高中物理-动量守恒定律测试题(1)
- 格式:doc
- 大小:1.02 MB
- 文档页数:29
高中物理-动量守恒定律检测题(含答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题4分,共48分。
在第1~8题给出的4个选项中,只有一个选项正确;在第9~12题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1.下列关于物体动量和冲量的说法中不正确的是()A.物体所受合外力冲量越大,它的动量就越大B.物体所受合外力冲量不为零,它的动量一定要改变C.物体动量变化的方向,就是合外力冲量的方向D.物体所受合外力越大,它的动量变化越快2.在光滑水平直路上停着一辆较长的木板车,车的左端站立一个大人,车的右端站立一个小孩。
如果大人向右走,小孩(质量比大人小)向左走。
他们的速度大小相同,则在他们走动过程中()A.车一定向左运动B.车可能向右运动C.车可能保持静止D.无法确定3.在光滑的水平面上,有a、b两球,其质量分别为m a、m b,两球在t0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度图象如图所示,下列关系正确的是()A.m a>m b B.m a<m bC.m a=m b D.无法判断4.如图所示,足够长的长木板A静止在光滑的水平地面上,质量为1 kg的物体B以v0=3 m/s的水平速度冲上A,由于摩擦力作用,最后停止在木板A上。
若从B冲到木板A上到相对木板A静止这段时间内摩擦力对长木板的冲量大小为2 N·s,则A、B最后的共同速度及长木板的质量分别为()A.1 m/s,1 kg B.1 m/s,2 kgC.2 m/s,1 kg D.2 m/s,2 kg5.如图所示,横截面积为5 cm2的水柱以10 m/s的速度垂直冲到墙壁上,已知水的密度为1×103kg/m3,假设水冲到墙上后不反弹而顺墙壁流下,则墙壁所受水柱冲击力为()A.0.5 N B.5 N C.50 N D.500 N6.两个小球在光滑水平面上沿同一直线、同一方向运动,B球在前,A球在后,m A=1 kg、m B=2 kg,v A=6 m/s,v B=3 m/s,当A球与B球发生碰撞后,A、B两球的速度可能是() A.v A′=-4 m/s,v B′=6 m/s B.v A′=4 m/s,v B′=5 m/sC.v A′=4 m/s,v B′=4 m/s D.v A′=7 m/s,v B′=2.5 m/s7.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,这个整体的动能为()A.E09B.E03C.2E03D.E08.如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接。
一、选择题1.如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=3 4L。
现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。
已知A的质量为m,取3=1.73,5=2.24,则B的质量约为()A.0.3m B.0.8mC.m D.1.4m B解析:B设A碰前的速度大小为v,碰撞后A、B球的速度分别为v1、v2,B通过最高点时的速度大小为v3,根据机械能守恒定律有mg(L–L cos60°)=12mv2得gLA、B发生弹性正碰,则mv=mv1+m2v212mv2=1221mv+12222m v得v2=22mvm m碰后B上摆到最高点的过程,有12222m v=m2g12L+12223m vB恰好能通过最高点,则m2g=m2234vL解得m2=(455–1)m≈0.8m故选B。
2.假设将来某宇航员登月后,在月球表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m 的小球(可视为质点),如图所示,当给小球一瞬时冲量I 时,小球恰好能在竖直平面内做完整的圆周运动。
已知圆轨道半径为r ,月球的半径为R ,则月球的第一宇宙速度为( )A 5I Rm rB I R m rC I r m RD 5I rm RA解析:A小球获得瞬时冲量I 的速度为v 0,有00I p mv ∆=-=而小球恰好通过圆周的最高点,满足只有重力提供向心力2v mg m r=从最低点到最高点由动能定理可知220112=22mg r mv mv -⨯-解得22=5I g rm 月球的近地卫星最小发射速度即为月球的第一宇宙速度,满足21=v m g m R''解得15I Rv m r=故A 正确,BCD 错误。
故选A 。
3.人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理-动量守恒定律测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落4.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒D .P 移动的距离为M m M+R 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为()A.v A′=1 m/s,v B′=1 m/sB.v A′=4 m/s,v B′=-5 m/sC.v A′=2 m/s,v B′=-1 m/sD.v A′=-1 m/s,v B′=-5 m/s7.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)()A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32 mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRmM M m+D.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRMm M m+8.