山东省安丘一中2013-14学年高二4月期中考试暨学分认定考试 理科数学(高清扫描版)
- 格式:doc
- 大小:2.65 MB
- 文档页数:14
2023-2024学年山东省潍坊市安丘二中等校联考高一(上)期中数学试卷一、选择题(12道选择题,每小题0分,共48分,每小题给出的四个选项中,只有一个选项是题目要求的)1.已知集合A ={﹣2,0,1},B ={0,1,2},则A ∪B =( ) A .{0,1}B .{﹣2,0,1}C .{﹣2,0,1,2}D .{0,1,2}2.已知集合A ={0,1},B ={﹣1,0,a +3},且A ⊆B ,则a 等于( ) A .1B .0C .﹣2D .﹣33.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∩B )=( ) A .{2,6}B .{3,6}C .{1,2,4,6}D .{1,3,4,5}4.设x ∈R ,则“x =1”是“x 2=x ”的( ) A .充分不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.“∀x ∈R ,使3x >2”的否定是( ) A .∀x ∈R ,使3x <2 B .∀x ∈R ,使3x ≤2 C .∃x ∈R ,使3x <2D .∃x ∈R ,使3x ≤26.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c ≥b ﹣cB .ac >bcC .c 2a−b>0D .(a ﹣b )c 2≥07.不等式x 2+x ﹣2<0的解集是( ) A .(1,+∞) B .(﹣∞,﹣2)C .(﹣2,1)D .(1,+∞)∪(﹣∞,﹣2)8.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3﹣x B .f (x )=x 2﹣3x C .f (x )=−1x+1D .f (x )=﹣|x |9.已知函数f(x)={2x(x >0)x +1(x ≤0),则f{f(−12)}=( )A .﹣1B .﹣3C .3D .110.下列函数中与函数y =x 相等的函数是( ) A .y =(√x)2B .y =√x 2C .y =x 2xD .y =(√x 3)311.已知偶函数f (x )在区间(﹣∞,0]上单调递减,则满足f (2x +1)<f (3)的x 的取值范围是( ) A .(﹣1,2)B .(﹣2,1)C .(﹣1,1)D .(﹣2,2)12.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f(x)−f(−x)x<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)二、填空题:(本大题共4小题,每小题0分,共20分.) 13.函数y =√x+1x的定义域是 .14.已知正实数m ,n 满足1m+4n=1,则m +n 的最小值是 .15.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a = .16.一元二次不等式ax 2+bx +c >0的解集是(−12,13),则c +b = .三、解答题:(本大题共4小题,共32分.请写出必要的解题过程与步骤。
2024~2025学年度第一学期期中考试高二数学试题(考试时间:120分钟;总分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1. 直线的倾斜角等于()A. B. C. D. 2. 在等比数列中,若,,则()A. -32B. -16C. 16D. 323. 若点在圆外,则实数的取值范围为()A.B. C. D.4. 将直线绕点顺时针旋转得到直线,则直线的方程是()A. B. C. D.5. 过点作圆的切线,则切线方程为()A. B. C. D.6. 已知圆内有一点,为过点的弦,当弦被点平分时,直线的方程为()A. B. C. D. 7. 高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行的求和运算时,他这样算的:,,,,共有50组,所以,这就是著名的高斯算法,课本上推导等差数列前项和的方法正是借助了高斯算法.已知正数数列是公比不等于1的等比数列,且,试根据提示探求:若,则()A1010B. 2024C. 1012D. 20208. 在平面直角坐标系中,若圆上存在点,且点关于轴的对称点122x y -=30o4590135{}n a 54a =78a =11a =()1,1P 22:420C x y x y a ++-+=a 4,5-()(),5∞-(),4∞--6,5-()1:20+-=l x y ()2,090 2l 2l 220x y -+=20x y ++=20x y --=220x y --=()1,1P 22:420E x y y +-+=10x y -+=0x y +=10x y ++=0x y -=()()22126x y -++=P AB ()1,1P --AB P AB 210x y --=210x y -+=230x y ++=230x y ++=123100++++L 1100101+=299101+=⋯5051101+=501015050⨯=n {}n a 120241a a =()11f x x=+()()()122024f a f a f a +++= xOy ()()2221:10C x y r r +-=>P P x Q在圆上,则的取值范围是()A. B. C.D. (3,7)二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 已知点,点,点,则下列正确有()A. B. 直线的倾斜角为C. D. 点到直线10. 圆与圆相交于,两点,下列说法正确的是()A. 直线方程为B. 公共弦C. 圆与圆的公切线段长为1D. 线段的中垂线方程为11. 已知数列满足,且,则下列正确的有()A. B. 数列的前项和为C. 数列的前项和为D. 若数列的前项和为,则三、填空题:本题共3小题,每小题5分,共15分.12. 设是数列前项和,且,则的通项公式为___________.13. 函数______________.14. 已知直线,相交于点,圆心在轴上的圆与直线,分别相切于两点,则四边形的面积为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.的的的()222:24C x y -+=r 2⎤-+⎦[]3,7)2+()1,2A -()1,4B ()4,1C AB BC>AB 45 AB BC⊥B AC 221:2210C x y x y +--+=222:4440C x y x y +--+=A B AB 2230x y +-=AB 1C 2C AB 0x y +={}n a 1122n n n a a ++-=14a =332a =1n a n ⎧⎫⎨⎬+⎩⎭n 12n +2log n a n ⎧⎫⎨⎬⎩⎭n ()22log 12n nn +++14n n n a a +⎧⎫⎨⎬⎩⎭n n T 11124n T ≤<n S {}n a n 23n S n ={}n a n a =()f x =1:230l x y --=2:230l x y ++=M x C 1l 2l ,A B AMCB15. 已知数列为等差数列,,数列为等比数列,公比为2,且,.(1)求数列与通项公式;(2)设数列满足,求数列的前项和.16. 已知圆,点.(1)过点圆作切线,切点为,求线段的长度(2)过点作一条斜率为的直线与圆交于,两点,求线段的长度(3)点为圆上一点,求线段长度的最大值17. 已知直线和直线交于点,求满足下列条件的一般式直线方程.(1)过点且与直线平行;(2)过点且到原点的距离等于2;(3)直线关于直线对称的直线.18. 已知圆.(1)求的范围,并证明圆过定点;(2)若直线与圆交于,两点,且以弦为直径的圆过原点,求的值.19. 已知数列满足.(1)求的值;(2)求证:数列是等差数列;(3)令,如果对任意,都有,求实数的取值范围.的{}n a 13a ={}n b 426a a -=24b ={}n a {}n b {}n c n n n c a b =+{}n c n n T ()22:19C x y -+=()3,4P -P C T PT P 12-A B AB Q C PQ 1:30l x y -+=2:210l x y -+=C C 410x y -+=C 1l 2l ()22:4420C x y x λλ++-+-=λC :320l x y -+=A B AB O λ{}n a ()*122N n n a a a n a n +++=-∈ 123a a a ++{}4log 2n a -()()()*212N n n b n a n =--∈*N n ∈n b t +≤22t t2024~2025学年度第一学期期中考试高二数学试题(考试时间:120分钟;总分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.【答案】B2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.【答案】BCD10.【答案】AC11.【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】13.14.【答案】或四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)利用等差数列的通项公式和等比数列的通项公式即可直接求解;(2)利用等差数列和等比数列的求和公式求解即可.【小问1详解】设等差数列的公差为,因为,所以,,所以;因为,所以.【小问2详解】结合(1)可得:.16. 【解析】分析】(1)求出圆心和半径,得到(2)求出直线,求出圆心到直线的距离,由垂径定理求出答案;(3)的最大值为点到圆心的距离加上半径,得到答案.