2016秋九年级数学上册25.2用列举法求概率第1课时用列表法求概率导学案(新版)新人教版
- 格式:doc
- 大小:4.92 MB
- 文档页数:2
25.2 用列举法求概率《第1课时运用直接列举或列表法求概率》教案【教学目标】1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.【教学过程】一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5C.0.75 D.0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=34,故选择C.方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计【教学反思】教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.《第1课时用直接列举法或列表法求概率》导学案【学习目标】:知识与技能掌握用列表法求事件的概率.过程与方法通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
第二十五章概率初步25.2用列举法求概率第1课时运用直接列举或列表法求概率教学内容:人教版九年级上册第25章第二节第一课时运用直接列举或列表法求概率学习目标:1.2. 学会正确“列表”表示出所有可能出现的结果.3. 知道如何利用“列表法”求随机事件的概率.会用“直接列举法”和“列表法”列举所有可能出现的结果.教学重难点重点:知道如何利用“列表法”求随机事件的概率.难点:会正确“列表”表示出所有可能出现的结果.教学方法教法:创设情景提问法、演示法、启发式教学.学法:小组合作、讨论交流.教学过程:一、情境导入1、12.4 H国家宪法日(PPT出示志愿者图片)(设计意图:通过宪法的导入, 让学生们了解宪法,增强法律意识)2、再由我校也将开展进社区宣传宪法的活动,向每班招募一名志愿者,但是小辛玉和安琪都想去,引出抛硬币活动,正面向上小车玉去,反面向上安琪去,学生判断公平的依据。
学生说概率公式P (A)=-n(设计意图:增强学生对社会的服务意识,复习旧知)3、当小车玉抛出硬币是正面,决定小车玉去参加活动时,安琪提出一人抛一枚硬币更公平。
老师提问:同时抛两枚硬币,怎么制定规则比较公平呢?(设计意图:引出本节课的主题:用列举法求概率)4、确定本节课的学习目标。
二、探索新知(一)用直接列举法求概率问题1:同时掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面朝上,一枚硬币反面朝上。
学生抛硬币,得出结论:抛掷两枚硬币的所有可能为:正正,正反,反正,反反请学生分别回答上面三个问题。
(学生做出判断,老师评价,及时表扬)(设计意图:由学生自己动手操作,得出结论,吸引学生的兴趣)问题2:如何制定规则,让小车玉和安琪都觉得公平呢?学生回答:落地后一正一反,小车玉赢;如果落地后两面一样,安琪赢.其他学生判断公平性。
(设计意图:使学生理解公平与概率之间的关系)问题3:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?学生以小组为单位讨论,并由小组汇报讨论结果。
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
25.2用列举法求概率
第1课时用列表法求概率
会用列表法求出简单事件的概率.
阅读教材第136至137页,完成下列问题.
自学反馈
1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?
2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?
3.甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为________(填“甲”或“乙”)获胜的可能性更大.
4.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是________.
5.同时抛掷两枚正方体骰子,所得点数之和为7的概率是________.这里2、3、4、5均为两次实验(或一次两项),可采用直接列举法或列表法.
