矩阵的运算的所有公式
- 格式:docx
- 大小:37.34 KB
- 文档页数:3
矩阵的简单运算公式在数学的广袤天地中,矩阵是一个极为重要的概念,它在众多领域,如物理学、计算机科学、统计学等都有着广泛的应用。
要深入理解矩阵,掌握其基本的运算公式是关键。
接下来,就让我们一同来探索矩阵的那些简单运算公式。
矩阵的加法,这是比较直观和容易理解的运算。
假设有两个矩阵 A 和 B,它们的行数和列数分别相同。
那么矩阵 A 和 B 的和 C 就是对应的元素相加得到的新矩阵。
比如说,矩阵 A 是\\begin{pmatrix}1 &2 \\3 & 4\end{pmatrix}\,矩阵 B 是\\begin{pmatrix}5 &6 \\7 & 8\end{pmatrix}\,它们的和 C 就是\1 + 5 &2 + 6 \\3 + 7 &4 + 8\end{pmatrix}\,即\\begin{pmatrix}6 & 8 \\10 & 12\end{pmatrix}\。
矩阵的减法与加法类似,只不过是对应的元素相减。
再来说说矩阵的数乘运算。
如果有一个矩阵 A 和一个实数 k,那么数乘的结果就是矩阵 A 的每个元素都乘以 k。
比如矩阵 A 是\\begin{pmatrix}1 &2 \\3 & 4\end{pmatrix}\,k = 2,那么数乘的结果就是\2 & 4 \\6 & 8\end{pmatrix}\。
矩阵的乘法相对来说要复杂一些。
当矩阵 A 的列数等于矩阵 B 的行数时,它们才能相乘。
假设矩阵 A 是 m×n 的矩阵,矩阵 B 是 n×p 的矩阵,那么它们相乘的结果 C 是一个 m×p 的矩阵。
具体来说,C 中第i 行第 j 列的元素等于 A 的第 i 行元素与 B 的第 j 列对应元素乘积的和。
举个例子,矩阵 A 是\\begin{pmatrix}1 &2 \\3 & 4\end{pmatrix}\,矩阵 B 是\\begin{pmatrix}5 &6 \\7 & 8\,那么它们相乘的结果 C 是\\begin{pmatrix}1×5 + 2×7 & 1×6 + 2×8 \\3×5 + 4×7 & 3×6 + 4×8\end{pmatrix}\,即\\begin{pmatrix}19 & 22 \\43 & 50\end{pmatrix}\。
§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。
矩阵乘法运算规则
矩阵乘法是一种常见的数学运算,它可以用来计算两个矩阵的乘积。
矩阵乘法的规则是:
两个矩阵A和B的乘积C=A*B,其中A是m×n矩阵,B是n×p矩阵,则C是m×p矩阵。
矩阵乘法的计算公式是:Cij=∑k=1nAikBkj,其中Cij是矩阵C的第i行第j列元素,Aik
是矩阵A的第i行第k列元素,Bkj是矩阵B的第k行第j列元素,n是矩阵A的列数,
也是矩阵B的行数。
矩阵乘法的运算规则是:矩阵A和B的乘积C=A*B,其中A是m×n矩阵,B是n×p矩阵,则C是m×p矩阵,其中Cij=∑k=1nAikBkj,其中Cij是矩阵C的第i行第j列元素,Aik
是矩阵A的第i行第k列元素,Bkj是矩阵B的第k行第j列元素,n是矩阵A的列数,
也是矩阵B的行数。
矩阵乘法的运算规则是非常重要的,它可以用来解决许多数学问题,例如线性方程组、矩阵的幂运算、矩阵的逆运算等。
此外,矩阵乘法还可以用来计算矩阵的行列式、特征值和特征向量等。
矩阵乘法的运算规则是非常重要的,它可以用来解决许多数学问题,并且在计算机科学中
也有着广泛的应用。
因此,学习矩阵乘法的运算规则是非常有必要的,可以帮助我们更好
地理解和应用矩阵乘法。
正定矩阵常见运算公式
正定矩阵是指所有特征值均为正数的矩阵。
在线性代数中,正定矩阵是一类非常重要的矩阵,其在许多领域中都有广泛的应用。
下面是一些正定矩阵常见的运算公式。
1. 正定矩阵的逆矩阵也是正定矩阵。
这是因为正定矩阵的特征值都是正数,所以其逆矩阵的特征值也都是正数。
2. 正定矩阵的行列式也是正数。
这是因为正定矩阵的特征值都是正数,所以其行列式等于特征值的乘积,也是正数。
3. 正定矩阵的转置矩阵也是正定矩阵。
这是因为正定矩阵的特征值与其转置矩阵的特征值相同。
4. 正定矩阵的乘积也是正定矩阵。
这是因为正定矩阵的特征值都是正数,所以其乘积的特征值也都是正数。
5. 正定矩阵的平方根也是正定矩阵。
这是因为正定矩阵的特征值都是正数,所以其平方根的特征值也都是正数。
6. 正定矩阵可以通过Cholesky分解来得到。
Cholesky分解是将正定矩阵分解
为一个下三角矩阵和其转置矩阵的乘积,即A=LL^T,其中L是下三角矩阵。
这个分解方法可以用来解线性方程组和计算矩阵的行列式和逆矩阵等。
7. 正定矩阵可以用来定义内积。
设A是一个正定矩阵,x和y是两个向量,则它们的内积可以定义为x^TAy。
这个内积满足对称性、线性性和正定性等性质,因此可以用来定义向量空间的内积结构。
总之,正定矩阵是一类非常重要的矩阵,其具有许多重要的性质和应用。
以上是一些正定矩阵常见的运算公式,可以帮助我们更好地理解和应用正定矩阵。
矩阵乘法运算公式矩阵乘法是线性代数中的一个重要概念,它在数学、物理、计算机科学等众多领域都有着广泛的应用。
咱先来说说矩阵乘法的运算规则。
简单来讲,就是第一个矩阵的行元素与第二个矩阵的列元素对应相乘再相加。
比如说,有一个 2 行 3列的矩阵 A 和一个 3 行 2 列的矩阵 B,那它们相乘得到的矩阵 C 就是一个 2 行 2 列的矩阵。
咱举个具体的例子哈。
比如说矩阵 A 是[1 2 3; 4 5 6],矩阵 B 是[7 8;9 10; 11 12],那矩阵 C 的第一个元素 C11 就是 A 的第一行和 B 的第一列对应元素相乘再相加,也就是 1×7 + 2×9 + 3×11 = 58 。
