半导体材料(复习资料)
- 格式:docx
- 大小:60.43 KB
- 文档页数:40
半导体材料复习题1、半导体材料有哪些特征?答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。
(1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。
同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。
(2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。
(3)有两种载流子参加导电。
一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。
而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。
在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。
2、简述半导体材料的分类。
答:对半导体材料可从不同的角度进行分类例如:根据其性能可分为高温半导体、磁性半导体、热电半导体;根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体;根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体,但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。
3、化合物半导体和固溶体半导体有哪些区别。
答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。
固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。
固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。
4、简述半导体材料的电导率与载流子浓度和迁移率的关系。
答:s = nem其中:n为载流子浓度,单位为个/cm3;e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。
《半导体物体复习资料》1、本征半导体是指(A )的半导体。
A. 不含杂质和晶格缺陷B. 电阻率最高C. 电子密度和空穴密度相等D. 电子密度与本征载流子密度相等2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定(D )。
A. 不含施主杂质B. 不含受主杂质C. 不含任何杂质D. 处于绝对零度3、对于只含一种杂质的非简并n型半导体,费米能级E F随温度上升而(D )。
A. 单调上升B. 单调下降C. 经过一个极小值趋近EiD. 经过一个极大值趋近Ei4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。
A. 金属B. 本征半导体C. 掺杂半导体D. 高纯化合物半导体5、公式中的是半导体载流子的( C )。
A. 迁移时间B. 寿命C. 平均自由时间D. 扩散时间6、下面情况下的材料中,室温时功函数最大的是( A )A. 含硼1×1015cm-3的硅B. 含磷1×1016cm-3的硅C. 含硼1×1015cm-3,磷1×1016cm-3的硅D. 纯净的硅7、室温下,如在半导体Si中,同时掺有1×1014cm-3的硼和1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。
将该半导体由室温度升至570K,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。
(已知:室温下,n i≈1.5×1010cm-3;570K时,n i≈2×1017cm-3)A、1×1014cm-3B、1×1015cm-3C、1.1×1015cm-3D、2.25×105cm-3E、1.2×1015cm-3F、2×1017cm-3G、高于Ei H、低于Ei I、等于Ei8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。
第一章填空题:1、 写出三种立方单胞的名称:简立方,体心立方,面心立方;这三种单胞中所含的原子数分别是1,2,42、 在四面体结构的共价晶体中,四个共价键是以s 态和p 态波函数的线性组合为基础,构成了所谓的“杂化轨道”。
3、 金刚石型结构的结晶学原胞是立方对称的晶胞。
4、 闪锌矿结构的Ⅲ-Ⅴ族化合物和金刚石型结构一样,都是由两个面心立方晶格套构而成的,称这种晶格为双原子复式格子。