活动1小组讨论
1。
【学习目标】通过游戏、试验理解P (A )=nm并会运用它解决一些具体问题。
阅读课本【例题】会用列表的方法求出包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果,从而求得相应的概率。
【学习重点】 1、理解P(A)=nm并应用它解决一些具体题目 2、会用列表法和树形图法求概率 【学习过程】 一、课前导学1、 什么是概率?事件可分为哪些? 2.、P(A)的取值范围是什么? 3、什么时候采用“列表法”4、如何正确的“列表”表示出所有可能出现的结果5、如何利用“列表法”求随机事件的概率 二、例题探究例1 同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.方法一:将两枚硬币分别记做 A 、B ,于是可以直接列举得到:(A 正,B 正),(A 正,B 反),(A 反,B 正), (A 反,B 反)四种等可能的结果.故:P (两枚正面向上)=14 P (两枚反面向上)=14P (一枚正面向上,一枚反面向上)=12方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况.两枚硬币分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能出现的结果. 列表法由此表可以看出,同时抛掷两枚硬币,可能出现的结果有4个,并且它们出现的可能性相等. 例2 同时掷两枚质地均匀的骰子,计算下列事件的概率: (1)两枚骰子的点数相同; (2)两枚骰子点数的和是 9; (3)至少有一枚骰子的点数为 2.解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下表列举出所有可能的结果. 可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等. (1)两枚骰子点数相同(记为事件A )的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以,P (A )=61366. (2)两枚骰子点数的和是9(记为事件B )的结果有4种,即(3,6),(4,5),(5,4),(6,3),所以P(B)=41= 369.(3)至少有一枚骰子的点数是 2(记为事件C)的结果有11种,所以,P(C)=11 36.【知识梳理】本节课你学到了什么?【课堂反馈】1.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率()A.34B.12C.14D.1解:列表得:1 2 3 42 3 4 5 63 4 5 6 7所有等可能的情况有8种,其中两次摸出的卡片的数字之和等于4的情况有2种,则P==,故选C2. 从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,能组成三角形的概率为()A.34B.12C.13D.14解:∵从长度分别为2、6、7、9的4条线段中任取3条作三角形的边,等可能的结果有:2、6、7;2、6、9;2、7、9;6、7、9,且能组成三角形的有:2、6、7;6、7、9;∴能组成三角形的概率为:21 =42.故选B.3.浙江卫视六频道《我老爸最棒》栏目中有一项”“大力金刚”的游戏.如图,有6根柱子穿过了一堵木墙,蓝、绿两队的两位老爸分别站在木墙的左、右两侧,需把自己一侧的那段柱子推向对方侧.若每侧每段柱子被选中的机会相等,则两人选到同一根柱子的概率为()A.12B.13C.16D.136解:设6根柱的编号分别为1,2,3,4,5,6,列表得:第一次第二次1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由表可知共有36种等可能情况,其中到两人选到同一根柱子的情况数目有6种,所以其概率=61=366.故选C.4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.49B.13C.16D.19解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为19,故选D.5. 在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.12B.34C.1 D.14解:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是12.故选A.6、彩票有100张,分别标有1,2,3,…100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?解:∵从1到100中7的倍数有7,14,21,28,35,42,49,56,63,70,77,84,91共13个,∴他中奖的概率=13 100.答:他中奖的概率是13 100.7、有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分线上,那么重转一次,直到指针指向某份为止).(1)用列表或画树状图法分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?若认为公平请说明理由;若认为不公平,试修改得分规定,使游戏对双方公平.解:(1)每次游戏可能出现的所有结果列表如下:转盘B的数字转盘A的数字4 5 61 (1,4)(1,5)(1,6)2 (2,4)(2,5)(2,6)3 (3,4)(3,5)(3,6)表格中共有9种等可能的结果,则数字之积为3的倍数的有五种,其概率为59;数字之积为5的倍数的有三种,其概率为31 =93.(2)这个游戏对双方不公平.∵小明平均每次得分为2×59=109(分),小亮平均每次得分为3×13(分),∵109>1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小明得3分;若数字之积为5的倍数时,小亮得5分即可.。
