理论力学18—动能定理
- 格式:ppt
- 大小:1.53 MB
- 文档页数:75
定轴转动刚体上一点的速度和加速度:(角量与线量的关系)1.点的运动✶ 矢量法22 , , )(dt rd dtv d a dtr d v t r r ==== 点的合成运动re a v v v +=r e a a a a +=(牵连运动为平动时)k r e a a a a a ++=(牵连运动为转动时)其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=⨯=ωR v =ετR a =2ωR a n =全加速度:2),(ωε=n atg 轮系的传动比:nn n n i Z Z R R n n i ωωωωωωωωωω13221111221212112 ,-⋅⋅⋅⋅======ωω , ⋅=+=AB v v v v BA BA A B 为图形角速度22 , , )(dtd dt d dt d t f ϕωεϕωϕ====质心运动定理M a c = ∑F ≡ R2. 动量矩定理:平行移轴定理刚体平面运动微分方程三.动能定理平面运动刚体的动能:四. 达朗伯原理对整个质点系,主动力系、约束反力系、惯性力系形式上构成平衡力系。
这就是质点系的达朗伯原理。
可用方程表示为:质点系相对质心的动量矩定理∑==)()( )(e C e i C r C M F m dtL d ετ⋅=AB a BA 2ω⋅=AB an BAω,ε分别为图形的角速度,角加速度nBABA A B a a a a ++=τ∑=-WT T 12质点系动能定理的积分形式∑==)()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理)(22)( e zz e zz M dt d I M I ==∴ϕε或—刚体定轴转动微分方程2222221 21)(2121ωωωC C C I v M d M I +=+=T 2'md I I zC z +=∑∑==∴)( , )(e C C C F m I F a m ε()d d e i pF t=∑用动静法求解动力学问题时,对平面任意力系,刚体平面运动可分解为随基点(质点C )的平动:绕通过质心轴的转动:根据动静法,有)()()(0=++=++∑∑∑∑∑∑i OiOiOiiiQ mN m F m Q NF CQ a M R -=εC QC I M -=(3)02/cos , 0)((2)0sin , 0(1)0cos , 0000=-⋅==+-==-+=∑∑∑QA AnQ nA n Q A M l m g F mR m g R F R m g R F ϕϕϕτττ。
第八章动能定理引言应用动力学基本方程是解决运动变化与力之间的关系的基本方法,但在许多实际问题中,特别是研究运动过程较复杂的质点系问题时,要列出每一个质点的运动方程十分困难。
动能定理建立了物体动能变化与受力所作的功之间的关系,应用动能定理解决动力学问题,淡化了具体的运动过程,使计算得到简化。
在物理中,质点的动能定理已作为重点内容进行了研究。
在理论力学中,动能定理的基本意义与物理所讲的完全相同。
为了避免重复,在本章,重点对动能定理的应用范围进行拓宽。
基本要求1、加深对功和动能概念的理种功和动能的求法,2、加深对动能定理的理解,理的应用。
3、了解功率和效率的概念第一节力的功一、功的概念物体受力的作用后,其运动状态将发生改变,这种改变不仅与力的大小和方向有关,还与物体在力的作用下所走过的路程有关。
功就是描述力在一段路程中对物体的积累效应,我们将(不变的)力F在物体运动方向上的投影F cos 与物体所走过的路程S的乘积,称为力F在路程S中对物体所作的功。
即:W F S =cos α在上式中,α表示力F 与运动方向的夹角,α<90°时,力作正功;反之力做负功。
可见,功是一个只有大小、正负而没有方向的量,是一个代数量。
功的单位由力和路程的单位来确定,在国际单位制中,功的单位是焦耳(J ),即:焦耳=牛顿⨯米(1J 1N m =⋅)若在变力F作用下物体沿曲线运动,则可将路程S 分成为无限多个小微段dS,并将dS 视为直线,将该微段内的力F视为常力。
力在此微段上所作的功称为元功,用dW 表示。
即dW F dS =⋅cos α若求变力F在一段路程S 上所作的功,可对元功积分。
即:W dW F dSSS ==⎰⎰cos α二、几种常见力的功 1、重力的功重力的功等于物体的重力与物体重心始末位置的高度差的乘积,即W G h =±可见,重力的功只与物体的始末位置有关,而与物体运动的具体路径无关。