图形的位置总结
- 格式:docx
- 大小:37.03 KB
- 文档页数:2
图形位置知识点总结一、平面直角坐标系1.概念:平面直角坐标系是由两条互相垂直的实轴和虚轴组成的坐标系,通常用来描述平面上的点的位置。
2.轴的方向和坐标轴:实轴通常表示为x轴,垂直于实轴的虚轴通常表示为y轴。
x轴和y轴的交叉点通常称为原点O。
3.坐标的表示:平面上的点可以用有序数对(x, y)表示,其中x表示点在x轴上的投影,y 表示点在y轴上的投影。
4.象限的划分:平面直角坐标系将平面分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。
二、图形的方向1.图形的方向:通常来说,图形的方向是指图形在平面上所占的位置和朝向。
2.方向角的表示:方向角是表示一条射线相对于x轴的角度,一般用θ表示。
3.方向与坐标轴的关系:图形的方向可以通过其方向角来表示,具体的方向与坐标轴的位置关系可以通过方向角来确定。
三、图形的平移1.概念:图形的平移是指将一个图形沿着平面上的某个方向移动一定的距离,但其形状和大小保持不变的变换。
2.平移的表示:平移通常可以用坐标变换的方式来表示,对于平移向量(u, v),图形中每个点的坐标点(x, y)在平移后的坐标点为(x+u, y+v)。
3.平移的性质:平移不改变图形的形状和大小,只是改变了其位置。
四、图形的旋转1.概念:图形的旋转是指绕着某个点或者某个轴线进行旋转变换,使得图形的位置和方向发生改变。
2.旋转的表示:对于绕原点O逆时针旋转θ度的变换,图形中每个点的坐标点(x, y)在旋转后的坐标点为(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。
3.旋转的性质:旋转不改变图形的形状和大小,只是改变了其方向和位置。
五、图形的对称1.概念:图形的对称是指图形在某个对称中心或者对称轴上的一种变换,使得图形的位置和形状保持对称。
2.对称的分类:图形的对称可以分为轴对称和点对称两种情况。
3.轴对称的性质:对于轴对称的图形,以对称轴为中线折叠后,两部分重合。
4.点对称的性质:对于点对称的图形,以对称中心为中心旋转180°后,重合。
图形与位置知识点总结图形与位置是数学的一个重要分支,是研究图形的性质、变换和位置关系的数学学科。
在日常生活中,人们经常会遇到各种图形和位置关系的问题,比如建筑的设计、地图的绘制、交通规划等,因此图形与位置知识对于人们的日常生活和工作至关重要。
本文将从图形的基本概念、图形的性质、图形的变换和图形的位置关系几个方面对图形与位置知识进行总结与分析。
一、图形的基本概念1. 点、线、面点是最基本的图形元素,它没有长度、宽度、高度,只有位置,用于表示一个位置。
线是由无限多个点连在一起形成的,没有宽度,只有长度,用于表示两个点之间的位置关系。
面是由无限多个线所连成的,有面积,用于表示一个封闭的空间。
2. 线段、射线、直线线段是两个端点之间的部分,有一定的长度;射线是起点为一端,向另一端延伸无穷远的部分;直线是没有端点、没有起点和终点,无限延伸的。
3. 多边形多边形是一个平面图形,由有限个线段组成。
多边形的特点是:周长有限,内角和为常数,外角和为常数。
4. 圆与圆周圆是一个平面上各点到一个固定点的距离等于一个常数的集合;圆周是围绕一个中心点画的一圈。
二、图形的性质1. 图形的面积图形的面积是用来表示图形所占的平面区域大小的,常用单位有平方米、平方厘米等。
不同图形的面积计算公式也不同,如正方形的面积为边长的平方,圆的面积为πr^2。
2. 图形的周长图形的周长是用来表示图形边缘的长度的,常用单位有米、厘米等。
不同图形的周长计算公式也不同,如正方形的周长为4倍边长,圆的周长为2πr。
3. 图形的对称性图形的对称性是指图形在某个轴对称、点对称或中心对称时,具有的性质。
对称图形的特点是两边或者多边形,按某种规则可以折叠在一起。
对称图形常见的轴对称有直线对称和旋转对称。
4. 图形的相似性图形的相似性是指如果两个图形的形状相似,那么它们的长度、面积和体积的比例相等。
相似图形的特点是形状相同,大小不同。
5. 图形的等腰性等腰图形是指一个图形的两条边长度相等,角度也相等。
位置与方向知识点总结在位置与方向知识点总结中,我们将对位置与方向的相关概念和应用进行全面总结,并提供一些实际应用的案例。
本文将按照以下几个主题进行论述:坐标系与坐标、向量与方向、几何图形中的位置与方向、实际生活中的位置与方向。
一、坐标系与坐标:在数学和物理学中,我们常常使用坐标系来描述一个点的位置。
常见的坐标系有平面直角坐标系和三维直角坐标系。
在平面直角坐标系中,我们通常使用x轴和y轴来确定一个点的位置。
在三维直角坐标系中,我们则需要使用x轴、y轴和z轴来确定一个点的位置。
这些轴相互垂直,并且通过原点。
二、向量与方向:向量是位置与方向的重要概念。
在数学中,我们用向量来表示一个有大小和方向的量。
向量通常用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
在几何学中,向量也可以表示为两个点之间的位移。
我们可以使用向量进行加减、求长度、求夹角等运算。
三、几何图形中的位置与方向:在几何学中,我们经常需要描述几何图形之间的位置关系和方位关系。
常见的几何图形包括点、线段、直线、射线、角和多边形等。
我们可以通过描述它们的位置和方向来确定它们之间的关系。
例如,两个点之间的位置可以通过它们的坐标来确定,两条直线之间的夹角可以通过它们的斜率来确定。
四、实际生活中的位置与方向:位置和方向的概念不仅在数学和几何学中有应用,也广泛应用于实际生活中。
例如,人们常常使用地图来确定一个地点的位置和方向。
在导航系统中,我们也需要确定车辆的位置和方向以指导路线规划。
此外,位置和方向的概念还应用于物流管理、交通控制、机器人导航等领域。
总结:位置与方向是数学和几何学中的重要概念,也应用于实际生活中的各个领域。
通过坐标系与坐标的应用,我们可以准确描述一个点的位置;通过向量与方向的运算,我们可以计算位移、夹角等。
在几何图形中,我们可以通过描述它们的位置与方向来确定它们之间的关系。
实际生活中,位置与方向的概念在地图、导航系统、物流管理等领域中有着广泛的应用。
位置知识点归纳总结高中一、位置概念及表示方法1. 位置的概念在生活中,我们常常需要描述一个物体的位置,比如“这个苹果在盘子上”、“那只猫在桌子下面”等。
位置是指物体所在的空间位置,我们可以用各种方法来描述一个物体的位置,比如用坐标表示、用方位词描述等。
2. 坐标表示法坐标表示法是一种用数学语言来描述物体位置的方法,它通常用来描述平面上的位置。
在直角坐标系中,我们可以用x轴和y轴上的数值来表示一个点的位置,这两个数值分别称为该点的横坐标和纵坐标,通过这两个数值的组合,我们就可以唯一确定一个点在平面上的位置。
3. 方位词描述法方位词描述法是一种用语言来描述物体位置的方法,它通常用来描述物体在空间中的位置关系。
常用的方位词有:上下左右前后、东南西北等。
通过这些方位词,我们可以清楚地表达一个物体在空间中的位置。
二、平面位置关系1. 在平面内,我们常常需要研究物体的相对位置关系,比如两个点之间的距离、两条线之间的夹角、一个图形的对称性等。
下面将分别介绍这些平面位置关系。
2. 点和点的位置关系对于在平面上的两个点P和Q,它们的位置关系有:重合、相离、相交、相邻等。
其中,重合是指两个点坐标完全相同,相邻是指两个点在平面上形成线段。
3. 点和直线的位置关系点和直线之间的位置关系有:在直线上、在线的一侧、在线的另一侧、直线上的点与线段的关系等。
这些位置关系在几何学中经常会用到。
4. 线和线的位置关系两条线之间的位置关系有:相交、平行、垂直等。
平行指两条线永远不相交,垂直指两条线的夹角为90度。
5. 图形的对称性图形的对称性是指图形关于一条直线、一点或一个中心对称。
例如,关于一条直线对称指图形在直线上的两侧完全相同,关于一个点对称指图形在点的两侧完全相同,关于一个中心对称指图形绕某一点旋转180度后完全相同。
三、空间位置关系1. 点和点的位置关系在空间中,点和点之间的位置关系有:重合、相离、相交、相邻等。
同样的,重合是指两个点坐标完全相同,相邻是指两个点在空间上形成线段。