如图所示,在光滑的水平面上有体积相同、质量分别为m=0.1kg和M=0.3kg的两个小球A、B,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A、B两球原来处于静止状态.现突然释放弹簧,B球脱离弹簧时的速度为2m/s;A球进入与水平面相切、半径为0.5m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s2,下列说法正确的是()A.A、B两球离开弹簧的过程中,A球受到的冲量大小等于B球受到的冲量大小B.弹簧初始时具有的弹性势能为2.4JC.A球从P点运动到Q点过程中所受合外力的冲量大小为1N∙sD.若逐渐增大半圆形轨道半径,仍然释放该弹簧且A球能从Q点飞出,则落地的水平距离将不断增大9.如图所示,两滑块A、B位于光滑水平面上,已知A的质量M A=1k g,B的质量M B=4k g.滑块B的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为2gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t = 11.如图所示,半径为R 、质量为M 的14一光滑圆槽静置于光滑的水平地面上,一个质量为m 的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是A .M 和m 组成的系统动量守恒B .m 飞离圆槽时速度大小为2gRM m M+ C .m 飞离圆槽时速度大小为2gRD .m 飞离圆槽时,圆槽运动的位移大小为m R m M+ 12.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。
选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律 选择题1.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()A .上滑过程中重力的冲量小于下滑过程中重力的冲量B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等C .上滑过程中合力的冲量大于下滑过程中合力的冲量D .上滑与下滑的过程中合外力冲量的方向相同2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m --C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s4.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mghB .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处5.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值6.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 7.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量8.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
一、选择题1.(0分)[ID :127088]A 、B 两球沿一直线运动并发生正碰。
如图所示为两球碰撞前后的位移—时间图象。
a 、b 分别为A 、B 两球碰撞前的位移—时间图线,c 为碰撞后两球共同运动的位移—时间图线,若A 球质量是m =2 kg ,则由图可知( )A .A 、B 碰撞前的总动量为3 kg·m/s B .碰撞时A 对B 所施冲量为4 N·sC .碰撞前后A 的动量变化为6 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J2.(0分)[ID :127058]动量相等的甲、乙两车刹车后分别沿两水平路面滑行。
若两车质量之比:23m m 甲乙:,路面对两车的阻力相同,则甲、乙两车的滑行距离之比为( ) A .3:2B .2:3C .9:4D .4:93.(0分)[ID :127056]甲乙是两个完全相同的小球,在同一位置以相等的速率抛出,甲被水平抛出,乙被斜上抛,只受到重力,则下列说法正确的是( ) A .两球落地时的速度相同 B .两球落地时的重力瞬时功率相等 C .两球落地时前的重力冲量相同 D .两球落地前的动量变化快慢相同4.(0分)[ID :127050]如图所示质量为m 的小球从距离地面高H 的A 点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用到达距地面深度为h 的B 点速度减为零。
不计空气阻力重力加速度为g 。
关于小球下落的整个过程,下列说法中正确的有( )A .小球的机械能减少了mgHB .小球所受阻力的冲量大于2m ghC .小球克服阻力做的功为mghD .小球动量的改变量等于所受阻力的冲量5.(0分)[ID :127039]几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!如图所示,完全相同的水 球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则下列判断正确的是 ( )A .子弹在每个水球中的速度变化相同B .子弹在每个水球中运动的时间相同C .每个水球对子弹的冲量依次增大D .子弹在每个水球中的动能变化不相同6.(0分)[ID :127034]如图所示,两质量均为m 的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
一、选择题1.(0分)[ID :127082]质量为m 的乒乓球在离台高h 处时速度刚好水平向左,大小为v 1运动员在此时用球拍击球,使球以大小为2v 的速度水平向右飞出,球拍和乒乓球作用的时间极短,则( )A .击球前后球动量改变量的方向水平向左B .击球前后球动量改变量的大小是21mv mv +C .击球前后球动量改变量的大小是21mv mv -D .球拍击球前乒乓球机械能不可能是2112mgh mv + 2.(0分)[ID :127080]如图所示,体积相同的匀质小球A 和B 并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L ,B 球悬线右侧有一固定的光滑小铁钉P ,O 2P=34L 。