5、 纤锌矿型结构和闪锌型结构相接近,它也是以正四面体结构为基础构成的,但是它具有六方对称性。
6、 内壳层的电子,轨道交叠少,共有化运动弱,可忽略。
外层的价电子,轨道交叠多,共有化运动强,能级分裂大,被视为“准自由电子”。
7、 原来简并的N 个原子的s 能级,结合成晶体后分裂为N 个十分靠近的能级,形成能带(允带),因N 值极大,能带被视为“准连续的”。
8、 Si 、Ge 具有一般晶体的共性,又有其特殊性:其能级分裂成能带时,存在轨道杂化。
9、 如图,当 时,形成稳定晶体,上下两带的状态数(各4N 个)不变,根据能量最小原理,低温下,下带填4N 个价电子是满的,称为满带或价带;而上带4N 个状态无电子是空的,称为导带;中间隔以禁带。
10、 在周期性势场内,电子的平均速度v 可表示为波包的群速度。
在能带极值附近的电子速度为:11、 半导体中电子在外加电场作用下,电子的加速度为:12、 半导体中除了导带上电子导电作用外,价带中还有空穴的导电作用。
对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。
13、当磁场不变时,加高频电场Cw 垂直磁场,当电场频率B w =Cw 时,可观察到吸收峰,吸收峰的个数等于有效质量的个数。
14、 为了观察到明显的共振吸收峰, 要求半导体样品比较纯净, 而且一般是在低温下进行。
15、 右图为GaAs 的能带结构。
1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET.2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯度多晶硅,维持熔融液初始掺杂浓度不变。
3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑硅:p型掺杂材料是硼,n型是磷。
4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。
5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成).6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。
7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。
8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构完全不是周期性结构.9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。
在1000℃和1个大气压下,干氧的浓度C0是5。
2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。
10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1。
24Ev,湿氧氧化是0.71eV). 11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。
半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。
为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。
二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。
答案:半导体材料具有介于导体和绝缘体之间的导电特性。
与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。
与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。
2. 什么是本征半导体?请举例说明。
答案:本征半导体是指不掺杂任何杂质的半导体材料。
例如,纯净的硅(Si)和锗(Ge)就是本征半导体。
3. 简述P型半导体和N型半导体的形成原理。
答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。
施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。
这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。
N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。