我还记得之前给学生们讲矩阵乘法的时候,有个特别有趣的事儿。
当时有个学生,特别较真儿,一直纠结为啥要这么乘,不能按自己想的来。
我就给他打了个比方,我说这矩阵乘法就好比是工厂里的生产线。
矩阵 A 里的元素就是原材料,矩阵 B 里的元素就是加工步骤,经过特定的规则(也就是矩阵乘法的运算规则),最后生产出来的产品就是矩阵 C 。
这孩子一听,眼睛一下子就亮了,好像突然就明白了。
再来说说矩阵乘法的一些性质。
比如说,矩阵乘法一般不满足交换律,也就是说 A×B 不一定等于 B×A 。
但它满足结合律和分配律。
矩阵乘法在实际生活中的应用那可太多啦!像图像处理中,对图像进行旋转、缩放等操作,就会用到矩阵乘法。
还有在机器学习里,预测模型的计算也离不开它。
咱继续深入讲讲矩阵乘法的应用。
比如说在密码学中,通过复杂的矩阵乘法运算来加密和解密信息,增加信息的安全性。
还有在经济学中,分析多个变量之间的关系时,也会用到矩阵乘法。
我之前去参加一个学术研讨会,就听到有专家分享了一个关于矩阵乘法在交通流量预测中的应用案例。
他们通过收集大量的道路数据,构建出相关的矩阵,然后利用矩阵乘法运算来预测不同时间段、不同路段的交通流量,为交通规划和管理提供了有力的支持。
矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。
以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。
2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。
3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。
4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。
5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。
6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。
7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。
8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。
9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。
10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。
11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。
12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。
13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。
14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。
《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。
它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍线性代数中的基本概念和相关公式。
1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。
设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。
单位向量表示模为1的向量,计算公式为:u=a/,a。
3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。
外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。
4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。
设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。
矩阵运算公式大全一、矩阵的加法。
对于两个相同阶数的矩阵A和B,它们的加法定义为:A +B = (a_ij + b_ij)。
其中a_ij和b_ij分别表示矩阵A和B中第i行第j列元素的值。
二、矩阵的减法。
同样是对于两个相同阶数的矩阵A和B,它们的减法定义为:A B = (a_ij b_ij)。
三、矩阵的数乘。
对于一个矩阵A和一个实数k,它们的数乘定义为:kA = (ka_ij)。
四、矩阵的乘法。
对于一个m×n阶的矩阵A和一个n×p阶的矩阵B,它们的乘法定义为:AB = C。
其中C是一个m×p阶的矩阵,C的第i行第j列元素c_ij的值为:c_ij = a_i1b_1j + a_i2b_2j + ... + a_inb_nj。
五、矩阵的转置。
对于一个m×n阶的矩阵A,它的转置定义为一个n×m阶的矩阵A^T,A^T 的第i行第j列元素为A的第j行第i列元素,即:(A^T)_ij = a_ji。
六、矩阵的逆。
对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I,其中I是n 阶单位矩阵,则称B是A的逆矩阵,记作A^-1。
七、矩阵的行列式。