25.2用列举法求概率第1课时学习目标:会用列举法求出简单事件的概率。
重、难点:会用列举法求出简单事件的概率。
学习过程:一、学生预习教师导学把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌上,从中任意抽出一张,求下列事件发生的概率:(1)抽出的牌的点数是6;(2)抽出的牌带有人像;(3)抽出的牌的花色是黑桃;(4)抽出的牌的花色是红桃。
二、学生探究教师引领例1、如图是计算机中“扫雷”游戏的画面。
在一个9×9个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格最多只能藏一颗地雷。
小王在游戏开始时随机踩中一个方格,踩中后出现如图所示的情况。
我们把与标号3的方格相临的方格记为A区域(画线部分),A区域外的部分记为B区域。
数字3表示A区域有3颗地雷,那么第二步应踩在A区域还是B区域?变式应用:回顾例1,如果小王在游戏开始时踩中的第一个格子上出现了标号1,下一步踩在哪一区域比较安全?例2、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上;“同时掷两枚硬币”与“先后两次掷一枚硬币”,所得到的结果有变化吗?例3,从长度分别为2、3、4、5的4条线段中任取3条,求构成三角形的概率。
四、学生达标教师测评1、袋子中装有红、绿各一个小球,除颜色外无其它差别,随机摸出1个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球。
2.甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率。
3、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上。
(1)随机抽取一张,求P(奇数);(2)随机抽取一张作为十位上的数字,记下数字后放回,再抽取一张作为个位上的数字,能组成哪些两位数,这个两位数能被3整除的概率是多少?(2)随机抽取一张作为十位上的数字(不放回去),再抽取一张作为个位上的数字,能组哪些两位数?这个两位数能被3整除的概率是多少?4、一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同。
25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。
25.2.1 用列举法求概率(彭小永)一、教学目标(一)学习目标1.了解列举法的含义.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.会用列举法计算简单的随机事件的概率.(二)学习重点用列举法计算简单的随机事件的概率(三)学习难点包含两步的随机事件的概率二、教学设计(一)课前设计1.预习任务(1)古典概型试验有两个特点:①一次试验中,可能出现的结果有有限个;②一次试验中,各种结果发生的可能性大小相同 .(2)列表法求概率:当一次试验要涉及两个因素,并且可能出现的结果数目较少时,为不重不漏列出所有可能结果,通常采用列举法 .(3)抛掷一枚质地均匀的硬币,正面朝上的概率是 0.5 ,反面朝上的概率是 0.5 .2.预习自测(1)甲、乙、丙三人站成一排拍照,则甲站在中间的概率为()A. B. C. D.【知识点】随机事件的概率【解题过程】解:甲有左、中、右三个位置可以选择,所以甲站中间的概率为.【思路点拨】列举甲站位所有的可能性,找出符合条件的,便可算出其概率.【答案】B(2)有5张看上去无差别的卡片,上面分别写着1、2、3、4、5,随机抽取3张,用抽到的 3个数字作为边长,恰好构成三角形的概率是()A. B. C. D.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:所有的可能结果有:(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,只有(2,3,4)、(2,4,5)、(3,4,5)三种情况可以构成三角形,所以结果为.【思路点拨】列举出所有可能的情况,再利用“三角形的任意两边之和大于第三边,任意两边之差小于第三边”,找出符合条件的3组值,便得到答案.【答案】A(3)从-2、-1、0、1、2这5个数中任取一个数,作为关于的一元二次方程的值,则所得的方程有两个不相等的实数根的概率是 .【知识点】概率,根的判别式【解题过程】解:因为方程x2-x+k=0有两个不相等的实根,所以根的判别式,所以,有-2、-1和0满足要求,其概率为.【思路点拨】弄清一元二次方程有两个不相等实根的条件,找出的取值范围,再计算其概率.【答案】(4)在一个不透明的袋子中,有两个红球和两个白球,它们只有颜色上区别,从袋子里随机摸出一个球记下颜色后放回,再随机地摸出一个球,则两次都摸到白球的概率是 . 【知识点】用列举法求概率【解题过程】解:设4个球分别为红1、红2、白1、白2,则可列出下表:第二次第一次红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)从表中可以看出,在总共16种情况中,只有4种符合要求,所以,所求的概率为.【思路点拨】用列表的方法便可轻松地找到答案. 如果第一次摸了不放回,则在表格中的从左上到右下这条对角线上的四组数据不会出现. 也就是说,做这种题时,要特别注意第一次摸出后是否放回的问题,它对结果有较大的影响.【答案】(二)课堂设计1.知识回顾(1)必然事件、不可能事件发生的概率分别是 1和0 ;随机事件的概率大于0且小于1 . (2)如果在一次试验中,有n种可能的结果,它们发生的可能性都相同,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .2.