【小问1详解】圆心,半径为,即,又,【63n-81595d 424a a -=26d =3d =()3133n a n n =+-⋅=24b =2224222n n n n b b --⋅⋅===1212n n n T a a a b b b =+++++++ ()()212123322122332n n n n n n ++=-++=+--PT ==:250AB x y +-=C AB PQ P C ()1,0C 33TC =PC ==故【小问2详解】,故直线,记圆心到直线的距离为,,故;【小问3详解】的最大值为点到圆心的距离加上半径,故.17. 【解析】【分析】(1)联立方程解交点坐标,由平行关系设直线方程,代入点坐标待定系数可得;(2)讨论斜率是否存在,当斜率存在时,设出点斜式直线方程,结合点到直线的距离公式求解即可;(3)根据对称性质,在其中一条直线上取不同于两直线交点的任一点,利用垂直关系与中点坐标公式建立方程组求解其对称点坐标,再结合交点由两点式方程可得.【小问1详解】联立方程,解得,.设与直线平行的直线为,由题意得:,,故满足要求的直线方程为:.【小问2详解】①当所求直线斜率不存在时,直线方程为,满足到原点的距离为2;②当所求直线斜率存在时,设直线方程为,即,,解得,直线方程为,PT ==()1432y x -=-+:250AB x y +-=C AB d d AB ==PQ P C max 33PQ PC =+=+C ()401x y t t -+=≠C 30210x y x y -+=⎧⎨-+=⎩25x y =⎧⎨=⎩(2,5)C ∴410x y -+=()401x y t t -+=≠2450t -⨯+=18t =4180x y -+=2x =5(2)y k x -=-250kx y k --+=∴22120k =∴2120580x y -+=综上所述,符合题意的直线方程为或.【小问3详解】在上取一点,设点关于直线的对称点为点,则,解得,,又,则直线的方程即所求直线方程,为,化简得,.故所求的直线方程为:.18. 【解析】【分析】(1)利用方程表示圆的充要条件列式求出范围,再分离参数求出定点坐标.(2)联立直线与圆的方程联立,利用韦达定理及向量垂直的坐标表示求解.【小问1详解】由圆,得,,,所以的范围为;,由,得,所以圆过定点.【小问2详解】以弦为直径的圆过原点,则,,20x -=2120580x y -+=1l ()0,3M M 2l ()00,N x y 0000312321022y x x y -⎧=-⎪⎪⎨+⎪⋅-+=⎪⎩0085115x y ⎧=⎪⎪⎨⎪=⎪⎩811,55N ⎛⎫∴ ⎪⎝⎭(2,5)C CN 115558225y x --=--790x y --=790x y --=22:(4)420C x y x λλ++-+-=2(4)4(42)0λλ--->20λ>0λ≠λ()(),00,-∞+∞ 22044(2)x x x y λ-++-+=2244020x y x x ⎧+-+=⎨-=⎩20x y =⎧⎨=⎩C ()2,0M AB O OA OB ⊥0OA OB ⋅=设点,,则,,即,由,消去整理得:,,,,于是,解得,满足,所以的值为.19. 【解析】【分析】(1)根据递推关系求值即可;(2)由递推关系可得,与原式相减可得,即,于是可得数列数列是以0为首项,以为公差的等差数列;(3)由(2)可得,故,作差并分析判断数列{b n }的单调情况,确定数列的最大项.由题意可得恒成立,于是,解不等式可得的范围.【小问1详解】,,,,,,,【小问2详解】证明:由题可知:①,②,②-①得,即:,()11,A x y ()22,B x y 12120x x y y +=()()12123+23+20x x x x +=()1212106+40x x x x ++=()223204420x y x y x λλ-+=⎧⎨++-+-=⎩y ()2108820x x λλ+++-=22=(+8)40(82)=962560λλλλ∆--+->12810x x λ++=-128210x x λ-=82+8106401010λλ-⋅-⋅+=3613λ=0∆>λ361312311...22n n n a a a a a n a +++++++=+-122n n a a +-=()11222n n a a +-=-{}4log 2n a -12-1122n n a -⎛⎫=- ⎪⎝⎭1212n n n b --=1n n b b +-()2max2n t b t ≤-t 123...2n n a a a a n a ++++=- 112a a ∴=-11a ∴=1224a a a ∴+=-232a ∴=12336a a a a ++=- 374a ∴=23137171.244a a a ++=++=∴123...2n n a a a a n a ++++=-12311...22n n n a a a a a n a ++∴+++++=+-122n n a a +-=()11222n n a a +-=-所以,,,又∴数列是以0为首项,以为公差的等差数列.【小问3详解】由(2)可得,,,则,由可得;由可得,∴,故{b n }有最大值,∴对任意,有,如果对任意,都有成立,则,∴,解得或,∴实数的取值范围是414411log 2log 2log 222n n n a a a +⎡⎤-=-=-+-⎢⎥⎣⎦4141log 2log 22n n a a +---=-41log 20a -={}4log 2n a -12-11212122n n a a a +-=-=--,1122n n a -⎛⎫=- ⎪⎝⎭1212n n n b --=()11212212121322222n n n n n nn n n n nb b +-+--+---=-==10n n b b +->2n <10n n b b +-<2n ≥12345......n b b b b b b >>>><>>232b =*N n ∈32n b ≤*N n ∈22n t b t +≤()2max2n t b t ≤-2322t t ≤-1t ≤-3t ≥t (,1][3,).-∞-⋃+∞。
试卷类型:A高三数学2023.11本试卷共4页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()1,,2,1a k b ==,若//a b ,则实数k=( ) A .12 B .12-C .2D .2- 2.若“,sin x x a ∃∈<R ”为真命题,则实数a 的取值范围为( )A .1a ≥B .1a >C .1a ≥-D .1a >-3.已知集合{}{}21,3,,1,2A a B a ==+,则满足AB A =的实数a 的个数为( ) A .0 B .1C .2D .34.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )图1 图2A .21π37πB .21π111πC .37πD .111π5.设等差数列{}n a 的前n 项和为n S ,且公差不为0,若457,,a a a 构成等比数列,1166S =,则7a =( )A .5B .6C .7D .8 6.已知0.5242,log 5,log 10a b c ===,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<更多优质滋元可 家 威杏 MXSJ6637.设函数()1,0,1,0,x x f x x +≤⎧⎪=>则方程()()0f f x =的实根个数为( ) A .4B .3C .2D .1 8.已知3512cos ,sin 45413ππαβ⎛⎫⎛⎫-=+=-⎪ ⎪⎝⎭⎝⎭,其中3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,则tan tan αβ=( ) A .5663- B .5663C .17-D .17 二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体1111ABCD A B C D -中,直线l ⊂平面11ABB A ,直线m ⊂平面11BCC B ,直线n ⊂平面ABCD ,则直线,,l m n 的位置关系可能是( )A .,,l m n 两两垂直B .,,l m n 两两平行C .,,l m n 两两相交D .,,l m n 两两异面10.已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭,把()f x 的图象向左平移3π个单位长度得到函数()g x 的图象,则( ) A .()g x 是奇函数B .()g x 的图象关于直线4x π=-对称 C .()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增 D .不等式()0g x ≤的解集为,,2k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 11.已知,a b 为方程()22800x x m m -+=>的两个实根,则( )A .228a b +≥B .4ab ≥ C≤D.1132212a b ++≥+ 12.已知正项数列{}n a 满足:21111,1n n n na a a na ++==+,则( )A.212a = B .{}n a 是递增数列 C .111n n a a n +->+ D .1111n n k a k+=<+∑ 三、填空题:本大题共4小题,每小题5分,共20分.13.已知点()2,1A ,将向量OA 绕原点O 逆时针旋转2π得到OB ,则点B 的坐标为______. 14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年……人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为______.15.已知函数()f x 是R 上的偶函数()2f x +为奇函数,若()01f =,则()()()122023f f f +++=______.16.下图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为______;在Ω中,异面直线AB 与DE 的距离为______.