对于一个n阶方阵A,它的行列式定义为:|A| = Σ(-1)^s a_1i1a_2i2...a_nin。
其中s是1到n的一个排列,a_1i1a_2i2...a_nin表示a_1i1、a_2i2、...、a_nin的乘积。
八、矩阵的迹。
对于一个n阶方阵A,它的迹定义为A的主对角线上元素的和,即:tr(A) = a_11 + a_22 + ... + a_ni。
以上就是矩阵运算的基本公式,通过学习和掌握这些公式,我们可以更好地理解矩阵运算的性质和规律,为后续的学习和应用打下坚实的基础。
希望本文能够对大家有所帮助,谢谢阅读!。
矩阵各种运算规律的归纳
矩阵运算的公式繁多,很多同学难于记忆和理解。
本节课对矩阵运算的规律进行了归纳总结。
矩阵运算分为八大类基本运算:加(减)法、数乘、乘法、行列式运算、幂运算、逆运算、转置运算、伴随运算。
以上的后四种称为“上标运算”。
其中行列式运算、幂运算、逆运算、伴随运算都是针对方阵而言。
空间位置不能变,时间次序任意变。
()()()()2A A E A A A E A
A BA E ABA A A
B E A
+=+=++=+=+AB BA
≠()()()
()()()43A B C AB AC
AB C A BC AB ABABABAB A BABABA B A BA B +=+====
三、矩阵乘法的“上标”运算特点: 脱括号,变位置。
()()()()()***1111T
T T k k AB B A
AB B A
AB B A
AB A BA B ----====
四、矩阵“上标”运算特点:
任意两个上标运算可以调换位置: ()()A A βα
αβ=
五、矩阵运算公式表:
加法运算数乘
运算
乘法
运算
幂
运算
转置
运算
逆
运算
伴随
运算
行列式
运算
加法运算数乘运算乘法运算幂运算
转置运算逆运算
伴随运算行列式运算
谢谢。
线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。
在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。
在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。
下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。
一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。
2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。
(2)行列式相邻行(列)对换,行列式的值不变。
(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。
(4)互换行列式的两行(列),行列式的值不变。
(5)若行列式的行(列)的元素都是0,那么行列式的值为0。
(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。
3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。
(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。
(3)行列式的转置等于行列式的值不变。
二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。
分块矩阵的13个公式分块矩阵是线性代数中的一个重要概念,它可以让我们更简洁、高效地处理复杂的矩阵运算。
下面就来给大家讲讲分块矩阵的13 个公式。
咱们先来说说分块矩阵的加法公式。
假设我们有两个分块矩阵 A 和B ,它们的分块方式相同,那么对应块相加就得到了A + B 。
比如说,A 中有个块是[1 2; 3 4],B 中对应的块是[5 6; 7 8],那相加之后这个块就变成了[6 8; 10 12]。
再来看分块矩阵的数乘公式。
如果有一个数 k ,乘以分块矩阵 A ,那么就是每个块都乘以这个数 k 。
就像你有一堆水果,每个水果的价格都乘以一个倍数,总价也就相应地变化啦。
接着说分块矩阵的乘法公式。
这可有点复杂,但别怕,咱们慢慢捋。
分块矩阵相乘时,要保证左边矩阵的列的分块方式和右边矩阵行的分块方式一致。
比如说 A 是 m×n 的矩阵,分块成 A11、A12 等,B 是n×p 的矩阵,分块成 B11、B12 等。
那么 A 乘以 B 时,就是 A11B11 +A12B21 等等这样的运算。
给大家讲个我曾经遇到的事儿吧。
有一次我给学生们讲分块矩阵的乘法,有个学生怎么都理解不了。
我就拿教室座位打比方,把每个座位看成矩阵的元素,不同的排和列看成分块。
经过这样形象的解释,他终于恍然大悟,那种成就感真的很棒!分块矩阵的转置公式也很重要。
就是把每个块都转置,然后调整一下位置。
这个就像是把书架上的书换个方向摆放,位置也变一变。
还有分块对角矩阵的乘法公式。
如果是分块对角矩阵相乘,那就简单多了,对应对角线上的块相乘就行。
分块矩阵的逆公式也有讲究。
如果一个分块矩阵可逆,那么它的逆矩阵也是分块矩阵,而且每个块的逆也有特定的规律。
分块矩阵求行列式的公式也不能忘。
这需要根据具体的分块情况来计算,有时候可以通过分块简化行列式的计算。
再说说分块矩阵的秩的公式。
通过分块,可以更方便地判断矩阵的秩。
分块矩阵的伴随矩阵公式也有它的特点。