受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。
这样就使得半导体中存在了大量的自由电子,形成了N型半导体。
4. 简述PN结的形成原理及特性。
答案:PN结是由P型半导体和N型半导体的结合所形成。
P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。
PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。
三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。
答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。
半导体器件复习题一、半导体基础知识1、什么是半导体?半导体是一种导电性能介于导体和绝缘体之间的材料。
常见的半导体材料有硅(Si)、锗(Ge)等。
其导电能力会随着温度、光照、掺入杂质等因素的变化而发生显著改变。
2、半导体中的载流子半导体中有两种主要的载流子:自由电子和空穴。
在本征半导体中,自由电子和空穴的数量相等。
3、本征半导体与杂质半导体本征半导体是指纯净的、没有杂质的半导体。
而杂质半导体则是通过掺入一定量的杂质元素来改变其导电性能。
杂质半导体分为 N 型半导体和 P 型半导体。
N 型半导体中多数载流子为自由电子,P 型半导体中多数载流子为空穴。
二、PN 结1、 PN 结的形成当 P 型半导体和 N 型半导体接触时,在交界面处会形成一个特殊的区域,即 PN 结。
这是由于扩散运动和漂移运动达到动态平衡的结果。
2、 PN 结的单向导电性PN 结正偏时,电流容易通过;PN 结反偏时,电流难以通过。
这就是 PN 结的单向导电性,是半导体器件工作的重要基础。
3、 PN 结的电容效应PN 结存在势垒电容和扩散电容。
势垒电容是由于空间电荷区的宽度随外加电压变化而产生的;扩散电容则是由扩散区内电荷的积累和释放引起的。
三、二极管1、二极管的结构和类型二极管由一个 PN 结加上电极和封装构成。
常见的二极管类型有普通二极管、整流二极管、稳压二极管、发光二极管等。
2、二极管的伏安特性二极管的电流与电压之间的关系称为伏安特性。
其正向特性曲线存在一个开启电压,反向特性在一定的反向电压范围内电流很小,当反向电压超过一定值时会发生反向击穿。
3、二极管的主要参数包括最大整流电流、最高反向工作电压、反向电流等。
四、三极管1、三极管的结构和类型三极管有 NPN 型和 PNP 型两种。
它由三个掺杂区域组成,分别是发射区、基区和集电区。
2、三极管的电流放大作用三极管的基极电流微小的变化能引起集电极电流较大的变化,这就是三极管的电流放大作用。
一、填空题1. 自由电子的能量与波数的关系式为(0222)(m k h k E =),孤立原子中的电子能量(大小为2220408n h q m E n ε-=的分立能级),晶体中的电子能量为(电子共有化运动)所形成的(准连续)的能带。
2. 温度一定时,对于一定的晶体,体积大的能带中的能级间隔(小),对于同一块晶体,当原子间距变大时,禁带宽度(变小)。
3. 玻尔兹曼分布适用于(非简并)半导体,对于能量为E 的一个量子态被电子占据的概率为()ex p()ex p()(00T k E T k E E f F B -⋅=),费米分布适用于(简并)半导体,对于能量为E 的一个量子态被电子占据的概率为()ex p(11)(0T k E E E f F -+=),当EF 满足(T k E E T k E E V F F C 0022≤-≤-或)时,必须考虑该分布。
4. 半导体材料中的(能带结构(直接复合))、(杂质和缺陷等复合中心(间接复合))、(样品形状和表面状态(表面复合))等会影响非平衡载流子的寿命,寿命值的大小反映了材料晶格的(完整性),是衡量材料的一个重要指标。
5. Si 属于(间接)带隙半导体。
导带极小值位于布里渊区的(<100>方向)上由布里渊区中心点Г到边界X 点的(0.85倍)处,导带极值附近的等能面是(长轴沿<100>方向的旋转椭球面),在简约布里渊区,共有(6)个这样的等能面。
6. Ge 属于(间接)带隙半导体。
导带极小值位于布里渊区的(<111>方向)上由布里渊区边界L 点处,导带极值附近的等能面是(长轴沿<111>方向的旋转椭球面),在简约布里渊区,共有(4)个这样的等能面。
7. GaAs 属于(直接)带隙半导体。
导带极小值位于布里渊区中心点Г处,极值附近的等能面是(球面),在简约布里渊区,共有(1)个这样的等能面。
在布里渊区的(<111>方向)边界L 点处,存在高于能谷值0.29eV 的次低能谷,简约布里渊区一共有(8)个这样的能谷。
