矩阵及运算
- 格式:docx
- 大小:36.54 KB
- 文档页数:2
〔1〕互换矩阵的两行或两列;〔2〕把某一行同乘〔除〕以一个非零的数;〔3〕某一行乘以一个数加到另一行。
显然,通过以上三个根本变换,可将线性方程组的系数矩阵变成单位矩阵,这时增广矩阵的最后一个列向量给出了方程组的解。
应用举例:例1例2课堂练习:〔1〕假设方程组的解与相等,求的值。
〔3〕解方程组:矩阵运算〔对从实际问题中抽象出来的矩阵,我们经常将几个矩阵联系起来,讨论它们是否相等,它们在什么条件下可以进行何种运算,这些运算具有什么性质等问题,这是下面所要讨论的主要内容.〕1.相等定义如果两个矩阵,满足:(1) 行、列数相同,即;(2) 对应元素相等,即a ij = b ij (= 1, 2, …, m;j = 1, 2, …, n ),那么称矩阵A与矩阵B相等,记作A = B〔由矩阵相等定义可知,用等式表示两个mn矩阵相等,等价于元素之间的mn个等式.〕例如,矩阵A =,B =那么A = B,当且仅当a11 = 3,a12 = 0,a13 = -5,a21 = -2,a22 = 1,a23 = 4而C =因为B, C这两个矩阵的列数不同,所以无论矩阵C中的元素c11, c12, c21, c22取什么数都不会与矩阵B相等.2.加法定义2.3设,是两个mn矩阵,那么称矩阵C =为A与B的和,记作C = A + B =〔由定义2.3可知,只有行数、列数分别相同的两个矩阵,才能作加法运算.〕同样,我们可以定义矩阵的减法:D = A-B = A + (-B ) =称D为A与B的差.例1设矩阵A =,B =,求A + B,A-B.例2、矩阵,,,假设,,,求的值。
矩阵加法满足的运算规那么是什么?1. 加法交换律:A + B = B + A;2. 加法结合律:(A + B ) + C = A + (B + C ) ;3. 零矩阵满足:A + O = A;4. 存在矩阵-A,满足:A-A = A + (-A ) = O .3.数乘定义2.4设矩阵,为任意实数,那么称矩阵为数与矩阵A的数乘,其中,记为C =A〔由定义2.4可知,数乘一个矩阵A,需要用数去乘矩阵A的每一个元素.特别地,当= -1时,A = -A,得到A的负矩阵.〕例3设矩阵A =,用2去乘矩阵A,求2A.数乘矩阵满足的运算规那么是什么?对数k , l和矩阵A = ,B =满足以下运算规那么:1. 数对矩阵的分配律:k (A + B ) = kA + kB;2. 矩阵对数的分配律:( k + l ) A = kA + lA;3. 数与矩阵的结合律:( k l ) A = k (lA ) = l (kA ) ;4. 数1与矩阵满足:1A = A.例4设矩阵A =,B =,求3A- 2B.4.乘法矩阵乘积的定义设A=是一个ms矩阵,B=是一个sn矩阵,那么称mn矩阵C=为矩阵A与B的乘积,记作C = AB.其中c ij = a i1b1 j + a i2b2 j + …+ a i s b s j = (= 1, 2, …, m;j = 1, 2, …, n ).〔由矩阵乘积的定义可知:〕(1) 只有当左矩阵A的列数等于右矩阵B的行数时,A, B才能作乘法运算AB;(2) 两个矩阵的乘积AB亦是矩阵,它的行数等于左矩阵A的行数,它的列数等于右矩阵B的列数;(3) 乘积矩阵AB中的第行第j列的元素等于A的第行元素与B的第j列对应元素的乘积之和,故简称行乘列的法那么.例6设矩阵A = ,B = ,计算AB.例7设矩阵A = ,B =,求AB和BA.由例6、例7可知,当乘积矩阵AB有意义时,BA不一定有意义;即使乘积矩阵AB和BA有意义时,AB和BA也不一定相等.因此,矩阵乘法不满足交换律,在以后进行矩阵乘法时,一定要注意乘法的次序,不能随意改变.在例6中矩阵A和B都是非零矩阵〔AO, B O〕,但是矩阵A和B的乘积矩阵AB是一个零矩阵〔AB = O〕,即两个非零矩阵的乘积可能是零矩阵.因此,当AB = O,不能得出A和B中至少有一个是零矩阵的结论.一般地,当乘积矩阵AB = AC,且AO时,不能消去矩阵A,而得到B = C.这说明矩阵乘法也不满足消去律.那么矩阵乘法满足哪些运算规那么呢?矩阵乘法满足以下运算规那么:1. 乘法结合律:〔AB〕C = A〔BC〕;2. 左乘分配律:A〔B + C〕= AB + AC;右乘分配律:〔B + C〕A = BA + CA;3. 数乘结合律:k〔AB〕= 〔k A〕B = A〔k B〕,其中k是一个常数.例8:,矩阵,求。
矩阵的运算及其运算规则矩阵是代数中一种重要的数学工具,它由数个数按照规定的行列顺序排列而成。
矩阵的运算包括加法、减法、数乘、乘法以及转置等,这些运算规则在代数中有着重要的应用。
一、矩阵的加法和减法矩阵的加法和减法规则相同,对应位置的元素进行相加或相减。
具体来说,如果有两个m×n(m行n列)的矩阵A和B,它们的和为C,则A和B之间的加法运算可以表示为:C = A + B。
其中,C的元素cij就是A和B相对应位置元素之和。
同样,矩阵的减法也是对应位置的元素进行相减操作。
例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的和、差分别为:A+B=[[1+5,2+6],[3+7,4+8]]=[[6,8],[10,12]]A-B=[[1-5,2-6],[3-7,4-8]]=[[-4,-4],[-4,-4]]二、矩阵的数乘矩阵的数乘是指将矩阵的每个元素都与一个常数k相乘。
具体来说,如果有一个m×n的矩阵A和一个实数k,则矩阵A乘以k的结果为B,可表示为:B = kA。
其中,B的元素bij等于k与A相对应位置元素的乘积。
例如,对于如下矩阵:A=[[1,2],[3,4]]k=2则A乘以k的结果为:B=kA=2A=[[2,4],[6,8]]三、矩阵的乘法矩阵的乘法是指给定两个矩阵A和B,如果A的列数等于B的行数,则可以将它们相乘得到一个新的矩阵C。
具体来说,如果A是一个m×n 的矩阵,B是一个n×p的矩阵,则矩阵C的大小为m×p。
C的元素cij 可以通过计算A的第i行与B的第j列对应位置元素的乘积之和得到。
例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的乘积为:C=AB=[[1×5+2×7,1×6+2×8],[3×5+4×7,3×6+4×8]]=[[19,22], [43,50]]注意,在矩阵乘法中,矩阵的位置很重要,即AB一般不等于BA。
矩阵及矩阵运算矩阵:⼀个m×n的矩阵就是m×n个数排成m⾏n列的⼀个数阵。