矩阵及其运算加法:()ij m n A a ´=,()ij m n B b ´=是两个m n ´矩阵,称矩阵()ij ij m n C a b ´=+为A 与B 的和,记为C A B =+.注意:两个矩阵必须是同型矩阵(行数和列数分别对应相同)才能相加. 数乘:设()ij m n A a ´=是一个m n ´矩阵,k 是一个数,称()ij m n C ka ´=为数k 与矩阵()ij m n A a ´=的数量乘积,记为C kA =.矩阵的乘法运算;设()ik m n A a ´=, ()kj n s B b ´=,称m s ´矩阵()ij m s C c ´=为矩阵A 与B 的乘积.其中C 的(,)i j 位置的元素为:11221nij i j i j in nj ik kjk c a b a b a b ab ==+++=∑记为(1,2,,;1,2,,i m j s ==L L ).将矩阵A 与矩阵B 的乘积C 记为AB ,即C AB =. 乘法运算的性质:(1)乘法结合律()()A BC AB C =;(其中,,A B C 分别是,,m n n s s t 创 矩阵)(2)乘法对加法的分配律左分配律()A B C AB AC +=+;(其中,,A B C 分别是,,m n n s n s 创 矩阵)右分配律()B C A BA CA +=+;(其中,,A B C 分别是,,n s m n m n 创 矩阵) (3)()()()k AB kA B A kB ==;(其中,A B 分别是,m n n s 创矩阵,k 是一个数) (4)m n E A AE A ==.(其中A 是m n ´矩阵,,m n E E 分别是m 阶和n 阶单位矩阵) 注意(ⅰ)第一个矩阵的列数与第二个矩阵的行数相等时两矩阵乘积才有意义.(ⅱ)由于乘法没有交换律,在进行两个矩阵乘积时,矩阵因子的顺序不能变.(ⅲ)矩阵的乘法不满足消去律.(ⅳ)多个矩阵乘积时经常使用乘法结合律()()A BC AB C =.方阵的方幂:设A 是n 阶方阵,我们称k kA AA A =6447448L 个为A 的k 次幂,特别规定0A E =.1110()m m m m f x a x a x a x a --=++++L 是多项式,称1110()m m m m f A a A a A a A a E --=++++L 为方阵A 的多项式.例 设12n A l l l 骣÷ç÷ç÷ç÷ç÷ç÷=ç÷ç÷÷ç÷ç÷ç÷ç桫O 12n B m m m 骣÷ç÷ç÷ç÷ç÷ç÷=ç÷ç÷÷ç÷ç÷ç÷ç桫O ,(1)求AB 及BA ;(2) 求k A 及()f A ,其中10()m m f x a x a x a =+++L . 例:证明cos sin cos sin sin cos sin cos nn n n n q q q qq q q q 骣骣--鼢珑? 珑鼢鼢珑桫桫. 矩阵的转置与共轭运算称以矩阵A 的行为列,列为行构成的矩阵为A 的转置矩阵,记为T A . 注意:,A B 分别是,m n n s 创矩阵,则()T T T AB B A =.例 设122a 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,121b 骣÷ç÷ç÷ç÷=-ç÷ç÷ç÷÷ç桫,求T a b ,T ba ,()100T ba 例.111212122212n n n n n n a b a b a b a b a b a b A a b a b a b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L L L L,求n A 例. 11A λλλ⎛⎫⎪=⎪ ⎪⎝⎭,求n A 例..设实矩阵111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,且T A A O =,证明A O =; 定义 A 是n 阶方阵,如果T A A =,称A 为对称矩阵;如果T A A =-,称A 为反对称矩阵.由定义易知:n 阶方阵A 为对称矩阵当且仅当(,1,2,,)ij ji a a i j n ==L ;n 阶方阵A 为反对称矩阵当且仅当(,1,2,,)ij ji a a i j n =-=L .定义 ()ij m n A a ´=,如果ij a 取自复数集,称A 是复矩阵,称由ij a 的共轭复数为元素构成的矩阵()ij m n A a ´=为A 的共轭矩阵. 分块矩阵及其运算的注意事项1.利用分块矩阵表示矩阵或进行矩阵运算只是为了表达简便.分块矩阵的运算与普通数字元素的运算法则和运算律是类似的;2.第一个矩阵列的分块方式与第二个矩阵行的分块方式必须相同,即ik A 列数必须等于kj B 的行数,这时两分块矩阵的乘积才有意义;3.由于矩阵乘法没有交换律,作分块矩阵乘法时,一定要注意子块的前后顺序不能换.即上面的ik kj A B 绝对不能写成kj ik B A .4.分块矩阵的转置不仅要将子块为元素构成的矩阵看成普通矩阵进行转置,还要将每块转置.利用矩阵运算表示线性方程组设线性方程组为11112211211222221122,,.........................................n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)利用矩阵的线性运算和矩阵相等定义,( 1)可以改写为:1112112122221212n n n m m mn m a a a b a a a b x x x a a a b ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭称为线性方程组(1)的向量线性组合表示法,简记为1122n n x x x αααβ++=,利用矩阵乘积和矩阵相等定义还可以改写为:1112111212222212.....................n n m m mn n m a a a x b a a a x b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭称为线性方程组(1)的矩阵乘积表示法,简记为AX β=.