一填空题1.根据单晶硅的使用目的不同,单晶硅的制备工艺也不同,主要的制备工艺有两种,分别是(区域熔炼法和切克劳斯基法)。
3.在热平衡状态半导体中, 载流子的产生和复合的过程保持动态平衡,从而使载流子浓度保持定值,则处于此种状态下的载流子为(平衡载流子)。
处于非平衡状态的半导体,其载流子浓度也不再是n0和p0(此处0是下标),可以比他们多出一部分。
比平衡状态多出来的这部分载流子称为(非平衡载流子)。
4使纵向电阻率逐渐降低的效果与使电阻率逐渐升高的效果达到平衡,就会得到纵向电阻率比较均匀的晶体。
方法:(变速拉晶法,双坩埚法),()。
5多晶硅的生产方法主要包含:(SiCl4法、硅烷法、流化床法、西门子改良法)。
6硅片的主要工艺流程包括:单晶生长→整形→(切片)→晶片研磨及磨边→蚀刻→(抛光)→硅片检测→打包。
7纯净半导体Si中掺V族元素的杂质,当杂质电离时释放电子。
这种杂质称(施主杂质)8.在P型半导体的多数载流子是:(空穴)9. 总厚度变差TTV是指:(硅片厚度的最大值与最小值之差)10. .常用的半导体电阻率测量方法有:(直接法、二探针法、三探针法、四探针法、多探针。
)。
1、在晶格中,通过任意两点连一直线,则这直线上包含了无数个相同的格点,此直线称为_______晶列_____。
2、精馏是利用不同组分有不同的______沸点______,在同一温度下,各组分具有不同蒸汽压的特点进行分离的。
3、物理吸附的最大优点是其为一种_____可逆_______过程,吸附剂经脱附后可以循环使用,不必每次更换吸附剂。
4、多晶硅的定向凝固,是在凝固过程中采用强制手段,在凝固金属和未凝固体中建立起特定方向的____温度梯度________。
5、工业硅生产过程中一般要做好以下几个方面:_、观察炉子情况,及时调整配料比_、_____选择合理的炉子结构参数和电气参数___;及时捣炉,帮助沉料_和______保持料层有良好的透气性6、改良西门子法包括五个主要环节:Si HCl3的合成;SiHCl3精馏提纯;SiHCl3的氢还原;尾气的回收;Si Cl4的氢化分离7、由高纯的多晶硅生长单晶硅基本是以_____区熔法;直拉法两种物理提纯生长方法为主。
半导体物理复习试题及答案复习资料一、选择题1、下面关于晶体结构的描述,错误的是()A 晶体具有周期性的原子排列B 晶体中原子的排列具有长程有序性C 非晶体的原子排列没有周期性D 所有晶体都是各向同性的答案:D解释:晶体具有各向异性,而非各向同性。
2、半导体中的施主杂质能级()A 位于导带底附近B 位于价带顶附近C 位于禁带中央D 靠近价带顶答案:A解释:施主杂质能级靠近导带底,容易向导带提供电子。
3、本征半导体的载流子浓度随温度升高而()A 不变B 减小C 增大D 先增大后减小答案:C解释:温度升高,本征激发增强,载流子浓度增大。
4、下面关于 PN 结的描述,正确的是()A PN 结空间电荷区中的内建电场方向由 N 区指向 P 区B 正向偏置时,PN 结电流很大C 反向偏置时,PN 结电流很小且趋于饱和D 以上都对答案:D解释:PN 结空间电荷区中的内建电场方向由 N 区指向 P 区,正向偏置时多数载流子扩散电流大,反向偏置时少数载流子漂移电流小且趋于饱和。
5、金属和半导体接触时,如果形成阻挡层,那么半导体表面是()A 积累层C 反型层D 以上都可能答案:B解释:形成阻挡层时,半导体表面通常是耗尽层。
二、填空题1、常见的半导体材料有_____、_____和_____等。
答案:硅、锗、砷化镓2、半导体中的载流子包括_____和_____。
答案:电子、空穴3、施主杂质的电离能_____受主杂质的电离能。
(填“大于”或“小于”)答案:小于4、当半导体处于热平衡状态时,其费米能级_____。
(填“恒定不变”或“随温度变化”)答案:恒定不变5、异质结分为_____异质结和_____异质结。
答案:突变异质结、缓变异质结1、简述半导体中施主杂质和受主杂质的作用。
答:施主杂质在半导体中能够提供电子,使其成为主要的导电载流子,增加半导体的电导率。
受主杂质能够接受电子,产生空穴,使空穴成为主要的导电载流子,同样能提高半导体的电导率。
半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。
第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。
二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。
硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。
但锗的迁移率比硅大,它可做低压大电流和高频器件。