问题探究探究一温故知新,引出课题●活动①请思考后,回答下列问题(1)抛掷两枚质地均匀的硬币,有哪些可能的结果?请写出这些结果.(2)抛掷一枚质地均匀的硬币两次,有哪些可能的结果?请写出这些结果.(3)“同时抛掷两枚质地均匀的硬币两次”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果是一样的吗?由学生思考后,举手回答.【设计意图】让学生通过回答前两个问题,初步学会使用列举法解决问题.探究二利用列举法求概率,解决实际问题●活动①初试列举法例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:同时抛掷两枚硬币,有以下四种结果:(正,正)、(正、反)、(反,正)、(反、反);(1)由于全部正面朝上的结果(正,正)这只有1种,所以,P(两次正面朝上);(2)由于全部反面朝上的结果(反,反)这只有1种,所以,P(两次反面朝上)(3)由于一枚正面朝上、一枚反面朝上的结果有(正,反)与(反,正)两种,所以,P(一正.一反)【思路点拨】排列出所有可能的结果,再找出符合条件的,便可轻松得解. 特别注意试验结果要不重不漏.【答案】(1);(2);(3).练习:在一个不透明的盒子里有3个分别标有5、6、7的小球,他们除数字外其他均相同. 充分摇匀后,先摸出1个球不放回,再摸出一个球,那么这两个球上的数字之和为奇数的概率为 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:∵摸出的所有可能结果有:(5,6)、(5,7)、(6,5)、(6,7)、(7,5)、(7,6)共6种情况,它们之和分别为11、12、11、13、12、13共4个奇数和2个偶数,∴P(两数之和为奇数)【思路点拨】用列举法得出所有可能的结果,找出符合条件的,问题便迎刃而解.特别注意事先摸出的球是否放回对概率的影响,还要注意不重不漏.【答案】【设计意图】让学生在列举法的使用上熟能生巧.●活动②用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:两枚骰子分别记为1和2,可用下表列举出所有可能的结果:第1枚1 2 3 4 5 6第2枚1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,同时掷两枚骰子,可能出现36种结果,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A)的结果有6种,分别是(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),所以P(A)=;(2)两枚骰子的点数之和为9(记为事件B)的结果有4种,分别是(3,6)、(4,5)、(5,4)、(6,3)所以P(B)=;(3)至少有一枚点数为2(记为事件C)的结果有11种(见上表),所以P(C)=.【思路点拨】分横行和纵列将两枚骰子的点数排列出来,计算符合条件的结果即可. 要注意不重不漏.【答案】(1);(2);(3)练习:有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是( )A.13B.14C.23D.34【知识点】用列表法求概率【解题过程】解:摸球的结果如下:A袋B袋细致信细信致信心细心致心共有4种可能的结果,且每种结果是等可能性的. 所以抽出“细心”的概率为 . 【思路点拨】用列表法可以轻松得解,注意不重不漏,还要注意摸球讲不讲顺序.【答案】 .●活动③拓展提高,解答概率综合题例3 有一枚均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为,另有三张背面完全相同,正面分别写着-2、-1、1的卡片,小亮将其混合,正面朝下旋转在桌面上,并从中抽取一张,把卡片正面的数字记为.然后他们计算出S=x+y的值.和-2 -1 11 -1 0 22 0 1 33 1 2 44 2 3 5(1)用列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率. 【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:(1)列表如右,共12种情况.(2)P(S=0)=; P(S<2).【思路点拨】用表格将所有情况列举出来,然后找出符合条件的即可轻松得解.【答案】(1)共有如上表的12种情况. (2)P(S=0)=;P(S<2).练习:某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛. 九年级1班经过投票初选,小亮和小丽票数全班并列第一,现在他们都想代表全班参赛. 经过班长与他们协商决定,用掷骰子的办法让获胜者去参赛. 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面都是偶数,则小丽胜;否则视为平局,若为平局,继续上述游戏,直到分出胜负为止. 如果小亮和小丽都按上述规则各掷一次骰子,解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表法说明理由.【知识点】用列表法求概率【解题过程】解:(1)∵朝上一面的点数为奇数有3种情况,∴P(奇数)(2)由题意知,可列表如下:1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可知:共有36种等可能的结果,其中小亮和小丽获胜各有9种结果,∴P(小亮胜)P(小丽胜).【思路点拨】列表法求概率是一种很常见的方法.【答案】(1)P(奇数);(2)公平.