方阵的行列式的定义及性质定义设()ij n A a =是n 阶方阵,以A 的元素构成的行列式ij n a 称为方阵A 的行列式.记为A 或det A .注意 :(1)矩阵是数表,行列式是数值,这是它们之间的本质区别. (2)只有方阵才定义行列式. 方阵的行列式具有以下性质: 性质1 A 是n 阶方阵,则n kA k A = 性质2 A 是n 阶方阵,则T A A = 性质3 A 是n 阶方阵,B 是m 阶方阵,则A CA B O B=. 推论1 A 是n 阶方阵,B 是m 阶方阵,则A OA B C B= 推论2 设12,,,S A A A L 均为方阵,则1212S SA A A A A A =L O性质4 ,A B 均为n 阶方阵,则AB A B =.注意,,A B 均为n 阶方阵,A B A B +=+不一定成立. 例 已知A 是3阶方阵,且2A =-,计算(1)2A ;(2) A A ;(3)2A OE A-.例 已知A ,B 都是3阶方阵,且9A =-,3AB E O +=,求B .例 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,求B .可逆矩阵设A 是n 阶方阵,如果存在n 阶方阵B ,使得AB BA E ==,称A 为可逆矩阵,称B 为A 的一个逆矩阵.唯一性:可逆矩阵的逆矩阵唯一.n 阶方阵A 是可逆的充分必要条件为0A ≠.而且1*1A A A-=. 定理:设,A B 都是n 阶方阵,如果AB E =,那么BA E =.伴随矩阵:设()ij n n A a ⨯=,称由ij a 在A 中的代数余子式ij A 为元素构成的矩阵*A 112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭为A 的伴随矩阵. 可逆矩阵的性质:性质1 设A 是n 阶可逆矩阵,A 的逆矩阵1A -也可逆,且()11A A --=;性质2设A 是n 阶可逆矩阵,k 是非零数,则kA 可逆,且()111kA k A ---=; 性质3设,A B 都是n 阶可逆矩阵,那么AB 也可逆,且111()AB B A ---=; 推广: 12,,,s A A A 都是n 阶可逆矩阵,则12s A A A 也可逆,且()11111221s s A A A A A A ----=.性质4设A 是n 阶可逆矩阵,T A 也可逆,且()()11TT A A --=;注意 ,A B 都是n 阶可逆矩阵,但A B +不一定可逆.性质5设(1,2,,)i A i s =L 为i n 阶可逆方阵,准对角形矩阵1s A A ⎛⎫⎪⎪ ⎪⎝⎭可逆,且11111s s A A A A ---⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭; 且11111s s a a a a ---⎛⎫⎛⎫⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(0,1,2,,)i a i s ≠=.例已知A ,B 都是3阶方阵,且9A =-,3AB E O +=,求B 及12A O O B -⎛⎫⎪⎝⎭.性质6 设A 是m 阶可逆矩阵,,B C 都是m n ⨯矩阵,且AB AC =,则B C =,设A 是n 阶可逆矩阵,,B C 都是m n ⨯矩阵,且BA CA =,则B C =. 特别:设A 是m 阶可逆矩阵,B 是m n ⨯矩阵,且AB O =,则B O =,设A 是n 阶可逆矩阵,B 是m n ⨯矩阵,且BA O =,则B O =. 证明方阵A 可逆的常用方法:(1)找到一个方阵B ,使得AB BA E ==;(2)证明0A ≠例A 是n 阶方阵,且满足223A A E O -+=,证明3A E -可逆,并求()13A E -- 求可逆方阵A 的逆矩阵的方法 (1)公式法:利用伴随矩阵;(2)用初等行变换求矩阵方程AX B =(A 可逆)的求法:()()1AB E A B -−−−−→初等行变换,则1X A B -=即可求得.例.A 是行等和矩阵(各行元素之和都相等),且A 可逆,证明:1A -也是行等和矩阵.例. ,A B 都为n 阶方阵,且A B AB +=1) 证明:A E -可逆;2)证明:AB BA =;3)如果130210002B 骣-÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,求A 证明:1)由A B AB +=有()A A E B O --=,所以()A E A E B E ---=-, 即()()A E B E E --=,所以A E -可逆,且1()A E B E --=- 2)由()()A E B E E --=,有()()B E A E E --=, 所以()()()()A E B E B E A E --=--,即有AB BA =3)由1()A E B E --=-有()11100030010200001001A E B E --骣骣-鼢珑鼢珑鼢珑鼢=+-=+珑鼢珑鼢珑鼢鼢珑桫桫1100102210011010001033001001002骣骣鼢珑鼢珑鼢珑鼢珑骣鼢珑÷鼢ç珑÷鼢ç÷珑鼢ç÷鼢=+-=-珑ç÷鼢珑ç÷鼢珑ç÷鼢珑÷ç鼢桫珑鼢珑鼢珑鼢鼢珑鼢珑桫桫例.已知121210121,()(),00210003A B A E A E -骣--÷ç÷ç÷ç÷-ç÷ç÷==-+ç÷ç÷÷ç÷ç÷ç÷ç桫求1()B E -- 解:由1()(),B A E A E -=-+有()(),A E B A E -=+,AB B A E --=()()2A B E B E E ---=,所以()()11()2,()2A EB E E B E A E ---=-=- 例. 