2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。
这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。
(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。
注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。
2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。
化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。
两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。
4.硅烷(SiH4)和锗烷(GeH4)硅烷的制备:硅(锗)镁合金+无机酸(卤铵盐): Mg2Si + 4HCl → SiH4 + 2MgCl2硅烷活性很高,在空气中能自燃,即使在?190℃下可发生爆炸SiH4+2O2→SiO2+2H2O(爆炸)硅烷(SiH4)的化学性质:SiH4还易与水、酸、碱反应:SiH4 + 4H2O → Si(OH)4 + 2H2SiH4+ 2NaOH + H2O → Na2SiO3 + 4H2SiH4的还原性:还原出金属或金属氧化物SiH4+2KMnO4 → 2MnO2↓+K2SiO3+H2O+H2↑(用于检测硅烷的存在)硅烷和锗烷的不稳定性:用于制取高纯硅(锗)SiH4= Si ↓ + 2H2GeH4= Ge ↓ + 2H2第二节:高纯硅的制备高纯硅的化学制备,主要制备方法有:1)、三氯氢硅还原法:产量大、产品质量高、生产成本低,是目前国内外制备高纯硅的主要方法。
2)、硅烷法:优点:可有效地除去杂质硼和其它金属杂质,无腐蚀性、不需要还原剂、分解温度低、收率高等,是个有前途的方法。
缺点:安全性问题。
3)、四氯化硅氢还原法:硅的收率低。
1、三氯氢硅氢还原法:粗硅→粗三氯氢硅→高纯三氯氢硅→高纯硅三氯氢硅:室温下为无色透明、油状液体,易挥发和水解。
在空气中剧烈发烟,有强烈刺激味。
具有一个Si?H键,比SiCl4活泼,易分解。
沸点低,容易制备,提纯和还原。
(一)三氯氢硅的制备:原料:粗硅+ 氯化氢流程:粗硅→酸洗(去杂质) →粉碎→入干燥炉→通入热氮气→干燥→入沸腾炉→通干HCl → 三氯氢硅合成中的反应方程式,主反应:Si + 3HCl = SiHCl3 + H2 副产物:SiCl4 和SiH2Cl2合成工艺条件:为增加SiHCl3的产率,必须控制好工艺条件,使副产物尽可能地减少。
较佳的工艺条件:1.反应温度控制在280 ~ 300℃;2.向反应炉中通一定量的H2,与HCl气的比值应保持在H2:HCl = 1:3 ~ 1:5之间;3.硅粉与HCl在进入反应炉前要充分干燥,并且硅粉粒度要控制在0.18 ~ 0.12mm之间;4.合成时加入少量铜、银、镁合金作催化剂,可降低合成温度和提高SiHCl3的产率。
(二)三氯氢硅的提纯方法:络合物形成法,固体吸附法,部分水解法和精馏法原理:利用液体混合液中各组分的沸点不同(挥发性的差异)来实现分离混合液中各组分进行提纯。
一次精馏得到的分离液较少,需多次分馏。
精馏塔是可以连续多次精馏的特殊装置。
在精馏塔中,上升的气相与下降的液相接触,通过热交换进行部分汽化和部分冷凝实现质量交换的过程,经过多次交换来达到几乎完全分离各组分的提纯方法。
在一套标准的精馏设备中,一次全过程,SiHCl3的纯度可从98%提纯到9个“9” ~ 10个“9”。
(三)三氯氢硅氢还原主反应:SiHCl3 + 3H2 → Si + 3HCl (1100℃)1. 升高温度,有利于SiHCl3的还原反应,还会使生成的硅粒粗大而光亮。
2. 但温度过高不利于Si在载体上沉积,并会使BCl3,PCl3被大量的还原,增大B、P的污染。
3. 反应中还要控制H2量,通常H2:SiHCl3 =(10~20):1 (摩尔比)较合适。
高纯硅纯度的表示方法:高纯硅的纯度通常用以规范处理后,其中残留的B、P含量来表示,称为基硼量、基磷量。
主要原因:1 、硼和磷较难除去;2、硼和磷是影响硅的电学性质的主要杂质。
我国制备的高纯硅的基硼量≤5×10-11;基磷量≤5×10-10。
2、硅烷法主要优点:1.除硼效果好。
制硅烷,硼以复盐B2H6?2NH3的形式留在液相中,基硼量可在2×10-14以下。
2.硅烷无腐蚀性。
分解后也无卤素及卤化氢产生,保护设备。
3.分解温度低,不使用还原剂,分解效率高,有利于提高纯度。
4.产物中金属杂质含量低。
在硅烷的沸点-111.8℃下,金属的蒸气压都很低。
