则
x →0
x →0
y
lim f ( x) = lim 1 = 1, + +
x →0
y = sgn x
1
lim f ( x) = lim (−1) = −1, − −
x →0
所以 lim f ( x ) 不存在.
x →0
O −1
x
例7
1 说明极限 lim x→0 1 + e1/ x 1 lim = 0, 1/ x + x→0 1 + e
1 x0
x − x0 < ε,
所以
x→ x0
lim x = x0 .
g
左、右极限
前面讨论的是函数 f ( x ) 在某一点 x0的极限, 它反映的 的极限 是当 x 在该点两侧趋近于x0 时, 函数有一个确定的变化 趋势, 但某种情况下, 趋势 但某种情况下 函数在 两侧的趋势是不同的, 这就需 两侧的趋势是不同的 要分别加以讨论. 考虑函数: 要分别加以讨论 考虑函数
x2 −1 f (x) = x −1 0
则
x →1
x ≠1, x =1,
2
lim f ( x ) = 2,
O 1−δ 1 1+ δ
x
事实上, 的取值毫无关系. 但 f (1) = 0. 事实上 极限与 f (1) 的取值毫无关系
y
x2 − 1 f (x) = x −1
2
O 1−δ 1 1+ δ
g
例5 设 x0 证 因
> 0, 证明 lim x = x0 .
x→x0
f (x) − A = x − x0 =
x − x0 x + x0