方阵A 满足223A A E O +-=求证:4A E +可逆,并求其逆;证明:由于223A A E O +-=,有()()425A E A E E +-=-,所以4A E +可逆,其逆为()()11425A E A E -+=--. 例.,,AB A B +均为n 阶可逆矩阵,求证11A B --+也可逆,并求其逆 证明:()11,A A B B B A --+=+所以()()1111A B A B A B ----+=+, 所以11A B --+可逆,且()()1111A B B B A A ----+=+.例.设A 为n 阶非零矩阵,E 为n 阶单位矩阵,30A =,则( ) A .E A -不可逆,E A +不可逆;B. E A -不可逆,E A +可逆; C. E A -可逆,E A +可逆; D. E A -可逆,E A +不可逆 例. 0k A =,求()1E A --例.设16,A XA A XA -=+ 其中100310041007A ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,求X .例.设100020001A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,且满足*28,A XA XA E =-求X伴随矩阵的性质设A 是n 阶方阵,*A 是A 的伴随矩阵,则**AA A A A E ==.()ij nA a =矩阵的伴随阵*()ji A A =具有如下性质:1)**AA A A A E ==,特别地A 可逆时11*A A A-=(或1*A A A -=) 2)*A =1-n A ;3)(*)r A =()()()1101n r A n r A n r A n ìïïïï-íïï<-ïïî==4)()A **=A An 2- (其中A 是n 阶方阵,2n >)注意 *A 的第(1,2,,)i i n =列元素是A 的第(1,2,,)i i n =行元素在A 的代数余子式.例 设A 是3阶方阵,且2A =-,求(1) 1A -;(2)*A ;(3)1*2A A -+.例 A 是3阶方阵,B 是2阶方阵,且2A =-,1B =,则23A OO B=- ;*2A = .例 33A R ´Î,且()**16,det 0,A A =>求2A -例 设A 是n 阶方阵,3A =,*A 是A 的伴随矩阵,则1*2A A --= 例设,A B 均为2阶方阵,**,A B 分别为,A B 的伴随矩阵,若3,2A B ==则O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为( ) A .**32O A B O ⎛⎫ ⎪ ⎪⎝⎭;B.**23O A B O ⎛⎫⎪ ⎪⎝⎭;C. **23O B A O ⎛⎫⎪ ⎪⎝⎭;D. **32O B A O ⎛⎫⎪ ⎪⎝⎭矩阵的初等行(列)变换1.交换矩阵中某两行(列)对应位置的元素;2.矩阵的某行(列)的元素都乘一个非零数;3.矩阵的某行(列)元素乘一个数加到另一行(列)对应位置的元素上. 定理 任何m n ⨯矩阵A 都可以通过若干次初等行变换化为行阶梯形矩阵,进而化为行最简形矩阵. 矩阵的秩设A 是一个m n ⨯矩阵,如果A 中存在r 阶子式不为零,而所有1r +阶子式(如果有的话)全为零,我们称r 为矩阵A 的秩,记为()R A 或秩()A . 注意:(1)()0R A =当且仅当A O =;(ⅱ)()()T R A R A =;(ⅲ)n 阶方阵A 的秩()R A n =的充分必要条件0A ≠; 即n 阶方阵A 可逆的充分必要条件为()R A n =. (IV )矩阵子块的秩不超过矩阵的秩. 定理:初等变换不改变矩阵的秩. 求秩的常用方法1.求矩阵A 的秩:利用矩阵的初等变换将矩阵A 化为阶梯形矩阵,阶梯数即为矩阵A 的秩.2.如果A 是n 阶方阵,0A ≠充分必要条件是()R A n =.求元素含有参数的方阵A 的秩时,先求出0A ≠时的参数取值,此时()R A n =; 对于使0A =的参数再特别讨论.例 1111121a A b b ⎛⎫⎪= ⎪ ⎪⎝⎭,讨论A 的秩.初等矩阵 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 定理:设A 是m n ⨯矩阵,A 左(右)乘一个m 阶初等矩阵相当于对A 作一次相应的初等行(列)变换.例.已知()33ij A a ´=可逆,将A 的第2列加上第3列的5倍,然后第1列减去第2列的2倍得到B , 求1B A -解:11121511B A 骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫, 111111211151B A ----骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫,11111211151B A ---骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫1112112115151骣骣骣鼢 珑 鼢 珑 鼢 珑 鼢 ==珑 鼢 珑 鼢 珑 鼢 鼢 珑 --桫桫桫. 例.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -=(B )1.C PAP -=(C ).T C P AP = (D ).T C PAP = 关于初等矩阵和矩阵秩的一些性质1.()()()R A B R A R B +≤+;2. ()(){}min ,()R AB R A R B ≤3.()()R kA R A =,其中k 为非零数;4.矩阵P ,Q 可逆,则()()R PAQ R A =.5.A 与B 等价当且仅当存在可逆矩阵P 与可逆矩阵Q ,使得PBQ A =.6.n 阶方阵A 可逆当且仅当A 可以写成一些初等矩阵的乘积.7. 设A 是秩为r 的m n ⨯矩阵,则存在m 阶可逆矩阵P 和n 阶可逆矩阵Q ,使得rEO PAQ O O ⎛⎫= ⎪⎝⎭. 8. ()()A O R R A R B O B ⎛⎫=+ ⎪⎝⎭9. ()ik m n A a ´=, ()kj n s B b ´=,且AB O =,则()()R A R B n +≤ 10. ()()()T T R A R A A R AA ==。