由于它把许多数据紧凑的集中到了⼀起,所以有时候可以简便地表⽰⼀些复杂的模型。
在数学中,⼀个矩阵说穿了就是⼀个⼆维数组。
单位矩阵:从左上⾓到右下⾓的对⾓线(称为主对⾓线)上的元素均为1。
除此以外全都为0。
对称矩阵:如果⽅阵满⾜,即,则称A为对称矩阵.它的元素以主对⾓线为对称轴对应相等.矩阵加减法:两个矩阵相加减,即它们相同位置的元素相加减,满⾜交换律和结合律。
只有对于两个⾏数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可⾏的.矩阵乘法:矩阵乘法是⼀种⾼效的算法可以把⼀些⼀维递推优化到log( n ),还可以求路径⽅案等,所以更是⼀种应⽤性极强的算法。
1.矩阵与数的乘法:数乘矩阵A,就是将数乘矩阵A中的每⼀个元素,记为或.特别地,称称为的负矩阵.满⾜结合律和分配律。
2.矩阵与矩阵的乘法:只有当矩阵A的列数与矩阵B的⾏数相等时A×B才有意义。
⼀个m×n的矩阵a(m,n)左乘⼀个n×p的矩阵b(n,p),会得到⼀个m×p的矩阵c(m,p),矩阵乘法满⾜结合率,但不满⾜交换率。
⼀个n⾏m列的矩阵可以乘以⼀个m⾏p列的矩阵,得到的结果是⼀个n ⾏p列的矩阵。
⽅阵A和它同阶的单位阵作乘积,结果仍为A,即.单位阵在矩阵乘法中的作⽤相当于数1在我们普通乘法中的作⽤。
运算规则: 设,,则A与B的乘积是这样⼀个矩阵: (1) ⾏数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第⾏第列的元素由A的第⾏元素与B的第列元素对应相乘,再取乘积之和.(3)两个⾮零矩阵的乘积可以是零矩阵.由此若,不能得出或的结论.矩阵转置:将矩阵A的⾏换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.第i⾏变第J列。
Aij变成Aji。
运算性质(假设运算都是可⾏的) (1) (2) (3) (4) ,是常数.矩阵⾏列式:基于矩阵所包含的⾏列数据计算得到的⼀个标量;⼆维矩阵[{a,c},{b,d}]的⾏列式等于:det(A) = ab-cd。
第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵(一)矩阵及相关概念1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n n n ≠≠=得不到由,.............. (2122221)11211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵,记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵 、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵 1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nn n n n n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算1.矩阵的加法CB A B A b a cC n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设 ,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A k kA 111))(3(---=AB AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律 A A T T =))(1( T T kA kA =))(2( T T T A B AB =))(3(T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n A A n )2())(3(2≥=-**n A A A n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T T T T T D BC AD C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O BC O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A EBA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵(一)矩阵的初等变换及相关概念1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换(1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去(4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换)(5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位鞠振宁经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P )()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E k E k E E E ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A E A B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~r E PAQ Q n P m n m A BPAQ Q P B A B A六、常考题型及其解题方法与技巧题型一、有关矩阵的概念及运算题型二、求方阵的幂n A数学归纳法思路,可用相似对角化来求个线性无关的特征向量有,当思路可用二项式定理展开则且,能分解成两个矩阵的和,若思路律就可很方便地求出个矩阵的乘积,用结合能分解为一列与一行两则,若思路,43)(,2,1)(1nn n nA n A CB A CB BC C B A A A A A r +==+== 题型三、求与已知矩阵可交换的矩阵题型四、有关初等变换的问题题型五、关于伴随矩阵的命题题型六、矩阵可逆的计算与证明⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B A E E A A E E A A AA EBA E AB B 111-1-1-1-1114)()();()(3121,,分块矩阵法思路,初等变换法思路,伴随矩阵法思路或使,定义法,找出思路 题型七、求解矩阵方程为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A B A r A r A B B Ax 2,,1)()(.2.111--===。
