)如图是计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着20颗地雷,每个小方格最多能埋藏1颗地雷.(1)如图1,小南先踩中一个小方格,显示数字2,它表示围着数字2的8个方块中埋藏着2颗地雷(包含数字2的黑框区域记为A).接着,小语选择了右下角的一个方格,出现了数字1(包含数字1的黑框区域记为B,A与B外围区域记为C).二人约定:在C区域内的小方格中任选一个小方格,踩中雷则小南胜,否则小语胜,试问这个游戏公平吗?请通过计算说明.(2)如图2,在D,E,F三个黑框区域中共藏有10颗地雷(空白区域无地雷),则选择D,E,F三个区域踩到雷的概率分别是.【分析】(1)求出小南胜的概率和小语胜的概率,再比较即可;(2)分别求出D,E,F三个黑框区域中共藏的地雷颗数,再由概率公式求解即可.【解答】解:(1)这个游戏不公平,理由如下:∵在C区域的(9×9﹣9﹣4)=68(个)方块中随机埋藏着(20﹣2﹣1)=17(颗)地雷,C区域中有(68﹣17)=51(个)方块中没有地雷,∴小南胜的概率为=,小语胜的概率为=,∵<,∴这个游戏不公平;(2)∵围着数字2的8个方块中埋藏着2颗地雷,空白区域无地雷,∴D区域中有2个地雷,∴选择D区域踩到雷的概率为1;∵围着数字2的8个方块中埋藏着2颗地雷,空白区域无地雷,∴E区域中有2个地雷,∴选择E区域踩到雷的概率为;∵在D,E,F三个黑框区域中共藏有10颗地雷(空白区域无地雷),∴F区域中有:10﹣2﹣2=6(颗)地雷,∴选择F区域踩到雷的概率为=;故答案为:1,,.【点评】本题考查了游戏公平性以及概率公式等知识,概率相等游戏就公平,否则就不公平;用到的知识点为:概率=所求情况数与总情况数之比.五.利用频率估计概率(共6小题)17.(2022秋•嵊州市期末)在一个暗箱里放有m个除颜色外完全相同的球,这m个球中红球只有4个,每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回,通过大量的重复试验后发现,摸到红球的频率为0.4,由此可以推算出m约为()A.7B.3C.10D.6【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得:,解得:m=10.故可以推算出m约为10.故选:C.【点评】本题主要考查了利用频率估计概率,解题的关键是掌握“利用大量试验得到的频率可以估计事件的概率.18.(2022秋•宁波期末)利用六张编号为1,2,3,4,5,6的扑克牌进行频率估计概率的试验中,同学小张统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.抽中的扑克牌编号是3的概率B.抽中的扑克牌编号是3的倍数的概率C.抽中的扑克牌编号大于3的概率D.抽中的扑克牌编号是偶数的概率【分析】计算出各个选项中事件的概率,根据概率和统计图进行对比即可.【解答】解:A、抽中的扑克牌编号是3的概率为,不符合试验的结果;B、抽中的扑克牌编号是3的倍数的概率,基本符合试验的结果;C、抽中的扑克牌编号大于3的概率为,不符合试验的结果;D、抽中的扑克牌编号是偶数的概率,不符合试验的结果.故选:B.【点评】本题考查了频率估计概率,理解当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率是解题的关键.19.(2022秋•桐庐县期中)为了解某地区九年级男生的身高情况,随机抽取了该地区200名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.42B.0.21C.0.79D.与m,n的取值有关【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm的频率==0.21,所以估计抽查该地区一名九年级男生的身高不低于180cm的概率是0.21.故选:B.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.20.(2023•温州模拟)一个密闭不透明的口袋中有质地均匀、大小相同的白球若干个,在不允许将球倒出来的情况下,为估计白球的个数,小华往口袋中放入10个红球(红球与白球除颜色不同外,其它都一样),将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有63次摸到红球.估计这个口袋中白球的个数约为个.【分析】估计利用频率估计概率可估计摸到红球的概率为0.63,然后根据概率公式计算这个口袋中红球的数量.【解答】解:设袋子中白球有x个,根据题意,得:=,解得x≈6,经检验x=6是分式方程的解,所以袋子中白球的个数约为6个,故答案为:6.【点评】本题考查用样本估计总体,解答本题的关键是明确题意,利用概率的知识解答.21.