2020年小升初数学专题复习训练—空间与图形图形与位置(2)知识点复习一.根据方向和距离确定物体的位置【知识点归纳】1.确定观察点,建立方向标;2.用量角器确定物体方向;3.用刻度尺根据物体方向距离确定其位置;4.找出物体具体位置,标上名称.【命题方向】例:(1)以灯塔为观测点,A岛在东偏北60°的方向上,距离是4千米.(2)以灯塔为观测点,货轮在西偏南40°的方向上,距离是2千米(3)客轮在灯塔西偏北35°的方向上,距离是3千米.请画出客轮的位置.分析:(1)由图意可知:以灯塔为观测点,A岛在东偏北60°的方向上,又因图上距离1厘米表示实际距离1千米,而A岛与灯塔的图上距离为4厘米,于是就可以求出A岛与灯塔的实际距离.(2)以灯塔为观测点,货轮在西偏南40°的方向上,又因图上距离1厘米表示实际距离1千米,而货轮与灯塔的图上距离为2厘米,于是就可以求出货轮与灯塔的实际距离.(3)因为图上距离1厘米表示实际距离1千米,而客轮与灯塔的实际距离是3千米,于是可以求出客轮与灯塔的图上距离,再据“客轮在灯塔西偏北35°的方向上”即可在图上标出客轮的位置.解:(1)以灯塔为观测点,A岛在东偏北60°的方向上,又因图上距离1厘米表示实际距离1千米,所以A岛与灯塔的实际距离为:4×1=4(千米);(2)以灯塔为观测点,货轮在西偏南40°的方向上,又因图上距离1厘米表示实际距离1千米,所以货轮与灯塔的实际距离为:2×1=2(千米);(3)因为图上距离1厘米表示实际距离1千米,而客轮与灯塔的实际距离是3千米,所以客轮与灯塔的图上距离为:3÷1=3(厘米);于是标注客轮的位置如下图所示:.故答案为:4点评:此题主要考查依据方向(角度)和距离判定物体位置的方法以及线段比例尺的意义.二.比例尺【知识点归纳】1.比例尺: 表示图上距离比实地距离缩小的程度,因此也叫缩尺.图上距离和实际距离的比,叫做这幅图的比例尺. 即:图上距离:实际距离=图上距离÷比例尺 比例尺分类:比例尺一般分为数值比例尺和线段比例尺:(1)数值比例尺:例如一幅图的比例尺是1:20000或.为了方便,通常把比例尺写成前项(或后项)是1的比.(2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离.2.比例尺表示方法:用公式表示为:实际距离=图上距离÷比例尺.比例尺通常有三种表示方法.(1)数字式,用数字的比例式或分数式表示比例尺的大小.例如地图上1厘米代表实地距离500千米,可写成:1:50000000或写成:500000001. (2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离.(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一.3.比例尺公式:图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺=图上距离÷实际距离.【命题方向】例1:图上6厘米表示实际距离240千米,这幅图的比例尺是( )A 、1:40000B 、1:400000C 、1:4000000分析:比例尺=图上距离:实际距离,根据题意可直接求得比例尺.解:240千米=24000000厘米,比例尺为6:24000000=1:4000000.故选:C .点评:考查了比例尺的概念,掌握比例尺的计算方法,注意在求比的过程中,单位要统一.例2:把线段比例尺,改为数值比例尺是( )A 、110B 、1:100000C 、1:1000000解:因为10千米=1000000里面,则1里面:1000000里面=1:1000000;答:改成数值比例尺为1:1000000.故选:C.点评:此题主要考查比例尺的计算方法,解答时要注意单位的换算.三.图上距离与实际距离的换算(比例尺的应用)【知识点归纳】单位换算:在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零.【命题方向】例1:在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()千米.A、672B、1008C、336D、1680.=33600000(厘米);33600000厘米=336(千米);故选:C.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.例2:一幅图的比例尺是1:5000000,下面图( )是这幅图的线段比例尺.分析:题干中的数值比例尺是已知的,可根据比例尺的概念(图上距离:实际距离=比例尺),把数值比例尺转换成线段比例尺即可得出答案.解:这幅图的比例尺是1:5000000,地图上1厘米的距离相当于地面上5000000厘米的实际距离. 因为5000000厘米=50千米,所以地图上1厘米的距离相当于地面上50千米的实际距离.故选:C .点评:注意:图上距离一般用厘米作单位,实际距离一般用米或千米作单位.四.应用比例尺画图【知识点归纳】1.方法:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上.要确定图上距离和相对应的实际距离的比.2.比例尺公式:图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺=图上距离÷实际距离.【命题方向】例:街心花园的直径是5米,现在它的周围修一条1米宽的环形路,请按2501的比例尺画好设计图,并求出路面的实际面积.分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积.解:5÷250=0.02(m )=2cm ,(5+1×2)÷250=0.028(m )=2.8cm .5+1×2=7(m ),3.14×[(7÷2)2-(5÷2)2]=3.14×6=18.84(m2).答路面的实际面积18.84m2.作图如下:点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.同步测试一.选择题(共8小题)1.小东和小辰分将学校的正方形花坛画了下来,如图.如果小东是按1:a的比例尺画的,那么小辰按()的比例尺画的.A.1:B.1:3a C.1:3D.1:2.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:4003.如图,小明家在A点处,那么下面哪句话能准确地表述出小明家的方向?()①小明家在北偏东45°方向上.②小明家在东南方向上.③小明家在东偏北45°方向上.④小明家在东北方向上.A.①②B.①②③C.②③④D.①③④4.如果请你将你们教室的黑板按一定的比例缩小后,画在3分米×3分米的白纸上,你会选择下面第()号比例尺.A.10:1B.1:10C.1:10005.在比例尺是1:100000的平面图上,实际距离是1000m,在图上是()A.1m B.1dm C.1cm6.小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.则小红家位于小明家()方向上.A.北偏东15°B.东偏北60°C.西偏南75°D.北偏东30°7.学校操场的长是200米,把它画在比例尺是1:10000的图上,应画()A.2分米B.2厘米C.2毫米8.图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的()A.东偏南30°方向500米处B.南偏东60°方向500米处C.北偏西30°方向500米处D.西偏北30°方向500米处二.填空题(共8小题)9.前项是1的比例尺是把实际距离,后项是1的比例尺是把实际距离.10.淘淘来到实验楼,看到一楼中厅的校园沙盘后驻足观赏,发现标注沙盘的比例尺是1:240,而且在沙盘上南门到主楼大约是45cm,那么淘淘回家后告诉妈妈:进校门后大约要走米才能进入主楼.11.用的比例尺把一个2米长的零件画在设计图上,图纸上的零件长.12.小明家在超市的北偏东30°方向上,距离700米,超市就在小明家的偏°的方向上,距离米.13.实际距离是图上距离的4000000倍,这幅地图的比例尺是.图上距离是实际距离的,这幅地图的比例尺是.14.一种长方形零件,画在比例尺是10:1的平面图上,长是30厘米,宽是16厘米,这个零件的实际长是厘米.15.如图:A点在O点的偏度的方向上,距离是米.16.一个零件长8毫米,比例尺是20:1,画在图纸上的长是毫米.三.判断题(共5小题)17.一张比例尺是5:1的精密零件图纸,如果在图纸上量得长 2.5mm,那么它表示实际的长度是12.5mm..(判断对错)18.把线段比例尺,改成数值比例尺是1:3000000.(判断对错)19.因为“图上距离:实际距离=比例尺”,所以“实际距离=图上距离×比例尺”.(判断对错)20.知道了物体的方向就能确定物体的位置..(判断对错)21.电影院在小明家的西偏南40°方向600米处,那么小明家就在电影院南偏西40°方向600米处..(判断对错)四.操作题(共3小题)22.下面是菲菲家附近的平面图.(1)用数对表示学校、公园和商场的位置.(2)菲菲从学校出发向正北走400m,再向正东走700m就到家了.张亮从公园出发向正西走600m,再向正南走100m就到图书馆了.请在图中标出菲菲家和图书馆的位置,并用数对表示.23.某市新建一个长方形运动场,长240m,宽120m,请在下面图中画出运动场的平面图.(比例尺:1:4000)24.按要求完成下面各题.①以市政府为观测点,青少年宫在偏°的方向上,距离是米.②博物馆在市政府的东偏南30°的方向400米处.请你在平面图上标出博物馆的位置.五.应用题(共4小题)25.学样要建一个长100米,宽60米的长方形操场.请先算一算,再在下面画出操场的平面图.(比例尺1:2000)26.