矩阵与矩阵运算矩阵是数学中的一种重要工具,广泛应用于各个领域,包括线性代数、计算机科学、物理学等。
矩阵的运算则是在矩阵之间进行各种数学操作的过程,包括加法、减法、乘法等。
本文将对矩阵及其运算进行详细介绍。
一、矩阵的定义矩阵是由m行n列的数按矩形排列而成的一种数学对象。
一个m行n列的矩阵可以表示为一个m×n的矩阵。
矩阵中的每个数称为元素,例如,一个2×3的矩阵可以表示为:A = [a11 a12 a13a21 a22 a23]其中a11, a12, a13, a21, a22, a23为矩阵A的元素。
矩阵也可以用字母大写加粗表示,例如A。
二、矩阵的加法与减法矩阵的加法与减法是在相同维度的两个矩阵上进行的。
对于两个m×n的矩阵A和B,它们的加法定义如下:C = A + B = [a11 + b11 a12 + b12 a13 + b13a21 + b21 a22 + b22 a23 + b23]C为结果矩阵,它的每个元素等于A和B对应元素的和。
同样地,减法也是在对应元素上进行操作。
三、矩阵的乘法矩阵的乘法是矩阵运算中的关键操作。
对于两个矩阵A和B进行乘法运算,必须满足矩阵A的列数等于矩阵B的行数。
乘法的结果矩阵C的行数等于矩阵A的行数,列数等于矩阵B的列数。
C = A × B = [c11 c12c21 c22]其中c11, c12, c21, c22为结果矩阵C的元素。
矩阵乘法的计算方式如下:c11 = a11 × b11 + a12 × b21c12 = a11 × b12 + a12 × b22c21 = a21 × b11 + a22 × b21c22 = a21 × b12 + a22 × b22四、矩阵的转置矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
对于一个m×n 的矩阵A,它的转置矩阵表示为AT,其中转置后的矩阵的行数等于原矩阵的列数,列数等于原矩阵的行数。
矩阵的定义及其运算规则1、矩阵的定义一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。
矩阵通常是用大写字母A 、B …来表示。
例如一个m 行n 列的矩阵可以简记为:,或。
即:(2-3)我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。
当m=n时,则称为n阶方阵,并用表示。
当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。
设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。
2、三角形矩阵由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。
如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。
例如,以下矩阵都是三角形矩阵:,,,。
3、单位矩阵与零矩阵在方阵中,如果只有的元素不等于零,而其他元素全为零,如:则称为对角矩阵,可记为。
如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵。
单位矩阵常用E来表示,即:当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。
4、矩阵的加法矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。
如以C=(c ij)m ×n表示矩阵A及B的和,则有:式中:。
即矩阵C的元素等于矩阵A和B的对应元素之和。
由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵):(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)5、数与矩阵的乘法我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。
如:由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则:(1)k(A+B)=kA+kB(2)(k+h)A=kA+hA(3)k(hA)=khA6、矩阵的乘法若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义。
矩阵及其运算详解矩阵是线性代数中重要的概念之一,它不仅在数学理论中有广泛应用,也在各个领域的实际问题中发挥着重要作用。
本文将详细介绍矩阵的概念、性质以及常见的运算法则,以帮助读者深入了解和掌握矩阵相关的知识。
一、矩阵的定义和基本性质矩阵是一个按照矩形排列的数集,通常用方括号表示。
一个 m×n的矩阵包含 m 行和 n 列,并用 aij 表示第 i 行、第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [ a11 a12 a13a21 a22 a23 ]其中,a11、a12 等分别表示矩阵中不同位置的元素。
对于一个 m×n 的矩阵 A,当且仅当存在 m×n 的矩阵 B,满足 A = B,我们称 B 是 A 的转置矩阵。
转置矩阵中的每个元素是原矩阵对应位置元素的转置。
二、矩阵的运算法则1. 矩阵的加法和减法矩阵的加法和减法规则使其成为一个线性空间。
对于同型矩阵 A 和B,它们的和 A + B 的结果是一个与 A、B 同型的矩阵,其每个元素等于对应位置元素的和。
减法规则类似,也是对应元素相减。
矩阵的数乘指的是将一个矩阵的每个元素乘以一个标量。
即对于矩阵 A 和一个实数 k,kA 的结果是一个与 A 同型的矩阵,其每个元素等于对应位置元素乘以 k。
3. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的一种运算。
对于矩阵 A 和 B,若A 的列数等于B 的行数,则可以进行乘法运算 AB。
结果矩阵C 是一个 m×p 的矩阵,其中的元素 cij 是通过计算矩阵 A 的第 i 行和矩阵 B的第 j 列对应位置元素的乘积,并将结果相加得到的。