现将A 向左拉开60°角后由静止释放,A 到达最低点时与B 发生弹性正碰,碰后B 做圆周运动恰能通过P 点的正上方。
已知A 的质量为m ,取3=1.73,5=2.24,则B 的质量约为( )A .0.3mB .0.8mC .mD .1.4m3.(0分)[ID :127073]一水龙头的出水口竖直向下,横截面积为S ,且离地面高度为h 。
水从出水口均匀流出时的速度大小为v 0,在水落到水平地面后,在竖直方向的速度变为零,并沿水平方向朝四周均匀散开。
已知水的密度为ρ,重力加速度大小为g 。
水和地面的冲击时间很短,重力影响可忽略。
不计空气阻力和水的粘滞阻力。
则( )A .单位时间内流出水的质量为2gh ρB .单位时间内流出水的质量为202v gh ρ+C .地面受到水的冲击力大小为2Sv gh ρD .地面受到水的冲击力大小为202Sv v gh ρ+4.(0分)[ID :127069]人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A .减小地面对人的冲量B .减小人的动量的变化C .增加地面对人的冲击时间D .增大人对地面的压强5.(0分)[ID :127054]如图所示,静止在光滑水平面上的小车,上面是由两个对称的光滑曲面组成,整个小车的质量为m ,现有一个质量也是m 可看作质点的小球,以水平速度v 0从小车的左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
选修1高中物理动量守恒定律测试题一、动量守恒定律 选择题1.如图所示,电阻不计的光滑金属导轨 MN 、PQ 水平放置,间距为 d ,两侧接有电阻 R 1 、R 2,阻值均为 R , O 1O 2 右侧有磁感应强度大小为 B 、方向垂直纸面向里的匀强磁场。
质量为 m 、长度也为 d 的金属杆置于 O 1O 2 左侧,在水平向右、大小为 F 的恒定拉力作用下由静止开始运动,经时间 t 到达 O 1O 2 时撤去恒力 F ,金属杆在到达 NQ 之前减速为零。
已知金属杆电阻也为 R ,与导轨始终保持垂直且接触良好,下列说法正确的是( )A .杆刚进入磁场时速度大小为Ft mB .杆刚进入磁场时电阻 R 1 两端的电势差大小为BdFt m C .整个过程中,流过电阻 R 1 的电荷量为Ft BdD .整个过程中,电阻 R 1 上产生的焦耳热为2212F t m2.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落3.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/AB P kg m s P kg m s =⋅=⋅,B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,4.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s5.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处6.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的B至C过程中,小球、半圆槽和物块组成的系统水平方向动量守恒C.小球离开C点以后,将做竖直上抛运动D.小球从A点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒7.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A、B质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,A在F作用下继续前进,则下列说法正确的是()A.t=0至t=mvF时间内,A、B的总动量守恒B.t=2mvF至t=3mvF时间内,A、B的总动量守恒C.t=2mvF时,A的动量为2mvD.t=4mvF时,A的动量为4mv8.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P和Q,质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,Q在F的作用下继续前进,则下列说法正确的是()A.t=0至2mvtF=时间内,P、Q的总动量守恒B.t=0至3mvtF=时间内,P、Q的总动量守恒C.4mvtF=时,Q的动量为3mvD.3mvtF=时,P的动量为32mv9.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 10.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm 左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。
动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理-动量守恒定律测试题(1) 一、动量守恒定律 选择题1.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 3.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg-4.关于系统动量守恒的说法正确的是 ( )①只要系统所受的合外力为零,系统动量就守恒②只要系统内有摩擦力,动量就不可能守恒③系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒④系统如果合外力的冲量远小于内力的冲量时,系统可近似认为动量守恒A .①②③B .①②④C .①③④D .②③④5.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 26.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒7.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大gHA .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t g= 8.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F =时间内,P 、Q 的总动量守恒 C .4mv t F =时,Q 的动量为3mv D .3mv t F =时,P 的动量为32mv 9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。