在同一幅地图上,量得甲、乙两地的直线距离是10cm,甲、丙两地的直线距离是15cm.如果甲、乙两地的实际距离是1200km,那么甲、丙两地的实际距离是多少?27.看图完成下面各题.(1)小东家到健身中心的图上距离是6cm,则小东家到健身中心的实际距离是多少米?(2)游乐场在小东家西偏南45°的方向上,实际距离是500m,请在图中标出游乐场的位置.28.在一幅比例尺为1:2000000的地图上,量得甲、乙两地之间的距离是3.6厘米.如果一辆摩托三轮车以每小时30千米的速度在上午8点从甲地出发,问什么时间能够到达乙地?参考答案与试题解析一.选择题(共8小题)1.【分析】2厘米是6厘米的,所以小东选择的比例尺是小辰的;据此解答即可.【解答】解:2÷6==1:a答:小辰按1:a的比例尺画的.故选:A.【点评】解答本题关键是明确比例尺越小,单位长度表示的实际距离越大.2.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.【解答】解:16千米=1600000厘米,4:1600000=1:400000;答:这幅地图的比例尺是1:400000.故选:C.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.3.【分析】根据地图上确定位置的方法,上北下南,左西右东,来判定小明家的位置即可.【解答】解:根据图上确定方向的方法,可以判断小明家的方向应该是东北方向,所以②是错误的.根据图上的角度可知,小明家的方向东偏北和北偏东都是45°,所以,①、③、④都对.故选:D.【点评】本题主要考查地图上确定方向的方法.4.【分析】我们教室的黑板长为:为300cm、宽为140cm,已知图上距离、实际距离,求比例尺,用比例尺=图上距离:实际距离,统一单位代入数据,算出两个比例尺,即可解决问题.【解答】解:3分米=30厘米30:300=1:1030:140≈1:5所以应选比例尺即1:10.故选:B.离,灵活变形列式解决问题.5.【分析】要求甲乙两城的图上距离是多少厘米,根据“实际距离×比例尺=图上距离”,代入数值,计算即可.【解答】解:1000米=100000厘米,100000×=1(厘米);答:在图上是1厘米;故选:C.【点评】解答此题应根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.6.【分析】根据平面图上方向的辨别“上北下南,左西右东”,以学校的位置为观测点,小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.以图上1厘米代表实际距离100米的线段比例尺即可画出学校、小明家、小红的位置.学校、小红家、小家是以学校为顶点的等腰三角形,根据等腰三角形两个底角相同的特征及三角形内角和定理,以小明家的位置为观测点,学校的方向与小红家方向之间的平角是(180°﹣30°)÷2=75°,学校在小明家西偏南30°方向,也就是西偏北30°方向,从而推出小红家在小明家东偏北15°方向.【解答】解:小明家在学校的东偏南30°方向,小红家在学校的正东方向,两家与学校的距离是300米.则小红家位于小明家北偏东15°方向上.故选:A.【点评】此题考查的知识点有:根据方向和距离确定物体的位置、等腰三角形的性质,三角形内角和定理、比例尺的应用等.7.【分析】根据图上距离=实际距离×比例尺,求出图上的长即可.【解答】解:200米=20000厘米,20000×=2(厘米)答:应画2厘米;故选:B.离,灵活变形列式解决问题.8.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的西偏北30°方向500米处;故选:D.【点评】本题主要考查了学生对位置相对性的掌握情况,画图更容易解答.二.填空题(共8小题)9.【分析】根据比例尺=图上距离:实际距离,前项是1的比例尺是把实际距离缩小,后项是1的比例尺是把实际距离放大据此解答.【解答】解:因为比例尺=图上距离:实际距离,所以前项是1的比例尺是把实际距离缩小,后项是1的比例尺是把实际距离放大.故答案为:缩小,放大.【点评】本题考查了比例尺的意义,即比例尺=图上距离:实际距离.10.【分析】图上距离与比例尺已知,求实际距离,用图上距离除以比例尺即可.【解答】解:45÷=10800(厘米)10800厘米=108米答:进校门后大约要走108米才能进入主楼.故答案为:108.【点评】本题主要是灵活利用比例尺的意义解决问题,注意单位的换算.11.【分析】根据“图上距离=实际距离×比例尺”即可求出图上距离.【解答】解:2米=200厘米200×=4(厘米)答:图纸上的零件长4厘米.故答案为:4厘米.【点评】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.12.【分析】根据题意,利用方向的相对性,小明家在超市的北偏东30°方向上,距离700米,则超市就在小明家的南偏西30°的方向上,距离700米.做题即可.【解答】解:小明家在超市的北偏东30°方向上,距离700米,超市就在小明家的南偏西30°的方向上,距离700米.故答案为:南;西;30;700.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法.13.【分析】实际距离是图上距离的4000000倍,即图上1厘米代表实际距离4000000厘米,根据比例尺的意义,这幅地图的比例尺是1厘米:4000000厘米=1:4000000.图上距离是实际距离的,即代表图1厘米代表实际距离200厘米,根据比例尺的意义,这幅地图的比例尺是1厘米:200厘米=1:200.【解答】解:实际距离是图上距离的4000000倍,这幅地图的比例尺是1:4000000.图上距离是实际距离的,这幅地图的比例尺是1:200.故答案为:1:4000000,1:200.【点评】此题是考查比例尺的意义及求法.比例尺=图上距离:实际距离.数值比例尺前、后项长度单位要统一;根据比的基本性质,比的前项要化成1.14.【分析】这是一个放大的比例尺,图上距离是实际距离的10倍,用图上距离除以10即可求出实际距离.【解答】解:30÷10=3(厘米)答:这个零件的实际长是3厘米.故答案为:3.【点评】此题考查了图上距离与实际距离的换算(比例尺的应用).15.【分析】相邻两个方向的夹角是90°,把北与西的夹角平均分成3份,每份是90°÷3=30°.根据平面图上方向的辨别“上北下南,左西右东”,以点O的位置为观测点,点A在北偏西30°方向或西偏北60°方向.点A以点O的距离为4个单位长度.根据图中所标注的线段比例尺,一个单位长度为200米,即可求出点A到点O的实际距离.【解答】解:如图200×4=800(米)答:A点在O点的北(或西)偏西(或北)30(或60)度的方向上,距离是800米.故答案为:北(或西),西(或北)30(或60),800.【点评】此题考查了利用方向与距离在平面图中确定物体位置的方法以及线段比例尺的灵活应用.16.【分析】根据“图上距离=实际距离×比例尺”,即可求出图上距离.【解答】解:8×=160(毫米)答:长160毫米.故答案为:160.【点评】此题是考查比例尺的应用.关键记住图上距离、实际距离、比例尺之间的关系,还要注意长度单位的换算.三.判断题(共5小题)17.【分析】要求这个零件实际长,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.【解答】解:2.5÷=0.5(毫米)答:这个零件实际长0.5毫米.故答案为:×.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.18.【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可将线段比例尺改写成数值比例尺.【解答】解:30千米=3000000厘米比例尺=1:3000000原题说法正确.故答案为:√.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.19.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.【解答】解:因为图上距离:实际距离=比例尺,所以实际距离=图上距离÷比例尺,原题说法错误.故答案为:×.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.20.【分析】确定物体的位置要有三个步骤:(1)定观察点,(2)量角度,(3)算距离,据此即可进行解答.【解答】解:因为找清观察点,量出物体所在的方向(角度),再算出与观察点的距离,即可确定出物体所处的位置,所以说,知道了物体的方向就能确定物体的位置,说法错误.故答案为:×.【点评】此题主要考查确定物体位置的主要条件.21.【分析】两个物体的位置是相对的,分别以它们为观测中心时,看到对方的方向相反,角度和距离相等,据此即可解答问题.