4. 方阵和单位矩阵方阵是指行数和列数相等的矩阵,也称为正方形矩阵。
单位矩阵是一种特殊的方阵,它的主对角线上的元素全为1,其它位置元素均为0。
单位矩阵通常用 I 表示。
三、矩阵的性质和应用1. 矩阵的转置性质矩阵的转置运算具有以下性质:- (A^T)^T = A,即两次转置后得到原矩阵。
【精品】矩阵及运算矩阵是一个重要的数学概念,广泛应用于线性代数、线性方程组、机器学习、信号处理等领域。
矩阵及运算的研究对于数学理论和实际应用都具有重要意义。
本文将从矩阵的定义、矩阵的运算、特殊矩阵等方面对矩阵进行介绍。
一、矩阵的定义矩阵是一个由数值组成的矩形阵列,通常表示为二维数组。
矩阵的每个元素都可以通过其行和列的索引位置来确定。
矩阵的尺寸由行数和列数来确定。
例如,一个3x4的矩阵意味着它有3行和4列。
二、矩阵的运算1.加法:两个相同尺寸的矩阵可以通过对应位置的元素相加来得到和矩阵。
2.减法:两个相同尺寸的矩阵可以通过对应位置的元素相减来得到差矩阵。
3.数乘:实数与矩阵的乘法是通过每一行的所有元素与该实数相乘来得到的。
4.乘法:两个矩阵相乘只有在第一个矩阵的列数等于第二个矩阵的行数时才能进行。
乘积矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
5.转置:将矩阵的行和列互换得到转置矩阵。
三、特殊矩阵1.对角矩阵:除了主对角线上的元素外,其他位置都是0的矩阵。
对角矩阵是正交矩阵的一种。
2.正交矩阵:其转置等于其逆的方阵。
正交矩阵是一种特殊的方阵,除了主对角线上的元素外,其他位置的元素都是0。
正交矩阵在向量空间中保持向量长度和角度不变。
3.单位矩阵:一种特殊的方阵,其对角线上的元素都为1,其他位置都是0。
单位矩阵是矩阵乘法的单位元。
4.上三角矩阵:主对角线以下的所有元素都是0的方阵。
上三角矩阵的上三角部分包含所有的非零元素。
5.下三角矩阵:主对角线以上的所有元素都是0的方阵。
下三角矩阵的下三角部分包含所有的非零元素。
6.对角占优矩阵:除了主对角线上的元素外,其他位置的元素都是非正数的方阵。
对角占优矩阵是一种特殊的方阵,它在数值计算中具有重要应用。
7.反对角占优矩阵:除了主对角线上的元素外,其他位置的元素都是非负数的方阵。
反对角占优矩阵是一种特殊的方阵,它在数值计算中具有重要应用。
8.范德蒙德矩阵:由等差数列组成的方阵。
矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。
本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。
一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。
一般用大写字母表示矩阵,例如A、B、C等。
矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。
例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。
矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。
例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。
若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。
三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。
例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。
通过矩阵的运算,可以求解出未知数向量x。
2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。
特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。
二、矩阵及其运算1、矩阵的定义由m×n个数a ij(i=1,2,..m;j=1,2,..n)排列成的m行n列的数表a11 a12 (1)a21 a22 (2)……………………am1 am2 ……amn称为m行n列矩阵,简称m×n矩阵,记作:a11 a12 (1)a21 a22 (2)……………………am1 am2 ……amn以数aij为元素的矩阵可简记为:(aij)或(aij)m×n,m×n矩阵A也记作A m×n元素是实数的矩阵叫实矩阵,元素是复数的矩阵叫复矩阵。
行和列都是n的矩阵称为n介矩阵,或n介方阵。
只有一行的矩阵:A=(a1,a2,…an)称行矩阵,也叫行向量,只有一列的矩阵:a1a2A= a3..an称为列矩阵或列向量如果两个矩阵行数和列数相同,称其为同型矩阵,如果矩阵A和矩阵B是同性矩阵,且对应的元素也相同,则矩阵A和矩阵B相等,记作A=B元素都是0的矩阵称为令矩阵,记作O,不同型的领矩阵是不相同的注意:不要和行列式混淆,行列式表示一个数值,而矩阵只是一个按一定顺序排列的数表,不是一个数。
单位矩阵:一个方阵,如果他除了对角线上的元素都为1之外,其它元素都是0,这个矩阵叫单位矩阵。
如: 1 00 1单位矩阵一般用E表示对称矩阵:如果一个方阵,他的元素按对角线对称的元素相等,那么他是对称矩阵2、矩阵的计算(1)矩阵的加法:只有同型矩阵才能相加,如m×n的矩阵A=(aij)和B=(bij)相加,记作:A+BA11+b11 a12+b12 … a1n+b1nA21+b21 a22+b22 … a2n+b2nA+B= ……………………………………An1+bn1 an2+bn2 … ann+bnn矩阵加法满足交换率和结合律A+B=B+AA+B+C=A+(B+C)(2)矩阵的数乘矩阵A与常数k的乘积记作kA或Ak,Ka11 ka12 … ka1nKa21 ka22 … ka2nkA= …………………………kan1 kan2 … kann矩阵数乘满足下列运算律:(ku)A=k(uA)(k+u)A=kA+uAK(A+B)=kA+uB矩阵的加法和数乘统称为矩阵的线性变换(3) 矩阵与矩阵相乘定义:设A=(aij)是一个m*s矩阵,B=(bij)是一个s*n矩阵,那么规定矩阵A和B相乘是一个m*n矩阵C=(cij)其中:Cij=ai1b1j+ai2b2j+... aisbsj=∑=skaikbkj1(i=1,2,…,m;j=1,2,…n)记作C=AB例1:求AB一个1*s行矩阵于一个s*1列矩阵相乘是一个1介方阵,也就是一个数。