5.用硅烷外延生长时,自掺杂低,便于生长薄外延层。
外延生长:在一定条件下,在经过切、磨、抛等仔细加工的单晶衬底上,生长一层合乎要求的单晶的方法。
需要低温和气密性好的设备及注意安全(一)硅烷的制备:原料:硅化镁、氯化铵;条件:液氨中。
液氨作溶剂、催化剂Mg2Si + 4 NH4Cl ==== SiH4 + 4NH3 + 2MgCl2+Q 结果:生成SiH4进入纯化系统;氨气液化后返回发生器;硼杂志通过排渣去除。
(二)硅烷的提纯可用方法:低温精馏(深冷设备,绝热装置)、吸附法(装置简单)吸附时,主要使用?级分子筛吸附杂质分子筛是一类多孔材料,其比表面积大,有很多纳米级的孔,可用于吸附气体。
作用:1、工业用于做吸附剂;2、催化剂。
分子筛规格为:3?,4?,5?,13X (≤10埃)型,指其孔洞的大小。
吸附后,在热分解炉中进一步提纯:加热至360℃,除去杂质的氢化物。
(三)硅烷热分解总反应为:SiH4 = Si + 2 H2工艺条件:1、热分解的温度不能太低,载体的温度控制在800℃2、热分解的产物之一氢气必须随时排队,保证反应用右进行。
3、只有在一级反应条件下,才能保证分解速度快,即硅烷的热分解效率高。
3、两种方法的对比三氯硅烷法(SiHCl3):利用了制碱工业中的副产物氯气和氢气,成本低,效率高。
三氯硅烷遇水会放出腐蚀性的氯化氢气体,腐蚀设备,造成Fe 、Ni 等重金属污染三氯硅烷硅烷法(SiH4):消耗Mg ,硅烷本身易燃、易爆。
去除硼杂质有效,对不锈钢设备没有腐蚀性,生产的硅质量高。
第三节:锗的富集与提纯1、锗的资源与富集1)资源:煤及烟灰中、与金属硫化物共生、锗矿石。
2)富集方法:火法和水法。
2、高纯锗的制取流程:锗精矿+HCl →GeCl4→精馏(萃取提纯)→水解→二氧化锗→氢还原→锗→区熔提纯→高纯锗第二章:区熔提纯注意:所用原料一般先制成烧结棒。
将烧结棒用两个卡盘固定并垂直安放在保温管内。
利用高频线圈或聚焦红外线加热烧结棒的局部,使熔区从一端逐渐移至另一端以完成结晶过程。
第一节:分凝现象与分凝系数分凝现象:将含有杂质的晶态物质熔化后再结晶时,杂质在结晶的固体和未结晶的液体中的浓度是不同的,这种现象称分凝现象或偏析现象。
区熔提纯就是利用分凝现象将物料局部深化形成狭窄的熔区,并令其沿锭长一端缓慢地移动到另一端,重复多次使杂质尽量集中在尾部或头部,进而达到使中部材料提纯的目的。
平衡分凝系数在温度为TL ,材料A 固液两相平衡时,固相中杂质B(溶质)的浓度CS 和液相中的杂质浓度CL 之比值。
K0 称为杂质B 在材料A 中的平衡分凝系数。
平衡分凝系数:是在一定温度下,平衡状态时,杂质在固液两相中浓度的比值,以此描述该体系中杂质的分配关系。
当K0<1说明:材料中含有使其熔点下降的杂质,局部熔融,固液两相达到平衡时,液相中杂质浓度比固相中杂质浓度大。
而K0>1说明:材料中含有使其熔点上升的杂质,局部熔融时,固液两相达到平衡时,液相中杂质浓度比固相中杂质浓度小。
还有一类杂质,K 0≈1,区熔时基本上不改变原有杂质的分布状态。
有效分凝系数对于K>1的杂质,结晶时固相界面会多吸收界面附近熔体中的杂质,就会使界面附近的熔体薄层中杂质呈缺少状态,形成浓度梯度加快杂质从熔体内部向界面的扩散。
最后达到一个动态平衡,形成稳定的界面薄层,称杂质贫乏层。
对于K<1的杂质,当结晶速度大于杂质由界面扩散到熔体内的速度,杂质就会在界面附近的熔体薄层中堆积起来,形成浓度梯度加快杂质向熔体内部的扩散。
最后达到一个动态平衡,形成稳定的界面薄层,称杂质富集层(或扩散层)。
有效分凝系数K effBPS 公式熔体可分为两种不同的运动形式:(1) 固液交界面附近的扩散层熔体中,液流运动比较平静,称为平流区。
区域杂质运动的主要形式是扩散,杂质分布不均匀,存在浓度梯度。
(2)扩散层外的熔体中,受热对流的影响,液流运动非常剧烈,称为湍流区。
杂质分布是均匀的。
LSC C K =00L seff C C K =0/00)1(K e K K K D f eff +-=-δ上式为BPS 公式,给出了平衡分凝系数K 0与有效分凝系数K eff 的关系。
K eff 是K 0、固液界面移动速度?、扩散层厚度δ和扩散系数D 的函数。
第二节:区熔原理正常凝固:一材料锭全部熔化后,使其从一端向另一端逐渐凝固,称正常凝固。
正常凝固后锭条中的杂质分布不再是均匀的,出现三种情况:(1) K <1的杂质,其浓度越接近尾部越大,向尾部集中。
(2) K >1的杂质,其浓度越接近头部越大,向头部集中。
(3) K ≈1的杂质,基本保持原有的均匀分布。
一次区熔提纯:(令锭长L 与熔区长度l 比为10时的应用)结论:(1)就一次提纯而言,正常凝固比一次区熔的提纯效果好。