【解答】解:由分析可知:电影院在小明家的西偏南40°方向600米处,那么小明家就在电影院东偏北40°方向600米处,所以原题说法错误.故答案为:×.【点评】此题主要考查两个物体位置的相对性:方向相反,角度相同,距离相等.四.操作题(共3小题)22.【分析】(1)根据数对确定位置的方法:先列后行,确定学校、公园、商场的位置.(2)根据实际距离和比例尺,计算各点之间的图上距离,结合图上确定方向的方法及题目信息完成作图,并用数对表示.【解答】解:(1)学校(3,3)公园(7,5)商场(8,2)(2)400÷100=4(格)700÷100=7(格)600÷100=6(格)100÷100=1(格)菲菲家的位置为:(10,7)图书馆的位置为:(1,4)如图所示:【点评】此题主要考查用数对确定位置的方法以及线段比例尺的意义.23.【分析】根据“图上距离=实际距离×比例尺”即可分别求出长方形运动场的长、宽、然后即可画出这个长方形运动场的平面图.【解答】解:240m=24000cm,120m=12000cm24000×=6(cm)12000×=3(cm)即画长方形运动场的长是6cm,宽是3cm.画图如下:【点评】画平面图的关键一是根据实际距离及比例尺求出图上距离;二是方向的确定.24.【分析】①从图上可以看出市政府距离少年宫的图上距离4个200米,由此即可得出少年宫在市政府在东偏北35°的方向上,距离是800米.②在平面图中画出东偏南30°的方向,实际距离400米处,即2个200米,画两段即可,再标出博物馆的位置.【解答】解:①200×4=800(米)以市政府为观测点,青少年宫在东偏北35°的方向上,距离是800米;②400÷200=2(厘米)故答案为:东,北,35,800.【点评】此题考查了利用方向和距离表示物体位置的方法,五.应用题(共4小题)25.【分析】根据“图上距离=实际距离×比例尺”,分别求出学校操场的图上的长、宽即可画出它的平面图.【解答】解:100米=10000厘米,60米=6000厘米,10000×=5(厘米)6000×=3(厘米)即学校操场的图上长是5厘米,宽是3厘米,画图如下:【点评】此题主要是考查比例尺的应用.根据比例尺求出图上距离即可画图.注意平面图是按一定比例画的,标数据时仍可标注实际距离.26.【分析】图上距离和实际距离已知,根据“图上距离:实际距离=比例尺”求出这幅地图的比例尺,再根据关系式:图上距离÷比例尺=实际距离,解决问题.【解答】解:1200km=120000000cm10:120000000=1:1200000015÷=180000000(厘米)180000000厘米=1800千米答:甲、丙两地的实际距离是1800千米.【点评】此题考查了关系式:图上距离:实际距离=比例尺,图上距离÷比例尺=实际距离.27.【分析】(1)根据图上距离与比例尺,计算实际距离:6÷=150000(厘米),150000厘米=1500米.(2)利用实际距离和比例尺,计算图上距离:500米=50000厘米,50000×=2(厘米).然后根据图上确定方向的方法确定游乐场的位置.【解答】解:(1)6÷=150000(厘米)150000厘米=1500米答:小东家到健身中心的实际距离是1500米.(2)500米=50000厘米50000×=2(厘米)游乐场的位置,如图所示:【点评】本题主要考查依据方向(角度)和距离判定物体位置的方法以及线段比例尺的意义.28.【分析】图上距离和比例尺已知,首先根据“实际距离=图上距离÷比例尺”,求出甲、乙两地的距离,然后根据“时间=路程÷速度”求出三轮摩托车行驶的时间,最后根据“起始时刻+行驶时间=结束时刻”求出到达乙地的时间.【解答】解:3.6×2000000=7200000(厘米)7200000厘米=72千米72÷30=2.4(小时)2.4小时=2小时24分钟上午8点+2小时24分钟=上午10点24分答:10点24分能够到达乙地.【点评】此题应根据图上距离、比例尺和实际距离的关系和速度、路程、时间之间的关系的综合应用.。
八年级数学上册《位置与坐标》知识总结北师大版八年级数学上册《位置与坐标》知识总结一、生活中确定位置的方法1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
如:A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y 轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示在平面直角坐标系中,平面上的'任意一点P,都可以用坐标来表示。
过点P 分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)与坐标轴平行的直线上的点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
图形问题六年级知识点归纳在六年级数学学习中,我们经常遇到各种与图形相关的问题。
图形问题的解决需要我们掌握一系列的图形知识点。
下面是对这些知识点的归纳总结。
一、平面图形1. 点、线、线段、射线:点是没有长度和宽度的,线是由无数个点连在一起形成的,线段是有起点和终点的一段线,射线是有起点没有终点的一段线。
2. 角:两条射线共同的起点称为角的顶点。
角分为锐角(小于90°)、直角(等于90°)、钝角(大于90°)和平角(等于180°)。
3. 三角形:三边和三个角的形状确定一个三角形,三角形分为等边三角形(三条边相等)、等腰三角形(两边相等)、直角三角形(一个角度为90°)等不同类型。
4. 四边形:四边形有四个边和四个角,常见的有正方形、长方形、菱形和平行四边形等。
5. 圆:由一条曲线和一个圆心组成,圆心到任意一点的距离都相等。
二、图形的性质和计算1. 图形的周长:指的是图形边界上的所有边的长度之和。
常见图形的周长计算方法有矩形、正方形、菱形和三角形等。
2. 图形的面积:指的是图形所占的二维空间的大小。
常见图形的面积计算方法有矩形、正方形、菱形、三角形和圆等。
3. 图形的对称性:图形在某个中心轴线上,两边完全相同,即是图形的对称图形。
4. 图形的相似性:两个图形的形状相似,但大小不一样,对应角度相等,对应边长成比例。
三、图形的位置关系1. 平行线和垂直线:平行线是永远不会相交的线,垂直线是两条相交的线,且相交的角度为直角。
2. 直角、锐角和钝角:通过判断角的大小,可以判断线段之间的位置关系。
直角线段与水平线段垂直,锐角线段与水平线段向上倾斜,钝角线段与水平线段向下倾斜。
3. 内部点和外部点:内部点是位于图形内部的点,外部点是位于图形外部的点。
4. 图形的包含关系:一个图形完全包围另一个图形,则被包围的图形在另一个图形的内部。
四、图形问题的解决方法1. 观察法:通过观察图形的特征和性质,找出问题的关键。
完美图形知识点总结一、基本图形1. 点:点是图形的最基本的元素,其不具备长度、宽度和高度,仅有位置。
用大写字母表示。
2. 线段:线段是由两个点确定的一条直线的那一部分。
有长度但无宽度。
用小写字母表示。
3. 射线:射线是由一条直线和一点构成的,这个点叫做射线的起点。
它在一端延伸。
用单个字母表示。
4. 直线:直线是由若干个点确定的,在平面上无限延伸的长度,可以是直的也可以是弯曲的。
用小写字母表示。
5. 角:角是由两条射线相交构成的,其端点为顶点,两条射线分别为角的两边。
用三个字母表示。
6. 多边形:多边形是由若干条线段相连而成的图形,其中相邻的线段仅有一个公共端点。
例如:三角形、四边形、五边形等。
二、图形的性质与特征1. 对称性:图形在某条直线或某点处的镜像重合。
2. 平行性:两个图形的边或边的延长线永不相交。
3. 垂直性:两个相交的线段之间的夹角为90度。
4. 形状性:图形的形状可以通过旋转、翻转和拉伸等方式变换。
5. 等边性:图形的所有边长相等。
6. 等角性:图形的所有角度相等。
7. 近似性:两个形状相似但不完全一致。
8. 比例性:两个形状的边长、角度和面积都成一定的比例关系。
三、图形的应用1. 建筑设计:在建筑设计中,图形的应用非常广泛,从建筑的平面图到各种立体图形的设计,都需要对图形有深入的了解。
2. 工程制图:在工程制图中,图形是工程师设计和表达工程结构的重要手段,需要精确的图形知识。
3. 艺术设计:在艺术设计领域,图形是创作的基础,可以以各种形式表现出来,如平面、立体、装饰等。
4. 科学研究:在科学研究中,图形被用来表达和解释数据、观测结果等,如曲线图、散点图等。
5. 数学应用:在数学中,图形是抽象概念的具体表现,有助于理解和应用数学知识。
综上所述,图形知识点的掌握对我们的生活和工作都非常重要。
只有深入了解图形的基本元素、性质与特征以及应用场景,才能更好地应用图形知识,拓展自己的思维和视野。
位置原理知识点总结位置原理是指几何图形的位置关系,在几何学中,位置原理是一个重要的概念,它涉及到图形之间的相对位置,以及用来描述这些位置关系的概念和术语。
在几何图形的位置原理中,我们包括了线、点、面等对象的位置关系,以及相交、平行、垂直、相等等概念。