(2022秋•杭州期末)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:(1)估计任抽一件衬衣是合格品的概率(结果精确到0.01).(2)估计出售2000件衬衣,其中次品大约有几件.【分析】(1)根据大量重复实验下,频率稳定的数值即可估计任抽一件衬衣是合格品的概率;(2)用总数量×(1﹣合格的概率)列式计算即可.【解答】解:(1)由表可知,估计任抽一件衬衣是合格品的概率为0.95;(2)次品的件数约为2000×(1﹣0.95)=100(件).【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.22.(2023春•沭阳县月考)在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,九(1)班学生在数学实验室分组做摸球试验:每组先将15个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)a=.(2)请估计:当次数s很大时,摸到红球的频率将会接近0.80(精确到0.01);请推测:摸到红球的概率是(精确到0.1).(3)求口袋中红球的数量.【分析】(1)根据频率=频数÷样本总数分别求得a的值即可;(2)从表中的统计数据可知,摸到红球的频率稳定在0.8左右;(3)根据红球的概率公式得到相应方程求解即可.【解答】解:(1)a=1200÷1500=0.8;故答案为:0.8;(2)当次数s很大时,摸到红球的频率将会接近0.80,0.8;故答案为:0.80,0.8;(3)设口袋中红球的数量为x个,0.8 (x+15)=x,解得:x=60.答:口袋中红球的数量为60个.【点评】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.正确记忆概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1是解题关键.【过关检测】一、单选题【答案】D【分析】直接利用概率公式计算可得.【详解】搅匀后任意摸出一个球,是白球的概率为12123355=++,故选:D.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.2.下列事件是随机事件的是()A.抛出的篮球会下落B.没有水分,种子发芽C.购买一张彩票会中奖D.自然状态下,水会往低处流【答案】C【分析】根据随机事件的定义判断即可.【详解】解:A.抛出的篮球会下落,是必然事件;B.没有水分,种子发芽,是不可能事件;C.购买一张彩票会中奖,可能中奖也可能不中奖,是随机事件;D.自然状态下,水会往低处流,是必然事件;故选:C.【点睛】本题考查了事件发生的可能性的大小:必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是可能发生也可能不发生的事件.3.某娱乐设施每次能够容纳4人一组进场游玩,甲、乙、丙、丁排队等候,甲前面有若干人,乙排在甲后面,中间隔着2人,丙排在乙后面,中间隔着1人,丁排在丙后面,中间隔着1人,丁后面也有若干人.下列说法:①如果甲和乙同一组,那么丙和丁也同一组;②如果甲和乙不同一组,那么丙和丁也不同一组;③如果丙和丁同一组,那么甲和乙也同一组;④如果丙和丁不同一组,那么甲和乙也不同一组.正确的个数为()A.1B.2C.3D.4【答案】B【分析】根据题意,列出这8个人的位置,然后根据题意逐项分析即可求解.【详解】解:依题意,设中间隔着的人用x代替,则排序为:甲,x,x,乙,x,丙,x,丁①若分组为(甲,x,x,乙),(x,丙,x,丁),故①正确;②若分组为……甲),(x,x,乙,x),(丙,x,丁,……,故②错误,③由②可知③错误,④依题意,分组为:甲,x),(x,乙,x,丙),(x,丁,……,或甲,x,x,(乙,x,丙,x),(丁,……,故④正确,故选:B.【点睛】本题考查了推理,列举法求试验结果,根据题意举出反例或列举是解题的关键.....【答案】D【详解】试题分析:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率=.故选D.考点:列表法与树状图法.5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>1B.k>﹣1且k≠0C.k<1D.k<1且k≠0。
初中《简单事件的概率》知识点简单事件的概率是初中数学中一个重要的概念。
它是通过对事件进行数学上的描述,来评估事件发生的可能性大小。
在学习简单事件的概率时,我们需要掌握以下几个重要的知识点。
一、概率的定义及性质1.概率的定义:概率是指一个事件发生的可能性大小,用一个介于0和1之间的实数来表示。
2.事件的必然性和不可能性:必然事件的概率为1,不可能事件的概率为0。