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数()()()()12log ,11f x x F x f x f x ==++-.(1)判断()F x 的奇偶性,并证明;(2)解不等式()1F x ≤.18.(12分)已知函数()()sin f x A x B ωϕ=++(其中,,,A B ωϕ均为常数,0,0,2A πωϕ>><)的部分图象如图所示.(1)求()f x 的解析式;(2)求函数()512y f x f x π⎛⎫=++ ⎪⎝⎭在,32ππ⎡⎤-⎢⎥⎣⎦上的值域. 19.(12分)在四棱柱1111ABCD A B C D -中,底面ABCD是矩形,11122,AD CD AA A D AC =====(1)证明:平面11AA D D ⊥平面ABCD ;(2)求二面角11A CD D --的余弦值.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示,在公园内部计划修建景观道路CD (道路的宽度忽略不计),已知CD 把三角形空地分成两个区域,ACD △区域为儿童娱乐区,BCD △区域为休闲健身区.经测量,100AC BC ==米,AB =米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元.(1)若4ADC π∠=,求景观道路CD 的长度;(2)求ADC ∠为何值时,口袋公园的造价最低?21.(12分)设n S 为数列{}n a 的前n 项和,1332n n S +-=. (1)求{}n a 的通项公式;(2)若数列215n n S a ⎧⎫+⎨⎬⎩⎭的最小项为第m 项,求m ;(3)设()222n n n a b a =-,数列{}n b 的前n 项和为n T ,证明:132n T <. 22.(12分) 已知函数()()()e ln 1x f x a x a =++∈R .(1)当2a =-时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在定义域上存在极值,求a 的取值范围;(3)若()1sin f x x ≥-恒成立,求a .。
高二过程性训练(一)数学第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、在ABC ∆中,已知222a b c bc =++,则角A 为( ) A .3π B .6π C .23π D .3π或23π2、在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =( ) A .7 B .15 C .20 D .253、已知在ABC ∆中,sin :sin :sin 3:5:7A B C =,那么这个三角形的最大角是( ) A .135 B .90 C .120 D .1504、等比数列{}n a 中,572106,5a a a a =+=,则1810a a 等于( ) A .23-或32- B .23 C .32 D .32或235、在ABC ∆中,60A =,且最大边长和最小边长是方程27110x x -+=的两个根,则第三边的长为( )A .2B .3C .4D .56、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2,,64b B C ππ===,则ABC ∆的面积为( )A.2 B1 C.2 D1 7、首项为1的等比数列{}n a 的前n 项和为n S ,26480a a a -=,则42S S =( ) A .5 B .8 C .-8 D .158、等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,2811a a a ++是一个定值,则下列个数中为定值的是( )A .7SB .8SC .13SD .15S9、已知等差数列{}n a 的前n 项和为n S ,若22,14n n S S ==,则4n S =( ) A .68 B .30 C .26 D .1610、等差数列{}n a 前n 项和满足2040S S =,下列结论正确的是( )A .30S 是n S 中最大值B .30S 是n S 中最小值C .300S =D .600S =11、ABC ∆中,,,a b c 分别为角,,A B C 的对边,如果,,a b c 成等差数列,30B =,ABC ∆的面积为32,那么b 等于( )A .12.1.22+ D .212、已知{}n a 是等比数列,2512,4a a ==,则12231n n a a a a a a ++++=( ) A .16(14)n -- B .16(12)n-- C .32(14)3n -- D .32(12)3n --第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上。
2023-2024学年山东省潍坊市高三(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣22.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣13.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .34.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .86.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .18.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√21212.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 .14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 .15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为;在Ω中,异面直线AB与DE的距离为.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式;(2)求函数y=f(x+5π12)+f(x)在[−π3,π2]上的值域.19.(12分)在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AD=2CD=2,AA1=A1D=√5,A1C=√6.(1)证明:平面AA1D1D⊥平面ABCD;(2)求二面角A1﹣CD﹣D1的余弦值.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD (道路的宽度忽略不计),已知CD 把三角形空地分成两个区域,△ACD 区域为儿童娱乐区,△BCD 区域为休闲健身区.经测量,AC =BC =100米,AB =100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元. (1)若∠ADC =π4,求景观道路CD 的长度;(2)求∠ADC 为何值时,口袋公园的造价最低?21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32.(1)求{a n }的通项公式; (2)若数列{S 2n +15a n}的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132.22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若f (x )在定义域上存在极值,求a 的取值范围; (3)若f (x )≥1﹣sin x 恒成立,求a .2023-2024学年山东省潍坊市高三(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣2解:因为a →=(1,k ),b →=(2,1),且a →∥b →,所以2k ﹣1=0,解得k =12.故选:A .2.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣1解:“∃x ∈R ,sin x <a ”,故a >(sin x )min ,a >﹣1. 故选:D .3.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .3解:A ∪B =A ,则B ⊆A ,当a +2=3,即a =1时,集合A 不满足元素的互异性,舍去, 当a +2=a 2,即a =2或a =﹣1,当a =2时,A ={1,3,4},B ={1,4},满足题意, 当a =﹣1时,集合B 不满足元素的互异性,舍去, 综上所述,a =2,故满足A ∪B =A 的实数a 的个数为1. 故选:B .4.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π解:由题意得,S 侧=π(3+4)×√32+(4−3)2=7√10π,V =13π×(42+32+4×3)×3=37π.故选:C .5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .8解:等差数列{a n }的前n 项和为S n ,且公差d 不为0,若a 4,a 5,a 7构成等比数列,S 11=66, 故S 11=11(a 1+a 11)2=11a 6=66,解得a 6=6,故{a 6=6a 52=a 4⋅a 7,整理得{a 1+5d =6(a 1+4d)2=(a 1+3d)(a 1+6d),解得{a 1=−4d =2,故a 7=a 1+6d =8. 故选:D .6.