了解和掌握位置原理,有助于我们更好地理解几何图形之间的关系,从而更好地进行几何学的研究和应用。
一、点、线、面的位置关系1.点的位置关系在几何学中,点是最基本的几何对象,它是零维的。
当我们讨论点的位置关系时,主要涉及到点的相对位置和点的在图形上的位置。
在平面几何中,我们通常用坐标系来描述点的位置,两个点之间的距离可以通过距离公式来计算,而点到直线或者点到点之间的位置关系可以通过垂直、平行等概念来描述。
2.线的位置关系直线是一种零维图形,它包括无穷多个点,线的位置关系描述了两条直线之间的相对位置。
在平面几何中,我们通常用直线的斜率、截距等概念来描述直线的位置关系,两条直线是否平行、相交等问题都可以通过这些概念来描述和解决。
3.面的位置关系面是由无数个点和线构成的,它是二维的。
在几何图形的位置原理中,我们需要了解和掌握平面图形之间的位置关系,比如平行四边形的特性、三角形的相似性等概念,在描述图形的位置关系时,我们需要掌握这些概念和方法,从而更准确地描述和分析图形之间的位置关系。
二、图形的位置关系在几何图形的位置原理中,我们需要了解和掌握不同图形之间的位置关系,这包括了点、线、面等图形之间的位置关系,以及描述这些位置关系的方法和概念。
1.点与直线的位置关系在几何学中,我们通常用坐标系来描述点和直线的位置关系,而点到直线的距离可以通过距离公式来计算,我们也可以通过垂直、平行等概念来描述这种位置关系,了解点和直线之间的位置关系,有助于我们更好地理解几何图形在平面上的位置关系。
2.直线与直线的位置关系两条直线之间的位置关系通常可以通过斜率和截距来描述,我们可以通过斜率的大小和符号来判断两条直线的相对位置,以及通过截距的大小和符号来判断两条直线之间的位置关系,了解直线之间的位置关系,有助于我们更好地理解几何图形在平面上的位置关系。
平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。
第四章《平⾯图形及其位置关系》复习总结第四章《平⾯图形及其位置关系》复习⼀、线段、射线、直线意义:性质:两点之间,线段最短表⽰:线段AB (或BA ),线段b线段⽐较⼤⼩:度量法,叠合法两点间的距离重要概念线段的中点意义:射线表⽰:射线OA意义:直线表⽰:直线AB (或BA ),直线m性质:两点确定⼀条直线注意:1.表⽰线段,射线,直线时,在字母前要注明“线段”“射线”或“直线”;2.线段,射线都可看作直线的⼀部分;3.射线,直线没有长度,线段有长度;4.⽤两个⼤写字母表⽰线段或直线时,两个字母没有顺序性,但表⽰射线的两个⼤写字母必须把端点字母放在前⾯;5.线段可向两⽅延长:延长线段AB (反向延长线段BA ),延长线段BA (反向延长线段AB );6.射线只能反向延长;7.端点相同,延伸⽅向相同的射线是同⼀条射线;8.AM=MB 并不能说明点M 是线段AB 的中点,需添上条件“M 在线段AB 上”;9.“距离”与“线段”、“路程”不同.结论:平⾯内n 条直线,最多..可有()21-n n 个交点;过平⾯上n 个点中的两个点,最多..可画()21-n n 条直线;n 个班进⾏单循环⽐赛,共⽐赛()21-n n 场; n 个⼈相互握⼿的总次数为()21-n n 次;D CB A O B A 直线上有n 个点,则⼀共有()21-n n 条线段;有公共端点的n 条射线共可组成()21-n n 个⾓;平⾯内n 条直线最多..可将平⾯分成222++n n 个部分. 练习:1.分别画出下列图形:⑴直线l 经过点C ,D ;⑵点P 在直线m 上,但在直线n 外;⑶取不在同⼀直线上的三点A ,B ,C ,画直线AB ,线段BC ,射线CA ;⑷取不在同⼀直线上的三点P ,Q ,R ,①连接PQ ,并延长⾄E ,②连接RQ 并反向延长⾄F ,③过点R 画射线PR.2.判断题⑴直线l 上有两个端点;⑵经过A ,B 两点的线段只有⼀条;⑶延长线段AB 到C ,使AC=BC ;⑷反向延长线段BC ⾄A ,使AB=BC ;⑸过两点有且只有⼀条直线;⑹直线上的任意两点都可以表⽰这条直线;⑺两条直线相交,只有⼀个交点;⑻三条直线两两相交,共有三个交点;⑼射线AC 在直线AB 上;⑽直线AB 与直线BA 是指同⼀条直线.3.根据下图,下列说法正确的有⑴点B 在线段AC 上;⑵直线AB 经过点C ;⑶点D 不在直线AC 上;⑷点A 在线段BC 的延长线上.4.观察下图,并判断对错⑴线段OA 与线段AO 是同⼀条线段;⑵线段OA 与线段OB 是同⼀条线段;⑶直线OA 与线段BO 是同⼀条直线;⑷射线OA 与射线AO 是同⼀条射线;DC B A m C B A ⑸射线OA 与射线OB 是同⼀条射线;⑹射线OB 与射线AB 是同⼀条射线.5.点与直线的位置关系有种,分别是和 .6.如图,直线上有四点,则图中有条直线,条射线,条线段.7.如果线段AB=5cm ,BC=3cm ,那么A ,C 两点的距离是()A.8cmB.2cmC.4cmD.⽆法确定8.两根⽊条,⼀根长60cm ,⼀根长100cm ,将它们的⼀端重合,顺次放在同⼀条直线上,此时两根⽊条的中点间的距离是cm.9.已知线段m ,⽤圆规和直尺作⼀条线段 AB ,使AB=2m.思考题如图所⽰,某单位有三个住宅区A ,B ,C (在⼀条直线上)分别住有职⼯30⼈,25⼈,10⼈,已知AB=100m,BC=200m. 该单位为⽅便职⼯上下班,单位的接送车打算在AC 之间只设⼀个停靠点P ,为使所有的⼈步⾏到停靠点的路程之和最短,那么停靠点P 的位置应设在() A. A 点 B. B 点C. AB 之间D. BC 之间⼆、⾓静态定义动态相关概念:直⾓,平⾓,周⾓,锐⾓,钝⾓⾓⾓的平分线表⽰法:∠A ,∠AOB ,∠1,∠α度量与计算:1°=60′=3600″,1′=60″⼤⼩⽐较:度量法,叠合法注意:1.构成⾓的两个要素是顶点、两边,两边都是射线,⾓的⼤⼩与两边的长短⽆关,只与两边张开的程度有关;2.在初中阶段,如⽆特别说明,所涉及的⾓均指⼩于平⾓的⾓.C D B AE DC B AO 3.不管⽤哪种⽅法表⽰⾓,⾸先要写上符号“∠”,注意区分“∠”与“<”;4.⽤⼀个⼤写字母表⽰⾓,只适⽤于顶点处只有⼀个⾓的情形5.⾓的平分线是射线,不是直线、线段6.⽤⼀付三⾓板可以画出15°的整数倍的⾓7.如果⼀个⾓的两边分别平⾏于另⼀个⾓的两边,那么这两个⾓相等或互补.练习;1.判断⑴平⾓是⼀条直线;⑵⼀条射线是⼀个周⾓;⑶两条射线组成的图形叫做⾓;⑷两边成⼀直线的⾓是平⾓;⑸有公共端点的两条线段组成的图形叫做⾓;⑹⼀条射线旋转得到⾓;⑺⼀个钝⾓与⼀个锐⾓的差⼀定是锐⾓;⑻两个锐⾓的和⼀定⼤于90°;⑼若∠AOC=∠BOC ,则OC 是∠AOB 的平分线;⑽若∠AOC=21∠AOB ,则OC 是∠AOB 的平分线. 2.如图所⽰,图中⼩于平⾓的⾓有个.3.灯塔A 在灯塔B 的南偏东70°,A 、B 相距4海⾥,轮船C 在灯塔B 的正东,在灯塔A 的北偏东40°,试画图确定轮船C 的位置.4.如图,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE=20°,∠AOD=40°,求∠DOE 的度数.5.48.26°= ° ′″ 56°25′12″= °6.⼀条船沿北偏东60°的⽅向航⾏⾄某地,然后依原航线返回,船返回时正确的⽅向是 .7.已知∠1,∠2都是钝⾓,甲,⼄,丙,丁四⼈计算()2161∠+∠的结果依次是28°,48°,88°,60°,其中只有⼀个结果正确,那么正确的结果是()A.甲B.⼄C.丙D.丁三、位置定义:同⼀平⾯内,不相交的两条直线叫做平⾏线表⽰:AB∥CD,m∥n平⾏画法:三⾓板,量⾓器,直尺圆规,⽅格纸等经过直线外⼀点,有且只有⼀条直线平⾏于已知直线性质:位置平⾏与同⼀直线的两直线互相平⾏定义:相关概念:点到直线的距离垂直表⽰:AB⊥CD,m⊥n画法:三⾓板,量⾓器,直尺圆规,⽅格纸等性质:同⼀平⾯内,过⼀点有且只有⼀条直线垂直于已知直线注意:1.平⾏线是相互的,AB∥CD,也可记作CD∥AB;2.⼀条直线有⽆数条直线与其平⾏,但过直线外⼀点却只有⼀条;3.点到直线的距离是⼀个数量,不是指图形(垂线段),⽽是指垂线段的长度练习:1.判断对错⑴不相交的两条直线是平⾏线;⑵同⼀平⾯内,不相交的两条射线叫做平⾏线;⑶同⼀平⾯内,两条直线不相交就重合;⑷同⼀平⾯内,没有公共点的两条直线是平⾏线;⑸过平⾯内⼀点有且只有⼀条直线与已知直线平⾏;⑹两条线段AB,CD没有交点,那么直线AB与直线CD平⾏;⑺平⾏于同⼀直线的两条直线互相平⾏;⑻同⼀平⾯内,不相交的两条射线互相平⾏;⑼同⼀平⾯内,不重合的两条直线的位置关系只有相交、平⾏两种;⑽同⼀平⾯内,经过⼀个已知点能画⼀条直线和已知直线垂直;⑾⼀条直线的垂线可以有⽆数条;⑿过射线的端点与射线垂直的直线只有⼀条;⒀过直线外⼀点和直线上⼀点这两个已知点,可以画已知直线的垂线.2.对直线a,b,c ,若a∥b,a与c相交,那么b与c是什么位置关系?说明理由. 3.在同⼀平⾯内有三条直线,如果要使其中有且只有两条直线平⾏,那么它们()A.没有交点 B.