3.加法定理和乘法定理:对于互斥事件,可以使用加法定理来计算发生其中任意一个事件的概率;对于独立事件,可以使用乘法定理来计算同时发生这些事件的概率。
二、样本空间和事件1.样本空间:样本空间是指一个随机现象可能出现的所有结果构成的集合。
2.事件:事件是样本空间中的一个子集,它由一个或多个基本事件组成。
事件的概率就是这个事件所包含的基本事件发生的概率之和。
三、等可能性原理等可能性原理是概率计算的重要基础,它假设所有基本事件发生的可能性是相等的。
在等可能性原理的基础上,我们可以通过计算事件包含的基本事件的数量来计算事件的概率。
四、计算概率的方法1.数字法:当样本空间中的基本事件是有限个数时,可以使用数字法来计算事件的概率。
即通过计算有利结果的个数和样本空间中基本事件的总数,来求出事件的概率。
2.几何法:当样本空间中的基本事件是有限可数个时,可以使用几何法来计算事件的概率。
即通过画出几何图形,来计算事件对应的几何图形的面积比或长度比。
3.频率法:当样本空间中的基本事件是无限可数个时,我们无法通过数字法和几何法来计算事件的概率。
此时可以使用频率法来估计事件的概率。
即通过大量重复试验,统计事件发生的频率来估计事件的概率。
五、实际问题中的应用概率是一种重要的数学工具,在实际问题中有着广泛的应用。
比如在赌场中赌博、购买彩票时选择号码、天气预报的准确性等方面,都用到了概率的概念。
学习简单事件的概率,可以帮助我们更好地理解和应用这些实际问题。
综上所述,初中《简单事件的概率》知识点主要包括概率的定义及性质、样本空间和事件、等可能性原理、计算概率的方法和实际问题中的应用。
简单事件的概率事件的概率是指某种情况在一系列可能情况中发生的可能性大小。
在数学和统计学中,概率是一个重要的概念,它帮助我们理解和预测世界中的各种事件。
本文将介绍简单事件的概率,并探讨如何计算和应用概率。
一、什么是简单事件?简单事件是指只有一个基本结果的事件,它不可再分解为更小的事件。
例如,投掷一个六面骰子,每一个面的结果都是一个简单事件。
简单事件是概率论中最基本的概念,通过对简单事件的分析和计算,我们可以推导出更复杂事件的概率。
二、如何计算简单事件的概率?简单事件的概率计算通常是基于频率或理论推导两种方法。
1. 频率方法频率方法是通过实验来计算概率。
我们进行一系列重复的实验,记录某个事件发生的次数,然后将该事件发生的次数除以总实验次数,即可得到概率的估计值。
例如,我们投掷一个六面骰子100次,记录结果为1的次数是20次,则该事件发生的概率估计值为20/100=0.2。
2. 理论推导方法理论推导方法是基于已知条件和规律来计算概率。
通过对问题的分析,我们可以使用数学模型和公式来直接计算概率。
例如,投掷一个均匀的六面骰子,每个面的概率相等,为1/6。
因此,投掷结果为1的概率为1/6。
三、简单事件的应用简单事件的概率在各个领域都有广泛的应用,以下是几个常见的领域:1. 游戏和赌博概率在游戏和赌博中起着重要的作用。
例如,在扑克牌游戏中,玩家可以根据概率计算来做出决策,如何在不同情况下选择是否下注。
概率的计算可以帮助玩家提高胜率和降低风险。
2. 金融和保险在金融和保险领域,概率被广泛应用于风险评估和决策分析。
根据历史数据和概率模型,金融机构和保险公司可以计算出不同事件发生的概率,并据此制定合理的风险管理策略。
3. 科学研究在科学研究中,概率可以用于描述和解释随机事件。
例如,在物理学中,概率可以用于解释微观粒子的行为和量子力学的不确定性原理。
在生物学和医学研究中,概率可以用于疾病的患病率和治疗效果的评估。
四、概率的局限性需要注意的是,概率只能提供事件发生的可能性大小,并不能完全确定事件的结果。
初中简单事件的概率知识点概率是研究随机事件的发生可能性的一门数学分支。
初中阶段,学生开始接触到一些简单的概率问题,了解事件的发生概率以及如何计算概率。
下面是一些与初中简单事件的概率相关的知识点。
1.随机事件和样本空间:-随机事件是指在一定条件下可能发生的结果,可以表示为一些结果的集合。
-样本空间是指所有可能结果的集合,用S表示。
2.事件的发生可能性:-事件的发生可能性可以用概率来表示,概率通常使用P(E)表示,其中E是事件。
-概率的取值范围在0到1之间,概率为0表示事件不可能发生,概率为1表示事件一定会发生。
3.事件发生概率的计算:-对于随机均匀发生的事件,概率可以通过计算事件发生的结果数与样本空间中所有结果数的比值得到。
-P(E)=事件E的结果数/样本空间的结果数4.互斥事件:-互斥事件是指两个事件不能同时发生。
-如果事件A和事件B是互斥事件,那么P(A并B)=0。
5.事件的相互独立性:-事件A和事件B是相互独立的,意味着事件A的发生与事件B的发生没有任何关系。
-如果事件A和事件B是相互独立的,那么P(A交B)=P(A)*P(B)。
6.抽样和重复抽样:-抽样是指从样本空间中取出一部分结果作为样本,用来研究全体的特征。