小亮与小丽获胜的概率同样大(表格见上). 【设计意图】强化列表法求概率,使其熟练掌握.3. 课堂总结知识梳理(1)列举法的使用条件:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,求出随机事件发生的概率.(2)列表法的使用条件:当一次试验要涉及的因素只有两个(我们也常称为两步操作试验),且每一步的结果为有限多个情形,我们常通过列表的方法列举所有可能的结果,找出事件A可能发生的结果,再利用公式P(A)求它的概率.(3)使用列举法求概率时,要求做到不重不漏.重难点归纳(1)只有有限多个情形时,我们可以使用列举法;(2)当一次试验要涉及两个因素(或叫两步),且每一步的结果为有限多个情形,我们可以通过列表法求它的概率;(3)使用列举法求概率时,要求做到不重不漏. (三)课后作业 基础型 自主突破1. 为支援灾区,小明准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( ) A. 12 B. 14 C. 16 D. 18【知识点】用列举法求概率 【数学思想】分类讨论思想【解题过程】5、1、2这三个数字的排列方式有:512、521、125、152、215、251共6种,其中只有一种是正确的,所以,他第一次就拨通电话的概率是16.【思路点拨】用列举法不重不漏地将三个数排列出来是关键. 【答案】C 2.在的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A .1 B.34 C.12 D.14【知识点】用列举法求概率 【解题过程】解:方框中符号的填法共有:(+,+)(-,-)、(+,-)、(-,+)4 种,只有 (+,+)与(-,+)2种符合要求,所以能构成完全平方式的概率为12.【思路点拨】记住完全平方式的符号特点,再用列举法排列出所有的情况,便可求得其概率. 【答案】C3.如图所示,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______. 【知识点】用列举法求概率【解题过程】解:翻动木牌有6种情形,只有两种情况可以中奖,中奖的概率为【思路点拨】找出所有的情形和符合条件的个数即可计算出相应的概率.【答案】.4.从-2、-1、2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是________.【知识点】用列举法求概率【解题过程】-2、-1、2这三个数学共有6种排法,分别是(-2,-1)、(-1,-2)、(-2,2)、(-1,2)、(2,-2)、(2,-1),其中只有(2,-2)和(2,-1)在第四象限,其它的均不合要求,所以该点在第四象限的概率为.【思路点拨】第四象限的点的横、纵坐标分别为正和负,只有两个点符合条件,其概率为.【答案】5.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.【知识点】用列举法求概率【解题过程】长度为8厘米的木棍截成长为整数的三段,共有5组结果,它们分别是:(1,1,6)、(1,2,5)、(1,3,4)、(2,2,4)、(2,3,3),其中只有(2,3,3)这一种情形能构成三角形,其概率为.【思路点拨】注意不重不漏;还要注意三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】 .6. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.34【知识点】用列举法求概率小明小华A BA (A,A)(B,A)B (A,B)(B,B)【解题过程】分别将“打扫社区卫生”和“参加社会调查”记为事件A和事件B,则两人的选择有如下情况,同时选择“参加社会调查”(事件B)的只有一种情况,其概率为14.【思路点拨】用表格排列出所有的情况和符合条件的情况,即可求出其概率.【答案】1 4能力型师生共研7. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为________.【知识点】用列表法求概率【思想方法】分类讨论思想【解题过程】解:可列表如右,共有9种可能的情况,其中只有4种情况符合题意,所以P(两次都是奇数).1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3) (2,3) (3,3)【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】P (两次都是奇数).8. 一个口袋中有4个相同的小球,分别写有字母A 、B 、C 、D ,随机地抽取一个小球后放回,再随机抽取一个小球.(1)试用列表法列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率. 【知识点】用列表法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)根据题意,可以列表如右,共有16种可能的结果.(2)因为在总共的16种情况中,只有4种是两个字母相同的情况,所以P (两次的字母相同).【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】(1)共有16种情况(见上表); (2)P (两次的字母相同).探究型 多维突破9. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色. 求可配成紫色的概率. 