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a解:因为a =20.5=√2,c =log 410=log 2√10<log 25,所以b >c ,c =log 410=log 2√10>log 22√2=32>√2,所以 c >a ,所以a <c <b .故选:B .7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .1解:令t =f (x ),则方程f (f (x ))=0,即f (t )=0, 当t ≤0时,t +1=0,∴t =﹣1; 当t >0时,√t −1=0,∴t =1;当t =﹣1时,若x ≤0,则x +1=﹣1,∴x =﹣2,符合题意; 若x >0,则√x −1=−1,∴x =0,不合题意; 当t =1时,若x ≤0,则x +1=1,∴x =0,符合题意;若x >0,则√x −1=1,∴x =4,符合题意,即方程f (f (x ))=0的实根个数为3. 故选:B .8.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17解:cos(π4−α)=35,∵α∈(π4,3π4),∴π4−α∈(−π2,0),∴sin (π4−α)=−√1−cos 2(π4−α)=−45,sin (α−π4)=45,cos α=cos[(α−π4)+π4]=cos (α−π4)cos π4−sin (α−π4)sin π4=35×√22−45×√22=−√210,则sin α=√1−(√210)2=7√210,则tan α=sinαcosα=−7, sin(5π4+β)=−1213,∵β∈(0,π4),∴5π4+β∈(5π4,3π2), ∴cos (5π4+β)=−√1−sin 2(5π4+β)=−513,sin β=sin [(5π4+β)−5π4]=sin(5π4+β)cos 5π4−cos(5π4+β)sin 5π4=−1213×(−√22)−513×√22=7√226,cos β=√1−(7226)2=17√226,则tan β=sinβcosβ=717,则tanαtanβ=−7717=−17. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面解:如图,当l 为BB 1,m 为BC ,n 为CD 时,满足直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,l ,m ,n 两两相交且垂直,当l 为A 1B ,m 为B 1C 1,n 为AC 时,三条直线两两异面,故ACD 正确; 三条直线不可能两两平行,若l ∥n ,则l ∥AB ∥n ,而AB 与平面BCC 1B 1相交,则AB 与M 不平行,故B 错误. 故选:ACD .10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z解:由题意g (x )=2sin[2(x +π3)+π3]=2sin (2x +π)=﹣2sin2x ,A 中,可得g (x )为奇函数,所以A 正确;B 中,函数g (x )的对称轴方程满足2x =π2+k π,k ∈Z , 解得x =π4+k 2π,k ∈Z ,当k =﹣1时,x =−π4,所以函数g (x )的图象关于x =−π4对称,所以B 正确; C 中,x ∈[0,π2],则2x ∈[0,π],显然g (x )不单调,所以C 不正确;D 中,令g (x )≤0,则2k π≤2x ≤π+2k π,k ∈Z ,解得k π≤x ≤π2+k π,k ∈Z ,即x ∈[k π,π2+k π],k ∈Z ,所以D 不正确. 故选:AB .11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√212解:因为已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根, 所以Δ=64﹣8m ≥0,即m ≤8,又因为m >0,所以0<m ≤8, 由韦达定理可得:a +b =4,ab =m2>0,所以a >0,b >0. 对于选项A ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:a 2+b 2≥8,当且仅当a =b 时等号成立,故A 正确;对于选项B ,由a +b =4≥2√ab ,当且仅当a =b 时等号成立可得:ab ≤4,当且仅当a =b 时等号成立,故B 不正确;对于选项C ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:√a+√b2≤√a+b 2,即√a +√b ≤2√2,当且仅当a =b 时等号成立,故C 正确;对于选项D ,1a+2+12b =(1a+2+12b)[(2a +4)+2b ]×112=112(2+2b a+2+a+2b +1)≥112(3+2√2b a+2⋅a+2b )=112(3+2√2),当且仅当2b a+2=a+2b,即a =√2b ﹣2时等号成立,故D 正确. 故选:ACD .12.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k解:由a 1=1,a n =na n+12na n+1+1,可得a 1=a 22a 2+1=1,解得a 2=1+√52(负的舍去),故A 错误;由a n +1﹣a n =na n+12+a n+1−na n+12na n+1+1=a n+1na n+1+1>0,即a n +1>a n ,则{a n }是递增数列,故B 正确;由a n+1na n+1+1−1n+1=a n+1−1(n+1)(na n+1+1)>0,则a n +1﹣a n >1n+1,故C 正确;由a n+1na n+1+1−1n=−1n(na n+1+1)<0,则a n +1﹣a n <1n ,所以a n +1=a 1+(a 2﹣a 1)+(a 3﹣a 2)+...+(a n +1﹣a n )<1+1+12+...+1n,故D 正确.故选:BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 (1,﹣2) .解:点A (2,1),向量OA →绕原点O 顺时针旋转π2后等于OB →,则OA →=(2,1),OB →=(1,﹣2),则点B 的坐标为(1,﹣2). 故答案为:(1,﹣2).14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 12 . 解:由题意可知:彗星出现的年份构成一个公差为d =83,首项为a 1=1740的等差数列,所以a n=a1+(n﹣1)d=1740+83(n﹣1)=83n+1657,令2023≤a n≤3000,即2023≤83n+1657≤3000,解得36683≤n≤134383,又n∈N*,所以n=5、6、 (16)所以从现在开始到公元3000年,人类可以看到这颗彗星的次数为16﹣5+1=12次.故答案为:12.15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=﹣1.解:f(x+2)是奇函数,故f(x+2)=﹣f(﹣x+2)且f(2)=0,因为f(x)为偶函数,故f(x+2)=﹣f(﹣x+2)=﹣f(x﹣2),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数周期为8,因为f(x+2)=﹣f(﹣x+2),故f(3)+f(1)=0,f(4)+f(0)=0,即f(4)=﹣1,f(5)=﹣f(1),f(6)=﹣f(2)=0,f(7)=﹣f(3),f(8)=f(0)=1,故f(1)+f(2)+…+f(8)=0,f(1)+f(2)+…+f(2023)=﹣f(8)=﹣1.故答案为:﹣1.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为2π;在Ω中,异面直线AB与DE的距离为√63.解:把平面展开图还原为空间几何体为正八面体,如图所示:球表面积最小,则正八面体的八个顶点在球面上,∴正八面体外接球的球心为正方形ACFD的中心O,半径R=OA=12AF=12√12+12=√22,∴S表=4πR2=4π×12=2π;∵平面ABC∥平面DEF,∴异面直线AB与DE的距离为平面ABC与平面DEF的距离,又∵O到平面ABC的距离与O到平面DEF的距离相等,∴直线AB与DE的距离为O到平面ABC的距离2倍,∵V O﹣ABC=V B﹣AOC,∴13S△ABC•h=13S△AOC•OB,∴√34h=12×√22×√22×√22,∴h=√66,∴异面直线AB与DE的距离为√6 3.故答案为:2π;√6 3.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.解:(1)F(x)为偶函数;证明:∵f(x)=log12x,由{x+1>01−x>0,得x∈(﹣1,1),∴F(x)=f(x+1)+f(1﹣x)=log12(x+1)+log12(1−x)的定义域为(﹣1,1),又F(﹣x)=log12(1−x)+log12(x+1)=F(x),∴F(x)为偶函数;(2)∵F(x)=log12(x+1)+log12(1−x)=log12(1−x2)≥log121=0,∴|F(x)|≤1⇔0≤F(x)=log12(1−x2)≤1,∴1≥1﹣x2≥12,解得−√22≤x≤√22,∴原不等式的解集为[−√22,√22].18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求函数y =f(x +5π12)+f(x)在[−π3,π2]上的值域.解:(1)由图知A =3−02=32,B =3+02=32, 且{ω⋅(−π3)+φ=−π2+2kπ,k ∈Z ω⋅π2+φ=π2+2kπ,k ∈Z ,|φ|<π2,解得ω=65,φ=−π10, 所以f (x )=32sin (65x −π10)+32; (2)y =f (x +5π12)+f (x )=32sin[65(x +5π12)−π10]+32+32sin (65x −π10)+32=32[sin (65x −π10+π2)+32sin (65x x −π10)+3=32 [cos (65x x −π10)+sin (65x x −π10)]+3=3√22 s in (65x x −π10+π4)+3=3√22 s in (65x x +3π20)+3, 因为x ∈[−π3,π2],所以65x +3π20∈[−π4,3π4], 所以sin (65x +3π20)∈[−√22,1], 所以y ∈[3√22•−√22+3,3√22×1+3]=[32,3√22+3]. 