-重复抽样是指从样本空间中重复取样,每次抽样结果都相互独立,抽出的结果又放回样本空间。
7.定义概率的方式:-经典定义概率:对于一个随机的均匀事件,事件E发生的概率等于事件E的结果数与样本空间的结果数的比值。
-频率定义概率:对于一个重复抽样的实验,事件E发生的概率等于事件E在多次重复实验中发生的频率。
-主观定义概率:对于一个主观判断的事件,概率是个人主观上对事件发生可能性的度量。
8.加法原理和乘法原理:-加法原理:对于两个互斥事件A和B,事件A或B发生的概率等于事件A发生的概率加上事件B发生的概率。
-乘法原理:对于两个独立事件A和B,事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
七年级数学概率知识点总结在七年级的学习生涯中,数学的一大难点便是概率。
当你听到概率一词时,脑海中是否会浮现出“要么发生,要么不发生,只有这两种可能性”的经典广告概念呢?其实在数学世界中,概率可不止如此简单,接下来就让我们来总结一下七年级数学概率知识点。
一、概率初探首先,我们需要明确一个概念:“概率”就是某件事情最终发生的可能性大小。
比如:在掷骰子游戏中,某个玩家掷出6点的可能性是多少?这时,我们需要用概率来求解。
根据掷骰子的规则,每个骰子有6个面,每个面上的点数从1到6。
因此,掷出6点的可能性只有1/6。
二、试验、样本空间和事件我们再来看一种掷骰子游戏。
在这个游戏中,我们连续掷3个骰子,求掷出3个相同点数的概率。
首先,我们需要确定样本空间,也就是所有可能的结果。
这里,样本空间就是所有三个骰子点数的排列情况,共有6 x 6 x 6 = 216 种。
然后,我们需要确定事件,也就是目标结果。
这里,事件就是掷出3个相同点数的情况,共有6种。
最后,我们需要将事件发生的可能性除以样本空间的大小,即6/216 = 1/36。
所以,掷出3个相同点数的概率是1/36。
三、互斥事件和对立事件在一个试验中,如果两个事件不可能同时发生,我们就称这两个事件为互斥事件。
比如:在掷骰子游戏中,掷出6点和掷出1点就是互斥事件。
而对立事件,则是指两个事件中的任何一个发生,另一个必须不发生。
比如:在扑克游戏中,一手牌中要么没有对子,要么有对子。
四、独立事件和条件概率如果在一个试验中,一个事件的发生与另一个事件的发生无关,我们就称这两个事件为独立事件。
比如:在掷骰子游戏中,连续掷两次骰子,每次掷出的点数是独立事件。
而条件概率,则是指当已知一个事件发生时,另一个事件发生的概率。
比如:在一批红白两色的球中,已知从中取出的球是红色的,求取出的球是白色的概率。
这时,我们需要应用条件概率公式:P(白色球|已知红色球) =P(红球和白球)/P(红球)。
概率初步知识点1、事件类型(1)确定事件(a)必然事件:在一定的条件下重复进行试验时,在每次试验中必然发生的事件。
如:太阳从东方升起;若a、b、c均为实数,则a(bc) = (ab)c。
(b)不可能事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能事件。
如:没有水分种子也能发芽。
(2)随机事件:在一定的条件下,可能发生也可能不发生的事件,称为随机事件。
如:掷一次硬币正面朝上。
注意:(a)事件分为确定事件与不确定事件(随机事件)。
确定事件又分为必然事件与不可能事件。
(b)事件一般用英文大写字母A、B、C、…表示。
2、事件的概率(probability)(1)事件的概率:对于一个,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)。
(2)必然事件发生的概率为1,即P(必然事件) = 1。
(3)不可能事件发生的概率为0,即P(不可能事件) = 0。
(4)如果A为随机事件,那么0 < P(A) < 1。
当事件发生的可能性越来越小时,P(A)接近0;当事件发生的可能性越来越大时,P(A)接近1。
(5)对于任意事件A,有0()1P A≤≤。
3、频率(frequency):事件实际发生次数与可能发生次数的比率。
设在相同条件下,独立重复进行n次试验,事件A出现f 次,则事件A出现的频率为fn。
如:掷均匀硬币的试验。
注意:前提是在一定的条件下重复进行试验。
注意:频率与概率的关系(1)频率总是围绕概率上下波动;(2)样本量n越大,波动幅度越小,频率越接近概率;(3)随着实验次数增至足够大,频率逐渐稳定于某一常数附近,则该常数为概率。
4、古典概型:一种概率模型。
如果一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A中包含其中的m种结果,那么事件A发生的概率为()mP An。
如:掷一枚均匀的硬币,出现正面的概率。
注意:古典概型与频率的区别。
5、几何概型:一种概率模型。
初三概率知识点归纳总结
嘿,同学们!今天咱就来好好唠唠初三概率这一块儿的知识点哈!