矩阵及其运算加法:()ij m n A a ´=,()ij m n B b ´=是两个m n ´矩阵,称矩阵()ij ij m n C a b ´=+为A 与B 的和,记为C A B =+.注意:两个矩阵必须是同型矩阵(行数和列数分别对应相同)才能相加. 数乘:设()ij m n A a ´=是一个m n ´矩阵,k 是一个数,称()ij m n C ka ´=为数k 与矩阵()ij m n A a ´=的数量乘积,记为C kA =.矩阵的乘法运算;设()ik m n A a ´=, ()kj n s B b ´=,称m s ´矩阵()ij m s C c ´=为矩阵A 与B 的乘积.其中C 的(,)i j 位置的元素为:11221nij i j i j in nj ik kjk c a b a b a b ab ==+++=∑记为(1,2,,;1,2,,i m j s ==L L ).将矩阵A 与矩阵B 的乘积C 记为AB ,即C AB =. 乘法运算的性质:(1)乘法结合律()()A BC AB C =;(其中,,A B C 分别是,,m n n s s t 创 矩阵)(2)乘法对加法的分配律左分配律()A B C AB AC +=+;(其中,,A B C 分别是,,m n n s n s 创 矩阵)右分配律()B C A BA CA +=+;(其中,,A B C 分别是,,n s m n m n 创 矩阵) (3)()()()k AB kA B A kB ==;(其中,A B 分别是,m n n s 创矩阵,k 是一个数) (4)m n E A AE A ==.(其中A 是m n ´矩阵,,m n E E 分别是m 阶和n 阶单位矩阵) 注意(ⅰ)第一个矩阵的列数与第二个矩阵的行数相等时两矩阵乘积才有意义.(ⅱ)由于乘法没有交换律,在进行两个矩阵乘积时,矩阵因子的顺序不能变.(ⅲ)矩阵的乘法不满足消去律.(ⅳ)多个矩阵乘积时经常使用乘法结合律()()A BC AB C =.方阵的方幂:设A 是n 阶方阵,我们称k kA AA A =6447448L 个为A 的k 次幂,特别规定0A E =.1110()m m m m f x a x a x a x a --=++++L 是多项式,称1110()m m m m f A a A a A a A a E --=++++L 为方阵A 的多项式.例 设12n A l l l 骣÷ç÷ç÷ç÷ç÷ç÷=ç÷ç÷÷ç÷ç÷ç÷ç桫O 12n B m m m 骣÷ç÷ç÷ç÷ç÷ç÷=ç÷ç÷÷ç÷ç÷ç÷ç桫O ,(1)求AB 及BA ;(2) 求k A 及()f A ,其中10()m m f x a x a x a =+++L . 例:证明cos sin cos sin sin cos sin cos nn n n n q q q qq q q q 骣骣--鼢珑? 珑鼢鼢珑桫桫. 矩阵的转置与共轭运算称以矩阵A 的行为列,列为行构成的矩阵为A 的转置矩阵,记为T A . 注意:,A B 分别是,m n n s 创矩阵,则()T T T AB B A =.例 设122a 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,121b 骣÷ç÷ç÷ç÷=-ç÷ç÷ç÷÷ç桫,求T a b ,T ba ,()100T ba 例.111212122212n n n n n n a b a b a b a b a b a b A a b a b a b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L L L L,求n A 例. 11A λλλ⎛⎫⎪=⎪ ⎪⎝⎭,求n A 例..设实矩阵111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,且T A A O =,证明A O =; 定义 A 是n 阶方阵,如果T A A =,称A 为对称矩阵;如果T A A =-,称A 为反对称矩阵.由定义易知:n 阶方阵A 为对称矩阵当且仅当(,1,2,,)ij ji a a i j n ==L ;n 阶方阵A 为反对称矩阵当且仅当(,1,2,,)ij ji a a i j n =-=L .定义 ()ij m n A a ´=,如果ij a 取自复数集,称A 是复矩阵,称由ij a 的共轭复数为元素构成的矩阵()ij m n A a ´=为A 的共轭矩阵. 分块矩阵及其运算的注意事项1.利用分块矩阵表示矩阵或进行矩阵运算只是为了表达简便.分块矩阵的运算与普通数字元素的运算法则和运算律是类似的;2.第一个矩阵列的分块方式与第二个矩阵行的分块方式必须相同,即ik A 列数必须等于kj B 的行数,这时两分块矩阵的乘积才有意义;3.由于矩阵乘法没有交换律,作分块矩阵乘法时,一定要注意子块的前后顺序不能换.即上面的ik kj A B 绝对不能写成kj ik B A .4.分块矩阵的转置不仅要将子块为元素构成的矩阵看成普通矩阵进行转置,还要将每块转置.利用矩阵运算表示线性方程组设线性方程组为11112211211222221122,,.........................................n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)利用矩阵的线性运算和矩阵相等定义,( 1)可以改写为:1112112122221212n n n m m mn m a a a b a a a b x x x a a a b ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭称为线性方程组(1)的向量线性组合表示法,简记为1122n n x x x αααβ++=,利用矩阵乘积和矩阵相等定义还可以改写为:1112111212222212.....................n n m m mn n m a a a x b a a a x b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭称为线性方程组(1)的矩阵乘积表示法,简记为AX β=.方阵的行列式的定义及性质定义设()ij n A a =是n 阶方阵,以A 的元素构成的行列式ij n a 称为方阵A 的行列式.记为A 或det A .注意 :(1)矩阵是数表,行列式是数值,这是它们之间的本质区别. (2)只有方阵才定义行列式. 