只有⼀个交点 C.有两个交点 D.有三个交点D C B A D C B A OP N M B A N M O C B A 4.同⼀平⾯内的四条直线⽆论其位置关系如何,它们的交点个数不可能有()A.2个B.3个C.4个D.5个5.⼀个三棱柱中有多少对平⾏线?6.在平⾯上有三条直线a ,b ,c ,它们之间有哪⼏种可能的位置关系?请画图说明.7.已知平⾏四边形ABCD 如图,过A 点分别作出BC ,DC 边上的⾼AE ,AF.8.如图所⽰,下⾯结论中正确的有个⑴线段AC 与线段BC 互相垂直;⑵线段CD 与线段BC 互相垂直;⑶点C 到AB 的距离是线段CD ;⑷线段AC 是A 到BC 的距离;⑸线段AC 的长度是点A 到BC 的距离.9.点P 为直线l 外⼀点,点A 、B 、C 为直线l 上三点:PA=4,PB=5,PC=2,则点P 到直线l 的距离为()A .4B .2C .⼩于2D .不⼤于210.如图,已知点O 在直线AB 上,OP ⊥MN 于点P ,那么()A .线段OP 的长度叫做点O 到直线MN 的距离;B .线段OP 的长度叫做点P 到直线AB 的距离;C .线段OP 叫做直线AB 到直线MN 的距离;D .直线OP 的长度叫做点O 与P 两点间的距离. 11.画⼀条线段的垂线,垂⾜在()A .线段上B .线段的端点C .线段的延长线上D .以上都可能12.七巧板通常是由个直⾓三⾓形,个正⽅形和个平⾏四边形组成.13.⽤⼀副七巧板分别拼出⑴⼀个等腰梯形;⑵长⽅形;⑶平⾏四边形,并在图中找出⼀个锐⾓、⼀个直⾓、⼀个钝⾓、⼀对平⾏线段、⼀对互相垂直的线段.14.点M 为线段AB 的三等分点,且AM=6,求AB 的长.15.如图,点O 是直线AB 上⼀点,过O 画射线OC ,OM ,ON ,且OM 平分∠AOC ,ON 平分∠BOC ,那么射线OM ,ON 之间有什么位置关系?说明你的理由.。
1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征3.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.位似(1)位似图形:两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例1 中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,-1)表示“炮”的位置,那么“将”的位置应表示为A.(-2,3)B.(0,-5)C.(-3,1)D.(-4,2)【答案】C1.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作A.(A,3)B.(B,4)C.(C,2)D.(D,1)考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.学=科网2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例2 在下列所给出的坐标中,在第二象限的是A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)【答案】D2.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)3.点A(m+3,m+1)在x轴上,则点A坐标为__________.考向三对称点的特征一般地,点P与点P1关于x轴对称,则横坐标相同,纵坐标互为相反数;点P与点P2关于y轴对称,则纵坐标相同,横坐标互为相反数,点P与点P3关于原点对称,则横、纵坐标分别互为相反数,简单记为“关于谁谁不变,关于原点都改变”.典例3 已知点(2,1),则它关于原点的对称点坐标为A.(1,2)B.(2,-1)C.(-2,1)D.(-2,-1)【答案】D【解析】(2,1)关于原点对称的点的坐标为(-2,-1),故选D .典例4 已知点(x ,y )与点(-2,-3)关于x 轴对称,那么x +y =__________.学+科网 【答案】1【解析】∵点(x ,y )与点(-2,-3)关于x 轴对称,∴23x y =-=,,∴1x y +=,故答案为:1.4.点P (2,)关于y 轴的对称点的坐标是__________. 5.如图,已知A (0,4)、B (-2,2)、C (3,0).(1)作△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标; (2)求△A 1B 1C 1的面积S .考向四 坐标确定位置确定点在坐标平面内的位置,关键是根据不同象限中点的坐标特征去判断,根据题中的已知条件,判断横坐标、纵坐标是大于0,等于0,还是小于0,就可以确定点在坐标平面内的位置.典例5 在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我方两架飞机在A (-1,2)与B(3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.【解析】能.如下图,可疑飞机在第二象限的C点处,在点A的正北方向距A点2个单位.6.下图标明了李华同学家附近的一些地方.学+科网(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标;(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1),(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1)的路线转了一下然后回家,写出他路上经过的地方.考向五 位似1.两个位似图形的位似中心只有一个2.两个位似图形的位似中心可能位于图形的内部、外部、边上或顶点上. 3.两个位似图形可能位于位似中心的两侧,也可能位于位似中心的同侧.典例6 如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为A .(3,3)B .(4,3)C .(3,1)D .(4,1)【答案】A7.图中的两个三角形是位似图形,它们的位似中心是A .点PB .点OC .点MD .点N1.若点P在第二象限内,且到x轴的距离是5,到y轴的距离是7,则点P的坐标是A.(-7,5)B.(7,-5)C.(-5,7)D.(5,-7)2.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)3.点P(2m-4,3)在第二象限,则m的取值范围是A.m>2 B.m<2C.m≥-2 D.m≤24.点P在直角坐标系中的坐标是(3,-4),则点P到坐标原点的距离是A.3 B.4C.5 D.4或35.如图是某城市的部分街道平面图的示意图,某人从P地出发到Q地,他的路径表示错误的是A.(2,1)→(5,1)→(5,3)B.(2,1)→(2,2)→(5,2)→(5,3)C.(2,1)→(1,5)→(3,5)D.(2,1)→(4,1)→(4,3)→(5,3)6.点P关于x轴对称的点P1的坐标是(4,-8),则P点关于y轴的对称点P2的坐标是A.(-4,-8)B.(-4,8)C.(4,8)D.(4,-8)7.在平面直角坐标系中,点(2,-3)关于原点对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(3,-2)8.如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2),则它们的位似中心的坐标是A.(0,0)B.(-1,0)C.(-2,0)D.(-3,0)9.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成__________.10.若点P(m,-2)与点Q(3,n)关于原点对称,则(m+n)2018=__________.11.如图,点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,若四边形ABCD的面积为5,则四边形A1B1C1D1的面积为__________.学科=网12.已知A、B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为__________.13.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△ABC关于y轴对称的△A2B2C2;(3)在x轴上找一点P,使得点P到B、C两点的距离之和最小.14.如图,△ACC′是由△ABB′经过位似变换得到的.(1)求出△ACC′与△ABB′的相似比,并指出它们的位似中心;(2)△AEE′是△ABB′的位似图形吗?如果是,求相似比;如果不是,说明理由;(3)如果相似比为3,那么△ABB′的位似图形是什么?1.(2017•贵港)在平面直角坐标系中,点P(m-3,4-2m)不可能在A.第一象限B.第二象限C.第三象限D.