小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。
则小球在斜面上运动总时间t 为( )A .12sin v v t g θ+=⋅B .12sin v v t g θ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-10.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A.过程Ⅰ中钢珠动量的改变量小于重力的冲量B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量11.如图所示,质量为2m的半圆轨道小车静止在光滑的水平地面上,其水平直径AB长度为2R,现将质量为m的小球从距A点正上方h0高处由静止释放,然后由A点经过半圆轨道后从B冲出,在空中能上升到距B点所在水平线的最大高度为034h处(不计空气阻力,小球可视为质点),则()A.小球和小车组成的系统动量守恒B.小球离开小车后做斜上抛运动C.小车向左运动的最大距离为23RD.小球第二次在空中能上升到距B点所在水平线的最大高度大于02h12.如图所示,一轻质弹簧固定在墙上,一个质量为m的木块以速度v0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。
设相互作用的过程中弹簧始终在弹性限度范围内,那么,到弹簧恢复原长的过程中弹簧对木块冲量I的大小和弹簧对木块做的功W的大小分别是()A.I=0,W=mv02B.I=mv0,22mvW=C.I=2mv0,W=0 D.I=2mv0,22mvW=13.在采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下.今有一采煤用水枪,由枪口射出的高压水流速度为v.设水的密度为ρ,水流垂直射向煤层表面,若水流与煤层作用后速度减为零,则水在煤层表面产生的压强为()A .2v ρB .2 2v ρC .2 v ρD .22v ρ14.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是( )A .a 、b 碰撞前的总动量为3 kg m /s ⋅B .碰撞时a 对b 所施冲量为4 N s ⋅C .碰撞前后a 的动量变化为4 kg m /s ⋅D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J15.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .墙对A 物块的冲量为4mWC .当B 向右运动的速度为零时,弹簧的弹性势能为零D .弹簧第一次伸长后具有的最大弹性势能为W16.如图(a )所示,一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 以水平速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动。
在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻。
下列说法正确的是A .A 、B 一起在竖直面内做周期T =t 0的周期性运动B.A 的质量大小为06m F m m g=- C .子弹射入木块过程中所受冲量大小为000(6)m m m v F m g F - D .轻绳的长度为22002365mm v g F 17.如图(a)所示,轻弹簧的两端分别与质量为 m 1和m 2的两物块A 、B 相连接,静止在光滑的水平面上若使A 以3m/s 的速度向B 运动,A 、 B 的速度图像如图(b)所示,已知m 1=2kg ,则A .物块m 2质量为4kgB .13t t、时刻弹簧处于压缩状态C .从3t 到4t 时刻弹簧由压缩状态恢复到原长D .弹簧的最大弹性势能为6J18.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。
斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。
第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。
第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。
两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =m C .12:9:10Q Q =D .12:6:5t t = 19.如图所示,半径为R 、质量为M 的14一光滑圆槽静置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是A.M和m组成的系统动量守恒B.m飞离圆槽时速度大小为2gRM m M +C.m飞离圆槽时速度大小为2gRD.m飞离圆槽时,圆槽运动的位移大小为mR m M +20.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量二、动量守恒定律解答题21.同学们可能有些人玩过小砂包游戏,如果释放小砂包落到地面上它不会反弹会立刻静止。