方阵的行列式具有以下性质: 性质1 A 是n 阶方阵,则n kA k A = 性质2 A 是n 阶方阵,则T A A = 性质3 A 是n 阶方阵,B 是m 阶方阵,则A CA B O B=. 推论1 A 是n 阶方阵,B 是m 阶方阵,则A OA B C B= 推论2 设12,,,S A A A L 均为方阵,则1212S SA A A A A A =L O性质4 ,A B 均为n 阶方阵,则AB A B =.注意,,A B 均为n 阶方阵,A B A B +=+不一定成立. 例 已知A 是3阶方阵,且2A =-,计算(1)2A ;(2) A A ;(3)2A OE A-.例 已知A ,B 都是3阶方阵,且9A =-,3AB E O +=,求B .例 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,求B .可逆矩阵设A 是n 阶方阵,如果存在n 阶方阵B ,使得AB BA E ==,称A 为可逆矩阵,称B 为A 的一个逆矩阵.唯一性:可逆矩阵的逆矩阵唯一.n 阶方阵A 是可逆的充分必要条件为0A ≠.而且1*1A A A-=. 定理:设,A B 都是n 阶方阵,如果AB E =,那么BA E =.伴随矩阵:设()ij n n A a ⨯=,称由ij a 在A 中的代数余子式ij A 为元素构成的矩阵*A 112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭为A 的伴随矩阵. 可逆矩阵的性质:性质1 设A 是n 阶可逆矩阵,A 的逆矩阵1A -也可逆,且()11A A --=;性质2设A 是n 阶可逆矩阵,k 是非零数,则kA 可逆,且()111kA k A ---=; 性质3设,A B 都是n 阶可逆矩阵,那么AB 也可逆,且111()AB B A ---=; 推广: 12,,,s A A A 都是n 阶可逆矩阵,则12s A A A 也可逆,且()11111221s s A A A A A A ----=.性质4设A 是n 阶可逆矩阵,T A 也可逆,且()()11TT A A --=;注意 ,A B 都是n 阶可逆矩阵,但A B +不一定可逆.性质5设(1,2,,)i A i s =L 为i n 阶可逆方阵,准对角形矩阵1s A A ⎛⎫⎪⎪ ⎪⎝⎭可逆,且11111s s A A A A ---⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭; 且11111s s a a a a ---⎛⎫⎛⎫⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(0,1,2,,)i a i s ≠=.例已知A ,B 都是3阶方阵,且9A =-,3AB E O +=,求B 及12A O O B -⎛⎫⎪⎝⎭.性质6 设A 是m 阶可逆矩阵,,B C 都是m n ⨯矩阵,且AB AC =,则B C =,设A 是n 阶可逆矩阵,,B C 都是m n ⨯矩阵,且BA CA =,则B C =. 特别:设A 是m 阶可逆矩阵,B 是m n ⨯矩阵,且AB O =,则B O =,设A 是n 阶可逆矩阵,B 是m n ⨯矩阵,且BA O =,则B O =. 证明方阵A 可逆的常用方法:(1)找到一个方阵B ,使得AB BA E ==;(2)证明0A ≠例A 是n 阶方阵,且满足223A A E O -+=,证明3A E -可逆,并求()13A E -- 求可逆方阵A 的逆矩阵的方法 (1)公式法:利用伴随矩阵;(2)用初等行变换求矩阵方程AX B =(A 可逆)的求法:()()1AB E A B -−−−−→初等行变换,则1X A B -=即可求得.例.A 是行等和矩阵(各行元素之和都相等),且A 可逆,证明:1A -也是行等和矩阵.例. ,A B 都为n 阶方阵,且A B AB +=1) 证明:A E -可逆;2)证明:AB BA =;3)如果130210002B 骣-÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,求A 证明:1)由A B AB +=有()A A E B O --=,所以()A E A E B E ---=-, 即()()A E B E E --=,所以A E -可逆,且1()A E B E --=- 2)由()()A E B E E --=,有()()B E A E E --=, 所以()()()()A E B E B E A E --=--,即有AB BA =3)由1()A E B E --=-有()11100030010200001001A E B E --骣骣-鼢珑鼢珑鼢珑鼢=+-=+珑鼢珑鼢珑鼢鼢珑桫桫1100102210011010001033001001002骣骣鼢珑鼢珑鼢珑鼢珑骣鼢珑÷鼢ç珑÷鼢ç÷珑鼢ç÷鼢=+-=-珑ç÷鼢珑ç÷鼢珑ç÷鼢珑÷ç鼢桫珑鼢珑鼢珑鼢鼢珑鼢珑桫桫例.已知121210121,()(),00210003A B A E A E -骣--÷ç÷ç÷ç÷-ç÷ç÷==-+ç÷ç÷÷ç÷ç÷ç÷ç桫求1()B E -- 解:由1()(),B A E A E -=-+有()(),A E B A E -=+,AB B A E --=()()2A B E B E E ---=,所以()()11()2,()2A EB E E B E A E ---=-=- 例. 方阵A 满足223A A E O +-=求证:4A E +可逆,并求其逆;证明:由于223A A E O +-=,有()()425A E A E E +-=-,所以4A E +可逆,其逆为()()11425A E A E -+=--. 例.,,AB A B +均为n 阶可逆矩阵,求证11A B --+也可逆,并求其逆 证明:()11,A A B B B A --+=+所以()()1111A B A B A B ----+=+, 所以11A B --+可逆,且()()1111A B B B A A ----+=+.例.设A 为n 阶非零矩阵,E 为n 阶单位矩阵,30A =,则( ) A .E A -不可逆,E A +不可逆;B. E A -不可逆,E A +可逆; C. E A -可逆,E A +可逆; D. E A -可逆,E A +不可逆 例. 0k A =,求()1E A --例.设16,A XA A XA -=+ 其中100310041007A ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,求X .例.