第四象限2.(2017•湘西州)已知点P(2,3),则点P关于x轴的对称点的坐标为A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)3.(2017•葫芦岛)点P(3,-4)关于y轴的对称点P′的坐标是A.(-3,-4)B.(3,4)C.(-3,4)D.(-4,3)4.(2017•宁夏)在平面直角坐标系中,点(3,-2)关于原点对称的点是A.(-3,2)B.(-3,-2)C.(3,-2)D.(3,2)5.(2017•潍坊)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2)6.(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为A.4∶9 B.2∶5 C.2∶3 D7.(2017•六盘水)已知A(-2,1),B(-6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为__________.8.(2017•大庆)若点M(3,a-2),N(b,a)关于原点对称,则a+b=__________.9.(2017•阿坝州)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=__________.10.(2017•兰州)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,3 5OE OA ,则FGBC=__________.。
直线与圆锥曲线的位置关系总结归纳(1)直线与圆锥曲线的位置关系总结归纳直线和圆锥曲线是几何学中常见的两种基本图形,它们的位置关系十分复杂。
在学习和研究数学问题时,了解它们的位置关系具有重要意义。
下面将总结归纳直线和圆锥曲线的位置关系。
一、直线与椭圆的位置关系1. 直线不经过椭圆:直线与椭圆没有交点,此时直线和椭圆之间没有任何位置关系。
2. 直线与椭圆相切于一点:直线与椭圆相切于一点,此时直线与椭圆的位置关系为切线。
3. 直线与椭圆相交于两点:直线与椭圆相交于两个点,此时直线与椭圆的位置关系是两个交点的连线。
4. 直线穿过椭圆:直线与椭圆相交于四个点,此时直线与椭圆的位置关系是四个交点的连线。
二、直线与双曲线的位置关系1. 直线不经过双曲线:直线与双曲线没有交点,此时直线和双曲线之间没有任何位置关系。
2. 直线与双曲线相切于一点:直线与双曲线相切于一点,此时直线与双曲线的位置关系为切线。
3. 直线与双曲线相交于两点:直线与双曲线相交于两个点,此时直线与双曲线的位置关系是两个交点的连线。
4. 直线穿过双曲线:直线与双曲线相交于四个点,此时直线与双曲线的位置关系是四个交点的连线。
三、直线与抛物线的位置关系1. 直线不经过抛物线:直线与抛物线没有交点,此时直线和抛物线之间没有任何位置关系。
2. 直线与抛物线相切于一点:直线与抛物线相切于一点,此时直线与抛物线的位置关系为切线。
3. 直线与抛物线相交于一个点:直线与抛物线相交于一个点,此时直线与抛物线的位置关系为交点。
4. 直线穿过抛物线:直线与抛物线相交于两个点,此时直线与抛物线的位置关系是两个交点的连线。
通过以上总结,我们可以看出,直线和圆锥曲线的位置关系与它们之间的交点有关,交点的个数和位置决定了它们的位置关系。
这对于学习和研究圆锥曲线成立方程、性质等问题非常有帮助。
位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。
2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、歹U,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22 号”。
知识点二平面直角坐标系L定义在平面内,两条互相且具有公共的数轴组成平面直角坐标系.其中水平方向的数轴叫或,向为正方向;竖直方向的数轴叫或,向为正方向;两条数轴交点叫平面直角坐标系的.3.平面内点的坐标对于平面内任意一点P,过P分别向X轴、y轴作垂线轴上的垂足对应的数a叫P的—坐标轴上的垂足对应的数b叫P的坐标。
有序数对(),叫点P的坐标。
若P的坐标为(),则P到X轴距离为,到y轴距离为.注意:平面内点的坐标是有序实数对,(a, b)和(b, a)是两个不同点的坐标.4.平面直角坐标系内点的坐标特征:⑴坐标轴把平面分隔成四个象限。
根据点所在位置填表⑵坐标轴上的点不属于任何象限,它们的坐标特征1①在X轴上的点坐标为0;②在y轴上的点坐标为0 .(3)P()关于X轴、y轴、原点的对称点坐标特征①点Po关于X轴对称点R;②点PO关于y轴对称点P2;③点PO关于原点对称点P:,.5.平行于X轴的直线上的点坐标相同;平行于y轴的直线上的点坐标相同.知识点三轴对称与坐标变化⑴若两个图形关于X轴对称,则对应各点横坐标,纵坐标互为.⑵若两个图形关于y轴对称,则对应各点纵坐标,横坐标互为.⑶将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标,纵坐标加上(或减去)n个单位.(4)将一个图形向右(或向左)平移n (n>0)个单位,则图形上各点纵坐标,横坐标加上(或减去)n个单位.(5)纵坐标不变,横坐标分别变为原来的a倍,则图形为原来横向伸长的a倍(a>l)或图形横向缩短为原来的a倍(0<a<l)o (6)横坐标不变,纵坐标分别变为原来的a倍,则图形为原来纵向伸长的a倍(a>l)或图形纵向缩短为原来的a倍(0<a<l)o (7)横坐标与纵坐标同时变为原来的a倍,则图形被放大,形状不变(a>l)o题型一坐标系的理解1.平面内点的坐标是()A 一个点B 一个图形C 一个数D 一个有序数对2.在平面内要确定一个点的位置,一般需要个数据;在空间内要确定一个点的位置,一般需要个数据.3.在平面直角坐标系内,下列说法错误的是OA 原点。
八年级位置与坐标知识点总结归纳位置和坐标是数学中的基础概念,而在八年级的数学学习中,位置与坐标更是一个重要的知识点。
通过掌握位置和坐标的相关知识,我们可以更好地理解几何形状和图像之间的关系,解决实际问题,以及为进一步学习代数和几何打下坚实的基础。
本文将对八年级位置与坐标知识点进行总结归纳。
一、平面直角坐标系的建立及简单应用平面直角坐标系是描述位置和坐标的常用工具。
在平面直角坐标系中,我们通过确定一个原点及与原点相垂直的两条轴线来建立坐标系。
水平轴称为 x 轴,垂直轴称为 y 轴。
根据这个坐标系,我们可以用有序数对 (x, y) 来表示一个点的位置。
例如,点A在平面直角坐标系中的坐标为 (2, 3),其中2表示在 x轴上的位置,3表示在 y 轴上的位置。
平面直角坐标系的应用场景很多,比如在地图上确定一个城市的位置,或者描述电商平台中的商品坐标等。
通过了解坐标系的建立和使用,我们可以更好地处理这些实际问题。
二、点的位置关系及区域划分在平面直角坐标系中,点与点之间有着不同的位置关系,这些关系对我们理解图像形状的变化和判断图形位置都非常重要。
1. 同一直线上的点:如果两个点在同一条直线上,那么它们的 x 坐标相同或者它们的 y 坐标相同。
这个概念对于解决线段和直线问题非常有用。
2. 垂直线和水平线:垂直线与 x 轴正交,而水平线与 y 轴正交。
这种关系在确定直角的情况下非常常见。
3. 区域划分:平面直角坐标系可以将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。
根据坐标的正负关系,我们可以判断一个点在哪个象限。
通过掌握点的位置关系及区域划分的知识,我们可以在解决问题时更准确地确定坐标的范围和位置。
三、图形的位置和运动在平面直角坐标系中,我们可以通过点的坐标来描述和判断图形的位置和运动。
以下是几种常见的图形情况:1. 点:点的位置由其坐标确定,点的运动就是坐标的变化。
2. 线段:线段是由两个点确定的,可以根据这两个点的坐标求解线段的长度、斜率等。
平面图中图形的知识点总结一、点和线1. 点点是平面上的一个具体位置,用大写字母标记,如A、B、C等。
在平面图形中,点用来标识图形的顶点或交点。
2. 线线是由一系列相邻点所确定的直线路径,它没有长度、宽度和厚度,是平面上最基本的图形之一。
根据数量的不同,线可以分为直线、射线和线段。
3. 直线直线是具有无限延伸性的线,由无穷多个点组成,用两点确定一条直线。
4. 射线射线是由起点向一个方向无限延伸的线,用起点和方向确定一条射线。
5. 线段线段是有起点和终点的有限长度的线,用起点和终点确定一条线段。
二、角角是由两条射线共同起点所确定的平面图形,常用大写字母标记,如∠ABC。
角的度量单位为度,圆周角为360度,平角为180度。
1. 角的分类(1)锐角:小于90度的角。
(2)直角:等于90度的角。
(3)钝角:大于90度但小于180度的角。
(4)平角:等于180度的角。
2. 角的性质(1)相对角:相对的两个角互为补角,它们的度数和为90度。