【知识点】用列表法求概率 【数学思想】数形结合思想 【解题过程】第1次 第2次A B C DA (A ,A) (B ,A) (C ,A) (D ,A) B (A ,B) (B ,B) (C ,B) (D ,B) C(A ,C) (B ,C) (C ,C) (D ,C)D(A ,D) (B ,D) (C ,D) (D ,D)红 蓝1 蓝2红 (红,红) (红,蓝1) (红,蓝2)解:由于必须是等可能性的,所以需将第2个转盘的蓝色分成蓝1和蓝2 ,因此可列出右表,从表中可以看出,共有6种等可能情况,有3种可以配成紫色,所以P (配成紫色).【思路点拨】只有红配蓝或者蓝配红可以配成紫色;用列表法可以轻松得出所有可能的情况.【答案】P (配成紫色) .10. 如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可以使小灯泡发光.(1)任意闭合其中一个开关,小灯泡发光的概率是多少? (2)任意闭合其中的两个开关,小灯泡发光的概率是多少? 【知识点】用列举法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)由电路图可知,闭合开关D 可以使灯光发光,只闭合A 、B 、C 三个都不使灯光发光,所以,P (闭合一个开关可发光).(2)闭合两个开关的情况如表中所示,其中只有开关D 闭合的才能让小灯光发光,共有6种情况,所以,P (闭合两个开关可发光). 第1 个 第2个A BCDA (B ,A ) (C ,A ) (D ,A )B (A ,B )(C ,B ) (D ,B )C (A ,C ) (B ,C )(D ,C )D(A ,D ) (B ,D ) (C ,D )【思路点拨】注意灯泡发光的一个基本条件是连通有电源的电路.蓝 (蓝,红) (蓝,蓝1) (蓝,蓝2)【答案】(1)P(闭合一个开关可发光);(2)P(闭合两个开关可发光).自助餐1.从2、3、4、5中任选两个数,分别记作m、n,那么点( m,n)在函数图象上的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】函数思想,分类讨论思想【解题过程】.从2、3、4、5中任选两个数作为点的坐标,分别是(2,3)、(2,4)、(2,5)、(3,2)、(3,4)、(3,5)、(4,2)、(4,3)、(4,5)、(5,2)、(5,3)、(5,4)共有12种情况,在函数图象上的只有(3,4)和(4,3)两个点,所以P(点在函数上). 【思路点拨】选两个数,相当于选了一个数后,不放回,再选一个数. 选了第一个数后是否放回对结果有直接的影响,务必重视.【答案】D2.小强和小华两人玩“石头、剪子、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】若三个动作分别简记为“石、剪、布”,则两人出手的情况包括:(石,石)、(石,剪)、(石,布)、(剪,石)、(剪,剪)、(剪,布)、(布,石)、(布,剪)、(布,布)九种情况,平局只有3种,所以两人平局的概率为.【思路点拨】用列举法排出所有可能的情况,指出平局的3种情况,即可得到答案.【答案】B3.同时抛掷A、B两个小正方体骰子,正面朝上的数字分别记为,并以此确定点P(),那么,点P落在抛物线上的概率为 .【知识点】用列举法求概率【数学思想】函数思想,数形结合思想【解题过程】解:如下表所示,得到的点共有36种情况,只有(1,2)、(2,2)两个点满足要求,所以,点P在抛物线上的概率为 .x y 1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)【思路点拨】用列表法找出所有的点,再将1、2、3、4、5、6作为变量的值代入函数的解析式,求出的值,找出符合条件的点P,便可轻松得解.【答案】.4.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲任选一个数字,记为m,将它放回后,再由乙任选一个数字,记为n. 若m、n满足,则称两人心有灵犀,那么两人心有灵犀的概率是 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:从下表可知,共有16种可能的情况,符合条件的有10种,其概率为.甲结果0 1 2 3乙0 0 1 2 31 1 0 1 22 2 1 0 13 3 2 1 0【思路点拨】用表格排列出所有可能的情况,找出符合条件的情况即可轻松得解.【答案】 .5.一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球.【知识点】用列举法求概率【解题过程】解:(1)共有4种情况,摸出红球的概率为;(2)如图,共有16种情况,两次均为红色的只有1种,其概率为.第1 次红黄蓝白第2次红(红,红)(黄,红)(蓝,红)(白,红)黄(红,黄)(黄,黄)(蓝,黄)(白,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(白,蓝)白(红,白)(黄,白)(蓝,白)(白,白)【思路点拨】第一次摸出后是否放回对结果有着重大影响.【答案】(1)摸出红球的概率为;(2)两次均为红色的概率为.6.六一儿童节前夕,某市“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行彰.某校八年级8个班中只能选两个班级参加这项活动,且八(1)班必须参加,另外再从其他班级中选一个班参加活动.八(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标有1、2、3、4四个数字,转动转盘两次,将两次指针所指的数字相加(当指针指在某一条等分线上时视为无效,重新转动),和为几就选哪个班参加.你认为这种方法公平吗?请说明理由.【知识点】用列表法求概率【数学思想】数形结合思想【解题过程】解:我认为这个方法不公平,理由如下:我们可以用下表列出所有可能的情况. 两次得到的数字之和分别为2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8共16种情况. 所以,八(2)班被选中的概率为116,八(3)班被选中的概率为216=18,八(4)班被选中的概率为316,八(5)班被选中的概率为416=14,八(6)班被选中的概率为316,八(7)班被选中的概率为216=18,八(8)班被选中的概率为116,所以这种方法不公平.第1 次和第2次1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8【思路点拨】用列表法将所有可能的情况排列出来,算出各个班被选中的概率,通过比较确定是否公平.【答案】这种方法不公平,理由如上.。