咱先说概率是啥,不就像是生活中各种事情发生的可能性嘛!比如说扔个骰子,扔出 1 的概率不就是六分之一嘛!这多形象呀!
那概率的计算方法呢,就好比树上的果子,咱得知道怎么摘下来才对。
简单事件的概率啊,那就是某个情况出现的次数除以总的可能情况数,就像从一堆糖果里挑出草莓味的概率一样。
“哎呀,这还不简单呀!”
有时候还会碰到复杂点的呢,像什么列表法呀、画树状图法呀,这就像是咱解题的秘密武器!比如说年底抽奖,咱要算算自己中大奖的概率,这时候列表法、树状图法就能派上大用场啦,“哇塞,有了这个我就知道自己有多大机会啦!”。
再来讲讲概率的取值范围哈,是在 0 到 1 之间哟!0 就代表这件事绝对不可能发生,比如说太阳从西边出来;1 就代表肯定会发生啦,像明天地球还会转。
这不是很有趣嘛!
还有啊,如果一个事件发生的概率很小很小,可不一定就不会发生哟!就像中彩票一样,虽然概率超低,但总有人能中呀,得多神奇!“哇,这就是概率的魅力呀!”。
反正咱们学概率,就是要知道生活中各种事情发生的可能性有多大,能让咱们更好地做决定呢。
我的观点结论就是:初三概率知识点虽然有点绕,但只要咱认真学,多结合生活实际去理解,就肯定能掌握得牢牢的,加油吧!。
概率的简
单应用
一、可能性
1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.
2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.
3、确定事件:必然事件和不可能事件都是确定的。
4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。
5、一般来说,不确定事件发生的可能性是有大小的。
常见考法:判断哪些事件是必然事件,哪些是不可能事件
例1:下列说法错误..
的是( )
A .同时抛两枚普通正方体骰子,点数都是4的概率为16
B .不可能事件发生机会为0
C .买一张彩票会中奖是可能事件
D .一件事发生机会为%,这件事就有可能发生
二、简单事件的概率
1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0<P(A)<1。
3、一步试验事件发生的概率的计算公式:n
k
p
(n 为该事件所有等可能出现的结果数,k 为事件包含的结果数。
两步试验事件发生的概率的计算有两种方法(列表法和画树状图)常见考法:直接求某个事件的概率
例2:如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概
率为______.
三、求复杂事件的概率:
1.对于作何一个随机事件都有一个固定的概率客观存在。
2.2.有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的估计其发生的概率。
3.3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点: (1)做实验时应当在相同条件下进行; (2)实验的次数要足够多,不能太少;
(3)把每一次实验的结果准确,实时的做好记录;
(4)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。
(5)四、概率综合运用:
(6)概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。
常见考法
(1)判断游戏公平:游戏对双方公平是指双方获胜的可能性相同。
这类问题有两类一类是计算游戏双方的获胜理论概率,另一类是计算游戏双方的理论得分;
(2)命题者经常以摸球、抛硬币、转转盘、抽扑克这些既熟悉又感的事为载体,设计问题。
误区提醒
进行摸球、抽卡片等实验时,没有注意“有序”还是“无序”、“有放回”还是“无放回”故造成求解错误。
例3:分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗试说明理由.
例4:苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况。
该部门通过随机抽样,调查了其中的30户家庭,已知这30户家庭共有87人。
(1)这30户家庭平均每户__________人;(精确到1.0人)
(2)这30户家庭的月用水量见下表:
月用水量(
3
m) 4 6 7 12 14 15 16 18 20 25 28
户数 1 2 3 3 2 5 3 4 4 2 1 求这30户家庭的人均日用水量;(一个月按30天计算,精确到001
.0m)
(3)根据上述数据,试估计该小区的日用水量(精确到
3
1m)。