设100020001A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,且满足*28,A XA XA E =-求X伴随矩阵的性质设A 是n 阶方阵,*A 是A 的伴随矩阵,则**AA A A A E ==.()ij nA a =矩阵的伴随阵*()ji A A =具有如下性质:1)**AA A A A E ==,特别地A 可逆时11*A A A-=(或1*A A A -=) 2)*A =1-n A ;3)(*)r A =()()()1101n r A n r A n r A n ìïïïï-íïï<-ïïî==4)()A **=A An 2- (其中A 是n 阶方阵,2n >)注意 *A 的第(1,2,,)i i n =列元素是A 的第(1,2,,)i i n =行元素在A 的代数余子式.例 设A 是3阶方阵,且2A =-,求(1) 1A -;(2)*A ;(3)1*2A A -+.例 A 是3阶方阵,B 是2阶方阵,且2A =-,1B =,则23A OO B=- ;*2A = .例 33A R ´Î,且()**16,det 0,A A =>求2A -例 设A 是n 阶方阵,3A =,*A 是A 的伴随矩阵,则1*2A A --= 例设,A B 均为2阶方阵,**,A B 分别为,A B 的伴随矩阵,若3,2A B ==则O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为( ) A .**32O A B O ⎛⎫ ⎪ ⎪⎝⎭;B.**23O A B O ⎛⎫⎪ ⎪⎝⎭;C. **23O B A O ⎛⎫⎪ ⎪⎝⎭;D. **32O B A O ⎛⎫⎪ ⎪⎝⎭矩阵的初等行(列)变换1.交换矩阵中某两行(列)对应位置的元素;2.矩阵的某行(列)的元素都乘一个非零数;3.矩阵的某行(列)元素乘一个数加到另一行(列)对应位置的元素上. 定理 任何m n ⨯矩阵A 都可以通过若干次初等行变换化为行阶梯形矩阵,进而化为行最简形矩阵. 矩阵的秩设A 是一个m n ⨯矩阵,如果A 中存在r 阶子式不为零,而所有1r +阶子式(如果有的话)全为零,我们称r 为矩阵A 的秩,记为()R A 或秩()A . 注意:(1)()0R A =当且仅当A O =;(ⅱ)()()T R A R A =;(ⅲ)n 阶方阵A 的秩()R A n =的充分必要条件0A ≠; 即n 阶方阵A 可逆的充分必要条件为()R A n =. (IV )矩阵子块的秩不超过矩阵的秩. 定理:初等变换不改变矩阵的秩. 求秩的常用方法1.求矩阵A 的秩:利用矩阵的初等变换将矩阵A 化为阶梯形矩阵,阶梯数即为矩阵A 的秩.2.如果A 是n 阶方阵,0A ≠充分必要条件是()R A n =.求元素含有参数的方阵A 的秩时,先求出0A ≠时的参数取值,此时()R A n =; 对于使0A =的参数再特别讨论.例 1111121a A b b ⎛⎫⎪= ⎪ ⎪⎝⎭,讨论A 的秩.初等矩阵 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 定理:设A 是m n ⨯矩阵,A 左(右)乘一个m 阶初等矩阵相当于对A 作一次相应的初等行(列)变换.例.已知()33ij A a ´=可逆,将A 的第2列加上第3列的5倍,然后第1列减去第2列的2倍得到B , 求1B A -解:11121511B A 骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫, 111111211151B A ----骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫,11111211151B A ---骣骣鼢珑鼢珑鼢珑鼢=-珑鼢珑鼢珑鼢鼢珑桫桫1112112115151骣骣骣鼢 珑 鼢 珑 鼢 珑 鼢 ==珑 鼢 珑 鼢 珑 鼢 鼢 珑 --桫桫桫. 例.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -=(B )1.C PAP -=(C ).T C P AP = (D ).T C PAP = 关于初等矩阵和矩阵秩的一些性质1.()()()R A B R A R B +≤+;2. ()(){}min ,()R AB R A R B ≤3.()()R kA R A =,其中k 为非零数;4.矩阵P ,Q 可逆,则()()R PAQ R A =.5.A 与B 等价当且仅当存在可逆矩阵P 与可逆矩阵Q ,使得PBQ A =.6.n 阶方阵A 可逆当且仅当A 可以写成一些初等矩阵的乘积.7. 设A 是秩为r 的m n ⨯矩阵,则存在m 阶可逆矩阵P 和n 阶可逆矩阵Q ,使得rEO PAQ O O ⎛⎫= ⎪⎝⎭. 8. ()()A O R R A R B O B ⎛⎫=+ ⎪⎝⎭9. ()ik m n A a ´=, ()kj n s B b ´=,且AB O =,则()()R A R B n +≤ 10. ()()()T T R A R A A R AA ==。
矩阵及其运算矩阵是线性代数中的一个重要概念,它在数学和工程领域中得到广泛应用。
本文将介绍矩阵的定义和基本操作,包括矩阵的加法、减法、乘法以及转置运算。
1. 矩阵的定义矩阵由m行n列的数排列成的矩形数表称为m×n矩阵,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个数称为元素,用a(i,j)表示矩阵中第i行第j列的元素。
例如,一个2×3的矩阵A可以定义为:A = [a(1,1) a(1,2) a(1,3)][a(2,1) a(2,2) a(2,3)]2. 矩阵的加法和减法对于两个同型矩阵A和B(即行列数相等),它们的和记为A + B,差记为A - B。
加法和减法的运算法则是对应元素相加或相减。
例如,对于两个2×3的矩阵A和B,它们的和A + B和差A - B可以表示为:A +B = [a(1,1) + b(1,1) a(1,2) + b(1,2) a(1,3) + b(1,3)][a(2,1) + b(2,1) a(2,2) + b(2,2) a(2,3) + b(2,3)]A -B = [a(1,1) - b(1,1) a(1,2) - b(1,2) a(1,3) - b(1,3)][a(2,1) - b(2,1) a(2,2) - b(2,2) a(2,3) - b(2,3)]3. 矩阵的乘法矩阵的乘法是定义在矩阵上的一种运算,对于矩阵A(m×p)和矩阵B(p×n),它们的乘积记为AB,结果是一个m×n的矩阵。