即函数y 的值域为[32,3√22+3]. 19.(12分)在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,AD =2CD =2,AA 1=A 1D =√5,A 1C =√6.(1)证明:平面AA 1D 1D ⊥平面ABCD ;(2)求二面角A 1﹣CD ﹣D 1的余弦值.(1)证明:取AD 的中点O ,连接OC ,因为AA 1=A 1D =√5,得A 1O ⊥AD ,因为A 1D =√5,OD =1,所以A 1O =2,又OD =DC =1,所以OC =√2,在△A 1OC 中,OC =√2,A 1C =√6,A 1O =2,所以A 1C 2=A 1O 2+OC 2,故△A 1OC 为直角三角形,A 1O ⊥OC ,因为OC ∩AD =O ,故A 1O ⊥平面ABCD ,因为A 1O ⊂平面AA 1D 1D ,所以平面AA 1D 1D ⊥平面ABCD ;(2)解:如图,以O 为坐标原点,分别以DC →,OD →,OA 1→的正方向为x 轴,y 轴,z 轴正方向, 建立如图所示空间直角坐标系:故A 1(0,0,2),C (1,1,0),D (0,1,0),D 1(0,2,2),则CD →=(−1,0,0),A 1C →=(1,1,﹣2),DD 1→=(0,1,2),设平面A 1CD 的一个法向量为m →=(x 1,y 1,z 1),则{m →⋅CD →=−x 1=0m →⋅A 1C →=x 1+y 1−2z 1=0,令y 1=2,则m →=(0,2,1),设平面CDD 1C 1的一个法向量为n →=(x 2,y 2,z 2),则{n →⋅CD →=x 2=0n →⋅DD 1→=y 2+2z 2=0,令y 2=2,则n →=(0,2,﹣1),所以cos <m →,n →>=|m →⋅n →||m →||n →|=3√5×√5=35, 由图可知二面角A 1﹣CD ﹣D 1为锐角,所以二面角A1﹣CD﹣D1的余弦值为3 5.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD(道路的宽度忽略不计),已知CD把三角形空地分成两个区域,△ACD区域为儿童娱乐区,△BCD区域为休闲健身区.经测量,AC=BC=100米,AB=100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元.(1)若∠ADC=π4,求景观道路CD的长度;(2)求∠ADC为何值时,口袋公园的造价最低?解:(1)在△ABC中,AC=BC=100,AB=100√3,所以AC2+AB2﹣BC2=1002﹣(100√3)2﹣1002=30000,则cosA=AC2+AB2−BC22AC⋅AB=√32,A∈(0,π),所以A=B=π6,在△ACD中,∠ADC=π4,由正弦定理得ACsin∠ADC=CDsinA,即CD=AC⋅sinAsin∠ADC=10Osinπ6sinπ4=50√2,所以景观道路CD的长度为50√2米.(2)设∠ADC=θ(π6<θ<5π6),在△ACD中,CD=50sinθ,所以S△ADC=12AC⋅CD sin∠ACD=12×100×50sin(5π6−θ)sinθ=2500sin(5π6−θ)sinθ,又S△ABC=12AC⋅AB•sin A=12×100×100√3×12=2500√3,所以S△BCD=2500√3−2500sin(5π6−θ)sinθ,所以投资总额y=2500CD+100S△ACD+50S△BCD=2500×50sinθ+100×2500sin(5π6−θ)sinθ+50[2500√3−2500sin(5π6−θ)sinθ]=2500×50[√3+1+sin(5π6−θ)sinθ]=2500×50(3√32+2+cosθ2sinθ),因为2+cosθ2sinθ=3cos2θ2+sin2θ24sinθ2cosθ2=34tanθ2+tanθ24≥2√34tanθ2⋅tanθ24=√34,当且仅当tan θ2=√3,即θ=2π3时取等号, 此时y 取得最小值,即公园造价最低,所以∠ADC =2π3,口袋公园的造价最低. 21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32. (1)求{a n }的通项公式;(2)若数列{S 2n +15a n }的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132. (1)解:当n =1时,a 1=S 1=32−32=3; 当n ≥2时,a n =S n ﹣S n ﹣1=3n+1−32−3n−32=3n , 因为a 1=3满足上式,所以a n =3n .(2)解:S 2n +15a n =32n+1−32+153n =32n+1+272⋅3n =32•(3n +93n )≥32•2√3n ⋅93n =9, 当且仅当3n =93n ,即n =1时,等号成立, 所以m =1. (3)证明:b n =2a n (a n −2)2=2⋅3n(3n −2)2, 当n =1时,b 1=2⋅31(31−2)2=6; 当n ≥2时,b n =2⋅3n 32n −4⋅3n +4<2⋅3n 32n −4⋅3n +3=2⋅3n (3n −1)(3n −3)=3n 3n −3−3n 3n −1=11−3−n+1−11−3−n , 所以T n =b 1+b 2+b 3+…+b n <6+(11−3−1−11−3−2)+(11−3−2−11−3−3)+…+(11−3−n+1−11−3−n )=6+11−3−1−11−3−n =152−11−3−n <152−1=132,命题得证. 22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在定义域上存在极值,求a 的取值范围;(3)若f (x )≥1﹣sin x 恒成立,求a .解:(1)当a =﹣2时,f (x )=e x ﹣2ln (x +1),可得f ′(x)=e x −2x+1,此时f′(0)=e0−21=−1,又f(0)=e0﹣2ln1=1,曲线y=f(x)在点(0,f(0))处的切线方程为y﹣1=﹣(x﹣0),即x+y﹣1=0;(2)易知f′(x)=e x+ax+1(x>−1),当a≥0时,f′(x)≥0恒成立,此时函数f(x)在(﹣1,+∞)上单调递增,不符合题意;当a<0时,f′(x)=e x−a(x+1)2>0,所以当a<0时,f′(x)在定义域上单调递增,又f′(a2)=e a2+aa2+1,因为aa2+1≥−12,e a2>1,所以f′(a2)>0;当a<﹣1时,易知f′(0)=1+a<0,所以函数f(x)在(0,a2)上存在极值点;当a=﹣1时,f′(x)=e x−1x+1,易知f′(0)=0,所以x=0为f(x)的极值点;当﹣1<a<0时,f′(a2−1)=e a2−1+1 a ,因为e a2−1<1,1a<−1,所以f′(a2﹣1)<0,则函数f(x)在(a2﹣1,a2)上存在极值点,综上所述,满足条件的a的取值范围为(﹣∞,0);(3)若f(x)≥1﹣sin x恒成立,即sin x+e x+aln(x+1)≥1恒成立,不妨设g(x)=sin x+e x+aln(x+1),函数定义域为(﹣1,+∞),可得g′(x)=cosx+e x+ax+1,不妨设h(x)=cos x+e x+ax+1,函数定义域为(﹣1,+∞),可得h′(x)=﹣sin x+e x−a(x+1)2,若a=﹣2,当x∈(﹣1,0]时,cosx+e x≤2,−2x+1≤−2,所以g'(x)≤0,当x∈[0,+∞)时,e x≥1,h′(x)≥0,所以g′(x)≥g′(0)=cos0+e0﹣2=0,则x=0时,函数g(x)在x∈(﹣1,+∞)上取得唯一极小值点,此时g(x)≥g(0)=1,所以a=﹣2时,f(x)≥1﹣sin x恒成立;若a<﹣2,易知e x﹣sin x>0,−a(x+1)2>0,所以h′(x)>0,即函数g'(x)单调递增,又g′(−a)=e−a+cos(−a)+a−a+1>e2−1−1>0,因为g'(0)=2+a<0,所以存在x1∈(0,﹣a),使得g'(x1)=0,当0<x<x1时,g′(x1)<0,g(x)单调递减,所以g(x1)<g(0)=1,不符合题意;若﹣2<a<0,由(2)知g′(x)单调递增,当﹣1<x<﹣1−a2<0时,ax+1<−2,g′(x)<1+1+ax+1<0,又g′(0)=2+a>0,所以存在x2∈(﹣1,0),使得g′(x2)=0,当x2<x<0 时,g′(x)>0,g(x)单调递增,所以g(x2)<g(0)=1,不符合题意;若a≥0,易知cos x+e x>0,ax+1≥0,所以g′(x)>0,g(x)单调递增,又g(0)=1,所以当﹣1<x<0时,g(x)<g(0)=1,不符合题意,综上所述,满足条件的a的值为﹣2.。
山东省潍坊市部分市区2023-2024学年高二上学期期中质量
监测数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.30︒B.45
二、多选题
三、填空题
四、双空题
16.已知菱形ABCD边长为
A C'=时,二面角置,当3
球的半径为
五、解答题
(1)求直线AB的方程及直线AC
(2)求对角线BD所在的直线方程18.如图,在长方体ABCD-
且
123
A F=.
(1)求1
CC并求直线CE与
1
A F所成角的余弦值;
(2)求点F到平面CDE的距离.
12AA AC AB ===,E ,F 分别为1AC ,11B C 的中点.
(1)证明://EF 平面11ABB A ;(2)求二面角1A A B F --的余弦值.