新人教版九年级数学上册导学案:25.2用列举法求概率(1)【学习目标】1、认识P(A)= nm(在一次试验中有n种可能的结果,其中A包含m种)的意义。
2、会用P(A)=nm解决一些实际问题。
预习导学一知识链接:1、设A是某一随机事件,则P(A)的值是()A、0<P(A)<1;B、0≤P(A)≤1;C、P(A)=1;D、P(A)=02、事件发生的可能性越大,它的概率越接近;反之,事件发生的可能性越小,则它的概率越接近。
思考:一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大吗?二、探究新知:1、自主探究:阅读课本P133—P134,先画图探究:自己画一个“扫雷”游戏画面,感知地雷的位置(或上电脑课时,动手玩一下),后完成填空。
(一)、在例1中(1)A区域的方格共有个,标号3表示在这个方格中有个方格各藏颗地雷,因此,踩A区域的任一方格,遇到地雷的概率是。
(2)B区域中共有个小方格,其中有个方格内各藏颗地雷。
因此,踩B区域的任一方格,遇到地雷的概率是。
(3)踩区域遇到地雷的可能性大;踩区域遇到地雷的可能性小。
因而第二步应踩区域。
(二)、在例2中,列表表示掷两枚硬币产生的所有可能结果。
P(A)= , P(B)= , P(C)= .2、探究:列表法有什么优越性?事件 A B C 结果正反正反个数学以致用1、袋子中装有红、黄各一个小球,随机摸出一个,是红球的概率是 。
2、投掷一枚质地均匀的正方体骰子,结果出现数是“3”的概率是( )A 、33.3%;B 、17% ;C 、16.6% ;D 、20%。
3、下列时间概率不是0.5的是( )A 、在1、2、3、4、5、6、7、8、9、10这十个数字中,任取一个数,其值不小于5。
B 、投掷一枚骰子,奇数点朝上;C 、投掷一枚均匀的硬币,正面朝上;D 、袋子中有4个球,其中2个红球、1 个黄球和1 个白球,从中抽出一个是红色的球。
4、从5到9这5 个数中任取一个数,是3的倍数的概率是 。
25.2 用列举法求概率
第1课时用列表法求概率
会用列表法求出简单事件的概率.
自学指导阅读教材第136至137页,完成下列问题.
自学反馈
1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?
解:两种结果:白球、黄球.
2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?
解:三种结果:两白球、一白一黄两球、两黄球.
3.甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其它结果,甲得1分.谁先累积到10分,谁就获胜.你认为甲(填“甲”或“乙”)获胜的可能性更大.
4.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取
出两个球,则这两个球都是白球的概率是1
6
.
5.同时抛掷两枚正方体骰子,所得点数之和为7的概率是1
6
.
这里2、3、4、5均为两次实验(或一次两项),可采用直接列举法或列表法.
活动1 小组讨论
例同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;
(2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2.
小组讨论,合作交流
(1)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果,从而解决了上述问题?
(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).
(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?
当一次实验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
活动2 跟踪训练
1.将一个转盘分成6等分,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有
红色和蓝色可配成紫色)的概率是
1 18
.
2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是1
4
,出现数字之积为偶数的概率是
3
4
.
3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:
(1)取出的两个球都是黄球;
(2)取出的两个球中有一个白球一个黄球.
解:1
6
;
1
2
.
4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
解:
7 18
.
这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5.
活动3 课堂小结
1.当一次实验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
2.注意第二次放回与不放回的区别.
教学至此,敬请使用学案当堂训练部分.。