(2)对顶角:两条相交直线之间相对的两对角互为对顶角,它们的度数相等。
三、三角形三角形是平面上由三条边和三个顶点组成的简单闭合图形,是平面图形中的重要种类之一。
根据边长和角度不同,三角形可以分为等边三角形、等腰三角形和一般三角形。
1. 等边三角形等边三角形的三条边和三个角都相等,是一种特殊的等腰三角形。
2. 等腰三角形等腰三角形是两边相等或两角相等的三角形,具有以下性质:等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形。
3. 直角三角形直角三角形是其中一个角为直角(90度)的三角形,满足毕达哥拉斯定理:直角三角形的斜边的平方等于两直角边平方和。
4. 同位角同位角是两条平行线被一条直线切割而成的一对相对等角,它们的度数相等。
四、四边形四边形是平面上由四条边和四个顶点组成的图形,常见的四边形包括矩形、正方形、菱形、平行四边形等。
1. 矩形矩形是一种边都相交且各个角都为直角的四边形,具有以下性质:对角线相等、相对边相等、对角线互相平分。
六年级位置与方向知识点归纳总结在六年级学习中,位置与方向是数学中的一个重要知识点。
通过对位置与方向的学习,能够帮助学生建立准确的空间概念,并增强他们的方向感。
下面对六年级位置与方向知识点进行归纳总结,以供同学们参考。
一、位置的表示方法1. 直角坐标系:直角坐标系是表示位置的一种方法。
在横轴和纵轴上分别用数字表示位置,通过两个数字的组合来确定一个点的位置。
2. 方格图:方格图是另一种表示位置的方法。
通过在方格图上标记点的位置,可以清楚地表示出不同点之间的位置关系。
3. 路线图:路线图可以表示物体沿着一条线路行进的路径。
通过在图上标明不同地点,可以表示出物体的位置和移动方向。
二、方向的概念和表示方法1. 前后左右:前后左右是人们最常用的方向概念。
前指的是面对的方向,后指的是背对的方向,左指的是左侧,右指的是右侧。
2. 指北针:指北针是表示方向的一种工具。
通常指北针上的红色箭头指向地理北极,可以根据指北针来确定方向。
3. 角度和方位角:角度是表示方向的一种数学方法。
通过角度的大小和方位角可以精确表示物体在空间中的方向。
三、位置和方向的运用1. 寻找位置:通过给出的信息,在地图或者图形中寻找指定的位置。
可以运用坐标系、方格图或者路线图来确定位置。
2. 描述运动过程:通过描述物体的运动过程,包括起始位置、方向和路径等。
可以用文字、图形或者图表来描述。
3. 推理位置和方向:根据已知条件进行推理,确定物体的位置和方向。
可以通过逻辑推理和几何推理来解决问题。
通过对六年级位置与方向知识点的归纳总结,我们可以更好地理解和掌握这些知识,提高自己的数学水平。
希望同学们通过不断练习和思考,能够熟练运用位置与方向的概念,解决实际问题,并在数学学习中取得优异的成绩!。
在五年级上册数学书中,第二单元位置的知识点是非常重要的。
位置是我们日常生活中经常会遇到的概念,它不仅在数学中有着广泛的应用,也贯穿于生活的方方面面。
在这篇文章中,我将从深度和广度两个方面对这一主题进行全面评估,并撰写一篇有价值的文章,以便读者能更深入地理解这一知识点。
1. 位置的基本概念在五年级数学课程中,位置的概念是从简到繁逐步深入学习的。
我们需要了解基本的方位词和位置词,比如上、下、左、右、前、后、里、外等等。
这些词语在日常生活中经常被使用,而在数学中,它们则被运用到图形的描述和位置的确定中。
通过简单的图形和实物的操纵,让学生能够直观地理解这些位置概念。
2. 图形的位置关系除了基本的位置词,五年级的学生还需要学习图形的位置关系。
这涉及到平面几何中的重要内容,比如相交线、平行线、垂直线等。
通过引入坐标系的概念,学生可以更清晰地描述图形的位置关系,例如通过横纵坐标来确定点的位置。
这样的学习不仅有利于理解数学知识,也培养了学生的逻辑思维能力和空间想象能力。
3. 实际问题的位置应用位置的概念在解决实际问题中有着广泛的应用。
五年级上册数学书中会引导学生通过日常生活中的例子,来进行位置相关问题的讨论和解答。
在地理中,我们可以用方位词描述不同地点的位置关系;在旅行规划中,我们需要确定目的地的位置,以便制定最佳路线等。
这些实际问题的讨论不仅可以加深学生对位置概念的理解,也能使他们将数学知识与实际问题相结合,提高解决问题的能力。
4. 总结与回顾通过对五年级上册数学书第二单元位置的知识点进行全面评估和讨论,我们不难发现位置的概念是数学学习中至关重要的一部分。
通过从简到繁的学习,学生可以逐步建立起对位置概念的深入理解,在日常生活和学习中加以应用。
当然,位置的概念还有很多延伸和拓展的部分,希望学生能够在课外更广泛地接触和应用这一知识点,使之成为自己的思维工具。
5. 个人观点和理解对于我个人来说,位置的概念虽然看似简单,但却贯穿于数学学习的方方面面。
圆圆的位置关系知识点总结圆是我们数学中常见的几何图形之一。
我们在学习和探索圆的性质时,首先需要了解圆圆的位置关系的知识点。
本文将按照步骤思考的方式,总结圆圆的位置关系的知识点。
1.同心圆:同心圆是指具有相同圆心的多个圆。
不同的同心圆的半径可以不相同,但圆心必须重合。
同心圆之间的半径长度不同,但它们的圆心都位于同一个位置。
2.内切圆和外切圆:内切圆是指一个圆完全位于另一个圆的内部,并且两个圆的圆心重合。
外切圆是指一个圆完全包围住另一个圆,并且两个圆的圆心重合。
内切圆和外切圆的半径之间有特定的关系。
3.相切圆:相切圆是指两个圆之间切线相同的情况。
相切圆的切线是指两个圆之间的切线,切线与两个圆的半径垂直。
4.相交圆:相交圆是指两个圆在同一个平面上,有交集的情况。
相交圆之间可以有多个交点。
5.内离圆和外离圆:内离圆是指一个圆位于另一个圆的内部,但两个圆没有交集。
外离圆是指一个圆与另一个圆没有任何交集,并且两个圆的圆心之间的距离大于两个圆的半径之和。
6.同相圆:同相圆是指两个圆在同一个平面上,且圆心之间的距离等于两个圆的半径之和。
7.同弦圆:同弦圆是指在同一个平面上,两个圆的弦相等。
8.同切圆:同切圆是指两个圆之间只有一条公共切线,并且切线与两个圆的半径垂直。
9.割线圆:割线圆是指两个圆之间有两条不同的公共切线。
通过以上的总结,我们可以了解到圆圆之间的位置关系有很多种,包括同心圆、内切圆、外切圆、相切圆、相交圆、内离圆、外离圆、同相圆、同弦圆、同切圆和割线圆等。
这些位置关系对于解决几何问题和探索圆的性质非常重要。
希望本文对你理解圆圆的位置关系有所帮助。
图形的位置总结
图形的位置是描述图形在空间中的具体位置或方位关系的概念。
在图形学、数学、物理学等领域中,图形的位置是进行分析、描述和操作的基础。
无论是二维图形还是三维图形,了解和掌握图形的位置是很重要的。
在二维平面中,图形的位置通常由两个坐标轴来确定,即x轴和y轴。
坐标轴的交叉点被称为原点,通常用坐标(0,0)表示。
x轴表示水平位置,y轴表示垂直位置。
图形的位置可以用一
个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点(2,3)表示图形在x轴上向右移动2个单位,y轴上向
上移动3个单位。
图形的位置可以通过平移、旋转和缩放来改变。
平移是指图形沿着坐标轴方向上的移动,保持形状和大小不变。
旋转是指图形绕一个固定点旋转一定角度。
缩放是指图形按比例改变大小,可以放大或缩小。
图形的位置也可以通过相对位置来描述。
相对位置是指图形与其他图形之间的位置关系。
例如,图形A在图形B的上方、
下方、左侧或右侧等。
相对位置可以用方位词来描述,如在北方、在东南方等。
在三维空间中,除了x轴和y轴,还有一个z轴用于确定图形
的位置。
图形的位置可以由一个有序数对(x,y,z)来表示,其中
x表示横坐标,y表示纵坐标,z表示垂直坐标。
例如,点
(2,3,4)表示图形在x轴上向右移动2个单位,y轴上向上移动
3个单位,z轴上向前移动4个单位。
在三维空间中,图形的位置可以通过平移、旋转、缩放和投影等来改变。
平移、旋转和缩放的概念与二维空间中类似。
投影是指将三维图形映射到二维平面上,例如将一个立方体投影到一个平面上的正方形。
投影可以改变图形的形状和大小,但保持图形的位置关系不变。
图形的位置不仅在数学和物理学中有应用,还在计算机图形学、地图制作、建筑设计、游戏开发等领域中起着重要的作用。
在计算机图形学中,图形的位置是通过坐标系统来描述的,可以通过编程语言和图形库来实现图形的平移、旋转和缩放等操作。
在地图制作和建筑设计中,图形的位置描述地理位置和建筑物的位置关系,用于导航和规划。
在游戏开发中,图形的位置决定了游戏角色和游戏世界的位置关系,影响玩家的游戏体验。
总之,图形的位置是描述图形在空间中的具体位置或方位关系的概念。
了解和掌握图形的位置对于数学、物理学、计算机图形学等领域的研究和应用具有重要意义。
图形的位置可以通过坐标轴、平移、旋转、缩放和投影等来描述和改变。
图形的位置在各个领域都有不同的应用,如地图制作、建筑设计、游戏开发等。
通过研究和理解图形的位置,可以更好地理解和应用图形学的相关内容。