21.边长为4的正方形ABCD 所在平面与半圆弧 CD 所在平面垂直,四边形EFCD 是半圆弧 CD
的内接梯形,且CD EF ∥.
(1)证明:平面ADE ⊥平面BCE ;
(2)设2EF =,
且二面角E AD C --与二面角D BC F --的大小都是60︒,当点P 在棱AD (包含端点)上运动时,求直线PB 和平面ACE 所成角的正弦值的取值范围.22.已知圆M 与圆N :()()2
2
424x y ++-=关于直线340x y -+=对称.
(1)求圆M 的标准方程;
(2)过点()1,0E 的直线与圆M 相交于A ,B 两点,过点()4,0C 且与AB 垂直的直线与圆M 的另一交点为D ,记四边形ACBD 的面积为S ,求S 的取值范围.。
2023-2024学年山东省潍坊市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={﹣1,1,2},B ={x |x 2=x },则A ∩B =( ) A .{﹣1}B .{1}C .{﹣1,1}D .{﹣1,0,1,2}2.命题“∃x ∈Z ,x ∈N ”的否定为( ) A .∃x ∈Z ,x ∉NB .∃x ∉Z ,x ∈NC .∀x ∈Z ,x ∉ND .∀x ∈Z ,x ∈N3.与函数y =√x 3为同一函数的是( ) A .y =x √xB .y =−x √xC .y =x √−xD .y =|x |4.函数f (x )=√−x 2+2x +3的单调递减区间是( ) A .(﹣∞,1]B .[1,3]C .(﹣1,3)D .[1,+∞)5.已知a >b >0,下列不等式中正确的是( ) A .a ﹣1<b ﹣1B .ab <b 2C .1a+1<1b+1D .c a>cb6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣17.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}11.若a >0,b >0,a +b =1,则( ) A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥3412.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称三、填空题:本题共4小题,每小题5分,共20分.13.已知集合M ={x ,x +2,2},若0∈M ,则x = . 14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 . 15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= .16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.19.(12分)已知函数f (x )=ax 2+(a ﹣2)x +14(a ∈R).(1)若关于x 的不等式f (x )≥0的解集是实数集R ,求a 的取值范围; (2)当a <0时,解关于x 的不等式f (x )−94≤0.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=y x)(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0). (1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x. ①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.2023-2024学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,1,2},B={x|x2=x},则A∩B=()A.{﹣1}B.{1}C.{﹣1,1}D.{﹣1,0,1,2}解:集合A={﹣1,1,2},B={x|x2=x}={0,1},则A∩B={1}.故选:B.2.命题“∃x∈Z,x∈N”的否定为()A.∃x∈Z,x∉N B.∃x∉Z,x∈N C.∀x∈Z,x∉N D.∀x∈Z,x∈N解:因为特称命题的否定是全称命题,所以“∃x∈Z,x∈N”的否定是:“∀x∈Z,x∉Z”.故选:C.3.与函数y=√x3为同一函数的是()A.y=x√x B.y=−x√x C.y=x√−x D.y=|x|解:∵函数y=√x3中x3≥0可得x≥0,故函数y=√x3的定义域为[0,+∞),排除CD,又y=√x3=x√x,排除B.故选:A.4.函数f(x)=√−x2+2x+3的单调递减区间是()A.(﹣∞,1]B.[1,3]C.(﹣1,3)D.[1,+∞)解:由﹣x2+2x+3≥0,解得﹣1≤x≤3,设t=﹣x2+2x+3,由二次函数的性质可知:t在x∈[﹣1,1]上单调递增,在x∈[1,3]上单调递减,又因为y=√t在定义上为增函数,由复合函数的性质可得:函数f(x)=√−x2+2x+3的单调递减区间是[1,3].故选:B.5.已知a>b>0,下列不等式中正确的是()A.a﹣1<b﹣1B.ab<b2C.1a+1<1b+1D.ca>cb解:因为a>b>0,所以a﹣1>b﹣1,A错误;因为a>b>0,所以ab>b2,B错误;因为a+1>b+1>0,所以0<1a+1<1b+1,C正确;因为1a<1b,所以c a<cb,D 错误.故选:C .6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣1解:∵函数f(x)={x +a ,x >0,|x|+1,x <0,∴f (﹣1)=|﹣1|+1=2, f (f (﹣1))=2+a =4, ∴a =2. 故选:A .7.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)解:因为对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,所以f (x )在R 上单调递减, 因为f (x )为奇函数,即f (0)=0, 因为f (x 2﹣x )<0=f (0), 所以x 2﹣x >0, 解得x >1或x <0. 故选:B .8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小解:设每次购买数量为x ,平均价格为b 1=a 1x+a 2x 2x=a 1+a 22, 设每次购买的费用为y ,平均价格为b 2=2y y a 1+ya 2=2a 1a2a 1+a 2,∵a 1≠a 2,∴(a 1+a 2)2>4a 1a 2⇒a 1+a 22>2a 1a 2a 1+a 2⇒b 1>b 2.故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)解:y =x +1的值域为R ,A 错误;y =x 2+2x +2=(x +1)2+1≥1,B 符合题意; y =1−x1+x =−x−1x+1=−1+2x+1≠−1,C 不符合题意; 当x ≥1时,y =x −1x +1单调递增,故y ≥1,D 符合题意. 故选:BD .10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}解:已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3}, 可得﹣4,3是方程ax 2+bx +c =0的两个根,且a <0,则{−ba =−4+3c a =−4×3,即b =a ,c =﹣12a ,所以c +12a =0,故A 错误,B 正确;因为1∉{x |x <﹣4或x >3},所以a ×12+b ×1+c >0,即a +b +c >0,故C 正确; 又不等式ax−b ax−c≤0等价于{(ax −b)(ax −c)≤0ax −c ≠0,即{(ax −a)(ax +12a)≤0ax +12a ≠0,即{(x −1)(x +12)≤0x ≠−12,解得﹣12<x ≤1,故D 正确. 故选:BCD .11.若a >0,b >0,a +b =1,则( )A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥34解:因为a +b =1≥2√ab ,解得ab ≤14,当且仅当a =b =12时,等号成立,故A 正确;由1a+1b=(a +b)(1a+1b)=2+b a+a b≥2+2√b a ⋅ab=4,当且仅当a =b =12时,等号成立,可得B 正确;当a =15,b =45时,|a −12|+|b −14|=1720>14,故|a −12|+|b −14|≤14不成立,故C 错误;根据题意,可得a 2+b =a 2−a +1=(a −12)2+34≥34,当且仅当a =b =12时,a 2+b 的最小值为34,故D 正确. 故选:ABD .12.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称解:由题意得f (x )={⋯x +1,−32<x ≤−12x ,−12<x ≤12x −1,12<x ≤32,x −2,32<x ≤52⋯,其大致图象如图所示,故f (2023)=f (2022)=f (2021)=…=f (0)=0,A 正确; 由函数的图象可知,函数的值域为(−−12,12],B 正确; 根据函数图象可知,f (x )在区间(−12,52]上不单调,C 错误; 根据函数的图象可知,f (x )的图象关于(k 2,0)对称,D 错误.故选:AB .三、填空题:本题共4小题,每小题5分,共20分. 13.已知集合M ={x ,x +2,2},若0∈M ,则x = ﹣2 . 解:集合M ={x ,x +2,2},若0∈M ,则x =0或x +2=0, 所以x =0或x =﹣2,当x =0时,x +2=2,不满足元素的互异性,舍去, 当x =﹣2时,集合M ={﹣2,0,2},符合题意, 综上所述,x =﹣2. 