矩阵的简单运算公式在数学的广袤领域中,矩阵是一个极其重要的概念,它在众多学科,如物理学、计算机科学、经济学等中都有着广泛的应用。
而要掌握矩阵的应用,首先需要了解矩阵的简单运算公式。
矩阵,简单来说,就是一组按照矩形排列的数。
我们用大写字母来表示矩阵,比如矩阵 A 。
一个 m 行 n 列的矩阵,我们就称为 m×n 矩阵。
首先,咱们来看看矩阵的加法运算。
只有当两个矩阵具有相同的行数和列数时,才能进行加法运算。
假设我们有两个矩阵 A 和 B ,它们都是 m×n 的矩阵,那么矩阵 A 和 B 的和 C ,其元素 C(i,j) 就等于 A(i,j) + B(i,j) ,其中 i 表示行标, j 表示列标。
比如说,有矩阵 A = 1 2; 34 ,矩阵 B =5 6; 7 8 ,那么它们的和 C 就是6 8; 10 12 。
接下来是矩阵的减法运算,它和加法运算类似,也是要求两个矩阵具有相同的行数和列数。
矩阵 A 减去矩阵 B 所得的矩阵 D ,其元素D(i,j) 等于 A(i,j) B(i,j) 。
再说说矩阵的数乘运算。
假设我们有一个矩阵 A ,还有一个实数 k ,那么数 k 与矩阵 A 的乘积 E ,其元素 E(i,j) 就等于 k×A(i,j) 。
比如,矩阵 A = 1 2; 3 4 , k = 2 ,那么乘积 E 就是 2 4; 6 8 。
矩阵的乘法运算相对复杂一些。
当矩阵 A 的列数等于矩阵 B 的行数时,矩阵 A 和矩阵 B 才能相乘。
假设矩阵 A 是 m×n 的矩阵,矩阵B 是 n×p 的矩阵,那么它们的乘积C 是一个 m×p 的矩阵。
其中,矩阵C 中元素 C(i,j) 等于矩阵 A 的第 i 行元素与矩阵 B 的第 j 列元素对应相乘再相加的结果。
例如,矩阵 A = 1 2; 3 4 ,矩阵 B = 5 6; 7 8 ,那么它们的乘积 C 是 19 22; 43 50 。
矩阵的运算及其运用一、 矩阵的线性运算 矩阵的线性运算满足以下规律:1. 矩阵的加法① 交换律——A B B A +=+; ② 结合律——)()(C B A C B A ++=++; ③ O A A =-+)(; ④ A +O = A .注:❶ 同型阵之间才能进行加法运算。
❷ 称矩阵-A =)(ij a -为矩阵A 的负阵,利用复矩阵的概念可定义矩阵的减法运算:)(B A B A -+=-.❸ 矩阵的加法实际上是转化为实数的加法来定义的,故其运算性质同于实数加法的运算性质。
2. 数与矩阵相乘① 结合律——)()()(A A A μλμλλμ==;② 矩阵关于数加法的分配律——A A A μλμλ+=+)( ③ 数关于矩阵加法的分配律——B A B A λλλ+=+)(.注 : 利用数乘也可以定义负阵和减法。
3. 矩阵与矩阵相乘① 结合律 ——)()(BC A C AB =;② 数乘结合律 ——)()()(B A B A AB λλλ==; ③ 分配律 ——左分配律:AC AB C B A +=+)(;右分配律:CA BA A C B +=+)(.④ 乘单位阵不变 ——n m n n m n m n m m A E A A A E ⨯⨯⨯⨯==,. ⑤ 乘方的性质 ——l k lk A A A +=;l k l k A A =)(注 : 有了以上定义的所有运算性质,在运算可运行的条件下,矩阵就可以类似代数运算进行了,如 22223108?32128)4()32(B AB A B AB BA A B A B A -+=--+=-+,但要注意矩阵间的乘法无交换律,无消去律。
4. 矩阵的转置① (转置再转置)——A A T T =)(; ② (和的转置) ——T T TB A B A +=+)(;③ (数乘的转置) ——T T A A λλ=)(; ④ (乘积的转置) ——T T TA B AB =)(.定义 若n 阶方阵A 满足A A T =,即),,2,1,(n j i a a ji j i ==,则称A 为对称阵。
一阶矩阵计算公式矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。
矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。
在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。
A+B+C=A+C+B。
加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。
把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。
设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m 阶矩阵B,满足B=b(j,i),即a(i,j)=b (j,i)(B的第i行第j列元素是A 的第j行第i列元素),记A'=B。