具体计算过程是,矩阵AB的第i行第j列的元素是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
用数学公式表示为:AB(i,j) = ∑(A(i,k) * B(k,j)) (k从1到p)例如,对于一个2×3的矩阵A和一个3×2的矩阵B,它们的乘积AB可以表示为:AB = [a(1,1)*b(1,1) + a(1,2)*b(2,1) + a(1,3)*b(3,1) a(1,1)*b(1,2) +a(1,2)*b(2,2) + a(1,3)*b(3,2)][a(2,1)*b(1,1) + a(2,2)*b(2,1) + a(2,3)*b(3,1) a(2,1)*b(1,2) +a(2,2)*b(2,2) + a(2,3)*b(3,2)]4. 矩阵的转置一个矩阵的转置是将其行和列互换得到的新矩阵。
矩阵的运算及其运算规则矩阵是现代数学中的一种重要工具,它在线性代数、图论、物理学等领域中都有广泛的应用。
矩阵的运算是研究矩阵性质和解决实际问题的基础。
本文将介绍矩阵的运算及其运算规则。
(一)矩阵的加法矩阵的加法是指将两个相同大小的矩阵对应位置的元素相加。
假设有两个矩阵A和B,它们的大小都是m行n列,记作A = [aij]m×n,B = [bij]m×n,则矩阵A和B的加法C = A + B定义为C = [cij]m×n,其中cij = aij + bij。
例如,对于矩阵A = [1 2 3; 4 5 6]和矩阵B = [7 8 9; 10 11 12],它们的加法结果为C = [8 10 12; 14 16 18]。
矩阵的加法满足以下运算规则:1. 加法满足交换律,即A + B = B + A。
2. 加法满足结合律,即(A + B) + C = A + (B + C)。
3. 存在一个零矩阵0,使得A + 0 = A。
4. 对于任意矩阵A,存在一个相反矩阵-B,使得A + (-B) = 0。
(二)矩阵的数乘矩阵的数乘是指将一个矩阵的每个元素都乘以一个数。
假设有一个矩阵A和一个实数k,记作kA,则矩阵kA定义为kA = [kaij]m×n。
例如,对于矩阵A = [1 2 3; 4 5 6]和实数k = 2,它们的数乘结果为kA = [2 4 6; 8 10 12]。
矩阵的数乘满足以下运算规则:1. 数乘满足结合律,即k(lA) = (kl)A,其中k和l分别为实数。
2. 数乘满足分配律,即(k + l)A = kA + lA,其中k和l分别为实数。
3. 数乘满足分配律,即k(A + B) = kA + kB,其中k为实数,A和B 为矩阵。
(三)矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A和一个n行p列的矩阵B 相乘得到一个m行p列的矩阵C。
假设有两个矩阵A和B,它们的大小分别为m行n列和n行p列,记作A = [aij]m×n,B = [bij]n×p,则矩阵A和B的乘法C = AB定义为C = [cij]m×p,其中cij= ∑(ai1 * b1j)。
矩阵及其运算矩阵是在数学中常见的一种数据结构,它由行和列组成的矩形或方形的数表。
矩阵的运算涉及到加法、减法、乘法等多种操作。
下面将对矩阵及其运算进行详细介绍。
1. 矩阵定义与表示方法:矩阵可以用一个大写字母表示,如A;矩阵的行数和列数分别用小写m和n表示,记为A(m,n)。
也可以用方括号表示矩阵,如A=[a_ij](m×n),其中a_ij表示矩阵A的第i行第j列的元素。
2. 矩阵的加法:矩阵加法要求两个矩阵具有相同的行数和列数,即A(m,n)和B(m,n)。
两个矩阵相加的结果是一个新的矩阵C,C(i,j) = A(i,j) + B(i,j),其中1≤i≤m,1≤j≤n。
3. 矩阵的减法:矩阵减法与矩阵加法类似,也要求两个矩阵具有相同的行数和列数。
两个矩阵相减的结果是一个新的矩阵D,D(i,j) = A(i,j) - B(i,j),其中1≤i≤m,1≤j≤n。
4. 矩阵的乘法:矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,即A(m,p)和B(p,n)。
两个矩阵相乘的结果是一个新的矩阵E,E(i,j) = ΣA(i,k) * B(k,j),其中1≤i≤m,1≤j≤n,1≤k≤p。
矩阵乘法是非交换的,即A·B≠B·A。
5. 矩阵的转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。
若A的转置记为A^T,则矩阵A(m,n)的转置是一个新的矩阵F(n,m),F(i,j) = A(j,i),其中1≤i≤n,1≤j≤m。
6. 矩阵的数量积:矩阵的数量积又称为点积或内积,是两个矩阵对应元素相乘后求和的结果。
若A(m,n)和B(m,n)为两个矩阵,其数量积记为G,G = ΣA(i,j) * B(i,j),其中1≤i≤m,1≤j≤n。
7. 矩阵的幂:矩阵的幂是指矩阵连乘自身多次得到的结果。
若A是一个矩阵,其幂记为A^k,k为正整数,A^k = A·A·...·A。
§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。
矩阵及运算
矩阵是由数个数排成矩形并按一定顺序排列而成的一种数学结构。
矩阵一般用大写字母表示,矩阵中的一个数用小写字母表示。
例如,一个m行n列的矩阵可表示为A=[aij]mxn,其中i
表示行数,j表示列数,aij表示矩阵中第i行第j列的元素。
矩阵可以进行加、减、乘、转置等运算,以下是各种运算的定义:
1.矩阵加法:两个相同大小的矩阵A和B相加得到矩阵C,其中C的每个元素都是A和B对应位置元素的和,即C= A+B。
2.矩阵减法:两个相同大小的矩阵A和B相减得到矩阵C,其中C的每个元素都是A和B对应位置元素的差,即C= A-B。
3.矩阵乘法:两个矩阵A和B相乘得到矩阵C,其中C的大
小为A的行数和B的列数,即C=m×p,其中m为A的行数,p为B的列数。
C中的每个元素cij都可以表示为cij = ai1b1j + ai2b2j + … + aimb mj。
4.矩阵转置:将矩阵A的行和列互换得到矩阵AT,即AT
=[aij]nxm,其中n为A的列数,m为A的行数,AT的第i行
第j列的元素等于A的第j行第i列的元素。
5.矩阵求逆:如果矩阵A存在逆矩阵A-1,则矩阵A可逆,即
A×A-1= A-1×A=I。
其中,I为单位矩阵,它的对角线元素为1,其他元素为0。
矩阵的运算广泛应用于线性代数、微积分、统计学等领域,是数学中非常重要的概念之一。