故答案为:﹣2.14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 {x |−12≤x ≤3且x ≠1} . 解:数y =f (x )的定义域为[﹣2,5],则{−2≤2x −1≤5x −1≠0,解得−12≤x ≤3且x ≠1,故函数y 的定义域为{x |−12≤x ≤3且x ≠1}. 故答案为:{x |−12≤x ≤3且x ≠1}.15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= ﹣4 .解:因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 且f (x )﹣g (x )=x 3+x 2+1,①所以f (﹣x )﹣g (﹣x )=(﹣x )3+(﹣x )2+1=﹣x 3+x 2+1,即﹣f (x )﹣g (x )=﹣x 3+x 2+1,变形可得:f (x )+g (x )=x 3﹣x 2﹣1,② 由①②解得:f (x )=x 3,g (x )=﹣x 2﹣1, 则f (1)=1,g (2)=﹣5, 故f (1)+g (2)=﹣4. 故答案为:﹣4.16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 7 .解:令f (x )=t ,则有y =f(f(x))−12=f (t )−12, 令f (t )−12=0,得f (t )=12,当0≤t <2时,由|t ﹣1|=12,解得t 1=12或t 2=32;当t ≥2时,由2(t ﹣3)2﹣1=12,解得t 3=3−√32,t 4=3+√32, 作出y =f (x )的图象,如图所示:由此可得当f (x )=12时,有4个根(y =f (x )的图象与y =12的图象有4个交点); 当f (x )=32时,有1根(y =f (x )的图象与y =32的图象有1交点); 当f (x )=3−√32时,有1根(y =f (x )的图象与y =3−√32的图象有1交点); 当f (x )=3+√32时,有1根(y =f (x )的图象与y =3+√32的图象有1交点);所以一共有4+1+1+1=7个零点. 故答案为:7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.解:(1)m =4时,A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}={x |3≤x ≤5}, 则∁U B ={x |x >5或x <3},A ∪B ={x |1<x ≤5},A ∩(∁U B )={x |1<x <3}; (2)若“x ∈A ”是“x ∈B ”的必要条件, 则B ⊆A ,则{m −1>1m +1<4,解得:2<m <3,即实数a 的取值范围是(2,3).18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.解:(1)设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),所以当x>0 时,f(x)=f(﹣x)=x2﹣2x,综合可得:f(x)={x2+2x,x≤0 x2−2x,x>0;(2)根据题意,由(1)的结论,f(x)={x2+2x,x≤0 x2−2x,x>0,其图象为:该函数的单调递增区间为(﹣1,0),(1,+∞).19.(12分)已知函数f(x)=ax2+(a﹣2)x+14(a∈R).(1)若关于x的不等式f(x)≥0的解集是实数集R,求a的取值范围;(2)当a<0时,解关于x的不等式f(x)−94≤0.解:(1)若关于x的不等式f(x)≥0的解集是实数集R,即ax2+(a−2)x+14≥0在实数集R上恒成立,当a =0时,x ≤18,不符合题意;当a ≠0时,要使关于x 的不等式f (x )≥0的解集是实数集R , 则要满足{a >0(a −2)2−4a ×14≤0,解得1≤a ≤4, 综上可得,实数l 的取值范围是{a |1≤a ≤4}.(2)由题意f(x)−94≤0 可变为ax 2+(a ﹣2)x ﹣2≤0, 可得ax 2+(a ﹣2)x ﹣2=(ax ﹣2)(x +1),当a <0时,方程(ax ﹣2)(x +1)=0的两根为−1,2a, ①当a <﹣2时,因为−1<2a ,解不等式得x ≤﹣1或x ≥2a ; ②当a =﹣2时,因为−1=2a ,此时不等式的解集为R ; ③当﹣2<a <0时,因为−1>2a,解不等式得x ≤2a或x ≥﹣1; 综上所述,不等式的解集为:当﹣2<a <0时,不等式的解集为{x|x ≤2a 或≥−1}; 当a =﹣2时,不等式的解集为R ;当a <﹣2时,不等式的解集为{x|x ≤−1或x ≥2a}.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=yx )(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 解:(1)∵y =12x 2+40x +5000, ∴yx =x 2+5000x+40,又x ∈[70,120],则y x=x 2+5000x+40≥2√x 2⋅5000x +40=140,当且仅当x 2=5000x,即x =100百吨时,平均成本最低;(2)选择方案一:设每日获利为y 1,∴y 1=100x ﹣(12x 2+40x +5000)+4200=−12x 2+60x ﹣800=−12(x ﹣60)2+1000,∵x ∈[70,120],∴当x =70百吨时,获得最大利润为950元; 选择方案二:设每日获利为y 2,则y 2=100x +40x +1700﹣(12x 2+40x +5000)=−12x 2+100x ﹣3300=−12(x ﹣100)2+1700,∵x ∈[70,120],∴当x =100百吨时,获得最大利润为1700元, 又1700>950,故选择方案二进行补贴.21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 解:(1)∵对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. ∴f (1+1)+2=f (1)+f (1),∴4+2=2f (1),∴f (1)=3; (2)证明:∵f (0+0)+2=f (0)+f (0),∴f (0)=2,又x ∈R ,∴g (﹣x )+g (x )=f (﹣x )﹣2+f (x )﹣2=f (﹣x )+f (x )﹣4=f (﹣x +x )+2﹣4=f (0)﹣2=0, ∴g (x )为奇函数;(3)由(2)知g (﹣x )+g (x )=0,f (x )=g (x )+2, ∴f (﹣x )+f (x )=4,又f (0)=2,∴f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023) =2023×4+2=8094.22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0).(1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x .①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.解:(1)证明:由题意,可得g(x)=x +a 2x ,令0<x 1<x 2,则g(x 2)−g(x 1)=x 2+a 2x 2−(x 1+a 2x 1)=(x 2−x 1)+a 2⋅x 1−x 2x 1x 2=(x 2−x 1)(1−a 2x 1x 2)=(x 2−x 1)x 1x 2−a 2x 1x 2,当0<x 1<x 2<a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2<0, 故g (x 2)﹣g (x 1)<0,故g (x )在区间(0,a )上为减函数; 当x 2>x 1>a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2>0,所以g (x 2)﹣g (x 1)>0,所以g (x )在区间(a ,+∞)上为增函数. (2)①令1−x 1+x>0⇔(1+x)(1−x)>0,解得﹣1<x <1,由g(x)=f(x)+a 2f(x)中f (x )可知, f(x)=√1−x 1+x 的定义域为(﹣1,1),且f(x)=√21+x−1, 因为x ∈(﹣1,1],所以x +1∈(0,2],所以2x+1−1∈(0,+∞),所以f (x )∈(0,+∞),令t =f (x ),则p(t)=t +1t, 所以p(t)=t +1t≥2,当且仅当t =1时取等号, 所以g (x )min =g (0)=2,②因为|g (r )﹣g (s )|<g (t )恒成立,所以g (x )max ﹣g (x )min <g (x )min ,所以g (x )max <2g (x )min , 由①可知,x ∈[−35,35]时,f(x)∈[12,2], 令t =f(x)∈[12,2],令ℎ(t)=t +a 2t, 由(1)知,h (t )在(0,a )上为减函数,在(a ,+∞)上为增函数, 所以当a ≥2时,h (t )在[12,2]上为减函数, 所以g(x)max =ℎ(t)max =ℎ(12)=12+2a 2,g(x)min =ℎ(t)min =ℎ(2)=2+a 22, 所以12+2a 2<2(2+a 22),所以−√142<a <√142,与a ≥2矛盾,当12<a <2时,h (t )在[12,a]上为减函数,h (t )在[a ,2]上为增函数,所以{ℎ(12)<2ℎ(a)ℎ(2)<2ℎ(a),所以{12+2a 2<4a 2+a 22<4a,解得4−2√3<a <2+√32,当a≤12时,h(t)在[12,2]上为增函数,所以2+a22<2(12+2a2),所以a2>27,所以a>√147或a<−√147,由a≤12,得a<−√147,又a>0,所以a∈∅,综上,a的取值范围为{a|4−2√3<a<2+√32}.。