行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。
由个数排成m行n列的数表称为m行n列的矩阵,简称矩阵,记作二.原理,公式和法则1.矩阵的加法(1) 公式(2) 运算律2.数乘矩阵(1) 公式(2) 运算律3.矩阵与矩阵相乘(1) 设,则其中,且。
(2)运算符(假设运算都是可行的):(3)方阵的运算注意:①矩阵乘法一般不满足交换律。
②一般4.矩阵的转置(1)公式这里为A的转置矩阵。
(2)运算律5.方阵的行列式(1)公式设A为n阶方阵,为A的行列式。
(2)运算律6.共轭矩阵(1)公式设为复矩阵,表示为的共轭复数,则为方阵的共轭矩阵。
(2)运算律(设A,B为复矩阵,为复数,且运算都是可行的):三.重点,难点分析本节的重点就是矩阵的各运算及其运算律。
它是矩阵运算的基础,其难点是矩阵的乘法,着重掌握矩阵的运算规律。
简单来说,矩阵是充满数字的表格。
A 和B 是两个典型的矩阵, A 有2行2列,是2×2矩阵; B有2行3列,是2×3矩阵; A 中的元素可用小写字母加行列下标表示,如a 1,2 = 2, a 2,2 = 4矩阵加减法两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。
加法交换律: A + B = B + A矩阵乘法两个矩阵 A 和 B 相乘,需要满足 A 的列数等于 B 的行数。
矩阵乘法很容易出错,尤其是两个高阶矩阵相乘时。
矩阵乘法不满足交换律,但仍然满足结合律和分配律:单位矩阵单位矩阵是一个n×n矩阵,从左到右的对角线上的元素是1,其余元素都为0。
下面是三个单位矩阵:如果 A 是n×n矩阵, I 是单位矩阵,则 A I = A , IA = A单位矩阵在矩阵乘法中的作用相当于数字1。
逆矩阵矩阵 A 的逆矩阵记作 A -1 , A A -1 = A -1 A = I ,I是单位矩阵。
对高于2阶的矩阵求逆是一件很崩溃的事情,下面是一种求3阶矩阵的方法:这种操作还是交给计算机去做吧,下面是在python中使用numpy计算逆矩阵的代码:《线性代数5——平面方程与矩阵》中也介绍了如何用消元法求逆矩阵。
奇异矩阵当一个矩阵没有逆矩阵的时候,称该矩阵为奇异矩阵。
当且仅当一个矩阵的行列式为零时,该矩阵是奇异矩阵。
当ad-bc=0时| A |没有定义, A -1不存在, A 是奇异矩阵。
如是奇异矩阵。
矩阵的转置简单地说,矩阵的转置就是行列互换,用A T 表示A的转置矩阵。
转置运算公式:对称矩阵如果一个矩阵转置后等于原矩阵,那么这个矩阵称为对称矩阵。
由定义可知,对称矩阵一定是方阵。
对称矩阵很常见,实际上,一个矩阵转置和这个矩阵的乘积就是一个对称矩阵:证明很简单:两个对称矩阵相加,仍然得到对称矩阵:。
矩阵的运算的所有公式
矩阵是线性代数中非常重要的一种数学工具,它广泛应用于各个领域,如物理学、工程学、计算机科学等。
矩阵的运算包括加法、减法、乘法、
转置以及求逆等操作。
下面将详细介绍这些矩阵运算的公式。
一、矩阵的加法和减法
设有两个矩阵A和B,它们都是m行n列的矩阵,即A和B的大小相同。
矩阵的加法和减法操作定义如下:
1.加法:A+B=C,其中C是一个和A、B大小相同的矩阵,其每个元素
的计算公式为:C(i,j)=A(i,j)+B(i,j),其中i表示矩阵的行数,j表示
矩阵的列数。
2.减法:A-B=D,其中D是一个和A、B大小相同的矩阵,其每个元素
的计算公式为:D(i,j)=A(i,j)-B(i,j)。
二、矩阵的乘法
设有两个矩阵A和B,A是m行n列的矩阵,B是n行p列的矩阵。
矩阵的乘法操作定义如下:
1.乘法:A×B=C,其中C是一个m行p列的矩阵。
计算C的方法如下:
C(i,j)=A(i,1)×B(1,j)+A(i,2)×B(2,j)+...+A(i,n)×B(n,j),其
中i表示C的行数,j表示C的列数。
需要注意的是,两个矩阵相乘的条件是第一个矩阵的列数等于第二个
矩阵的行数。
三、矩阵的转置
给定一个矩阵A,它是m行n列的矩阵。
矩阵的转置操作定义如下:
1.转置:A',表示矩阵A的转置。
即将A的行变为列,列变为行。
例如,如果A是一个3行2列的矩阵,那么A的转置A'是一个2行3列的矩阵。
四、矩阵的求逆
对于一个非奇异的n阶矩阵A,它的逆矩阵记作A^{-1}。
求逆的公式如下:
1.A×A^{-1}=I,其中I是单位矩阵。
即矩阵A与其逆矩阵相乘等于单位矩阵。
需要注意的是,只有方阵(行数等于列数)并且满秩的矩阵才有逆矩阵。
五、矩阵的幂运算
给定一个n阶矩阵A,A的幂运算定义如下:
1.A^k=A×A×...×A(共k个A相乘),其中A^k表示A的k次幂,k是一个正整数。
六、矩阵的迹
给定一个n阶矩阵A,A的迹(trace)定义如下:
1. tr(A) = A(1,1) + A(2,2) + ... + A(n,n),即矩阵A主对角线上元素的和。
七、矩阵的行列式
给定一个n阶矩阵A,A的行列式(determinant)定义如下:
1.,A,表示矩阵A的行列式。
行列式的计算过程较为复杂,可以使用代数余子式和代数余子式的代数余子式来计算。
八、矩阵的特征值和特征向量
给定一个n阶矩阵A,A的特征值(eigenvalue)和特征向量(eigenvector)定义如下:
1.特征值:对于一个非零向量x,如果存在一个标量λ,使得
Ax=λx,则λ是矩阵A的特征值。
2.特征向量:对于一个非零向量x和对应的特征值λ,如果满足
Ax=λx,则x是矩阵A的特征向量。
特征值和特征向量常用于描述线性变换的特性和方向。
以上是矩阵的运算的常用公式,对于理解和应用矩阵运算非常重要。
需要注意的是,矩阵的运算中要符合相应的条件和规则才能进行相应的操作。