山东省潍坊市2013-2014学年上学期高二上学期年级期末考试数学试卷(理科)2014.01本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题“2,xx e x ∀∈>R ”的否定是A. x ∃∈R ,使得2xe x ≤ B. x ∀∈R ,使得2xe x ≤ C. x ∃∈R ,使得2xe x > D. 不存在x ∈R ,使得2xe x > 2. 命题“若x =3,则x 2-2x -3=0”的逆否命题是A. 若x ≠3,则x 2-2x -3≠0B. 若x =3,则x 2-2x -3≠0C. 若x 2-2x -3≠0,则x ≠3D. 若x 2-2x -3≠0,则x =3 3. 抛物线214y x =的焦点坐标是 A. (1,016) B. (1,0) C. (1,016-) D. (0,1)4. 公比为12的等比数列{}n a 的各项都是正数,且4616a a =,则7a =A. 12B. 1C. 2D. 45. 已知110a b<<,则下列结论错误..的是 A. 22a b < B. 2ab b > C. 2b aa b+> D. 2lg lg a ab < 6. “12x <”是“12x >”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 7. 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若22cos 2Ba a c =+,则△ABC 的形状为 A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形 8. 已知数列21()41n a n N n +=∈-,则数列{}n a 的前10项和为A.2021 B. 1819 C. 1021D. 919 9. 在平面直角坐标系中,不等式组00()x y x y a x a+≥⎧⎪-≥⎨⎪≤⎩为常数表示平面区域的面积为9,则24y x -+的最小值为A. -1B.27 C. 17 D. -5710. 已知x >0,y >0,且2x y xy ++=,则x y 的最大值为A. 1B.1C. 4-D. 4+ 11. 设数列{}n a 满足32111232n n a a a a n +++=-,则n a = A. 112n - B. 312n - C. 12n D. 2n n12. 已知P 是双曲线22221x y a b-=(a >0,b >0)右支上一点,1F 、2F分别是双曲线的左、右焦点,I为△P 1F 2F 的内心,若12122IPF IPF IF F S S S ∆∆∆=+成立,则该双曲线的离心率为A. 4B.C. 2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
山东省潍坊市昌邑市2024-2025学年高三上学期11月期中考试数学试题一、单选题1.已知集合{}|(1)(2)0A x x x =-+=,{}|3213B x x =-<-<,则A B = ()A .{}2,1-B .()2,1-C .{}1D .()1,2-2.命题“所有能被3整除的整数都是质数”的否定是()A .存在一个能被3整除的整数不是质数B .所有能被3整除的整数都不是质数C .存在一个能被3整除的整数是质数D .不能被3整除的整数不是质数3.已知等差数列{}n a 的前n 项和为n S ,若321523,1S S S a =+=,则{}n a 的公差等于()A .2-B .1-C .1D .24.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品浓度C 随时间t 的变化关系为22040Ct t C -+=,则C 的最大值为()A .1B .2C .4D .55.如图,,,A B C 是圆O 上的三点,且60,90AOB BOC ∠∠=︒=︒,则OA =()A .1322OB -B .1322OB +C .3122OB OC-D .3122OB OC+6.已知一个圆锥的底面圆半径为1,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为()A .B .2π3C .3D .37.已知定义在R 上的函数()f x 满足()()()()11f x y f x y f x f y -+-++=,且()12f =,则()()()234f f f ++=()A .2B .0C .2-D .4-8.已知函数()()πsin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭,甲、乙、丙、丁四位同学各说出了这个函数的一条结论:甲:函数()f x 的图象关于π,03⎛⎫⎪⎝⎭对称;乙:函数()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上单调递增;丙:函数()f x 在区间()0,π上有3个零点;丁:函数()f x 的图象向左平移π2个单位之后与()f x 的图象关于x 轴对称.若这四位同学中恰有一人的结论错误,则该同学是()A .甲B .乙C .丙D .丁二、多选题9.已知直线,m n 是平面α外两条不同的直线,则下列命题正确的是()A .若m //,n α//α,则m //nB .若m //,n n //α,则m //αC .若m //,n m α⊥,则n α⊥D .若m //,n αα⊥,则m n ⊥10.已知03a b <<<,则()A .(1)1b a +>B .()log 11a b +>C .()()cos πcos πa b +<+D .ππcos cos 22a b ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭11.设函数()2cosπ2xf x x ax =-+,则()A .存在实数a ,使得()f x 为偶函数B .函数()f x 的图象关于()2ax a =∈Z 对称C .当2a =时,142f x x⎛⎫-< ⎪⎝⎭D .当4a =时,函数()f x 在()2,3上单调递增三、填空题12.已知向量a ,b满足1a = ,()1,1b = ,()a ab ⊥- ,则,a b = .13.已知点π,08P ⎛⎫ ⎪⎝⎭在函数()sin (03)2f x x ωω=-<<的图象上,则曲线()y f x =在点P 处的切线方程为.14.已知数列{}n a 满足11a =,且对于任意2n ≥,都存在{}1,2,,1k n ∈-L ,使得4n k a a =+,则4a 的所有可能取值构成的集合M =;若{}n a 的各项均不相等,把半径为123,,a a a (单位:cm )的三个小球放入一个正方体容器(容器壁厚度忽略不计),则该正方体容器的棱长最小值为cm .四、解答题15.记ABC V 的内角,,A B C 的对边分别为,,a b csin cos C c c A -=.(1)求A ;(2)若6a b c +=,求ABC V 的面积.16.已知数列{}n a 的前n 项和为n S ,且3212321212121n n n a a a a ++++=---- .(1)求n S ;(2)设3642n n nS b +=,若数列{}n b 的最小项为m b ,求m .17.如图,已知平行六面体1111ABCD A B C D -的底面是菱形,2AB =,AC BD O = ,11A AB A AD ∠=∠.(1)证明:1AA BD ⊥;(2)若1122AA AO ==,π3BAD ∠=,点P 在平面1AB C 内,且BP ⊥平面1AB C ,求BP 与平面ABCD 所成角的正弦值.18.已知函数()()()2ln 1f x ax x x a =-++∈R .(1)当0a ≥时,讨论()f x 的单调性;(2)()()()1e 21xg x f x x x =++--.(i )当0a =时,求()g x 的最小值;(ii )若()0g x ≥在[)0,+∞上恒成立,求a 的取值范围.19.已知()f x 为定义域M 内的连续函数,()f x '为其导函数,常数a M ∈,若各项不相等的数列{}n a 满足n a M ∈,1a a >,()()()1n n n f a f a f a a a+'-=-,则称{}n a 为()f x 的“拉格朗日数列”,简记为“()L a -数列”.(1)若函数()ln g x x =,数列{}n b 是()g x 的“()1L -数列”,且1e b =.(i )求2b ,3b ;(ii )证明:{}n b 是递减数列;(2)正项数列{}n c 是函数()36sin h x x x =+的“()L c -数列”,已知()1,n n c c c +∈,记{}n c 的前n 项和为n S ,证明:0c >时,()112n n S c n c c +≥-+.。
2024∼2025学年度第一学期期中学业水平诊断高二数学注意事项:1、本试题满分150分,考试时间为120分钟,2、答卷前,务必将姓名和准考证号填涂在答题卡上,3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.在空间直角坐标系中,点关于面对称的点的坐标为( )A .B .C .D .2.已知直线和直线平行,则实数m 的值为( )A .0B .C .1D .或13.在三棱锥中,点M 在线段上,且,N 为中点,设,,,则( )A .B .C .D .4.已知直线的一个方向向量为且过点,则的方程为( )A .B .C .D .5.正四棱柱中,,E ,F ,G 分别是,,的中点,则直线与所成角的余弦值为( )ABCD6.过点的直线与曲线)A .B .C .D .7.在平行六面体中,底面是正方形,,,,M 是棱的中点,与平面交于点H ,则线段的长度为( )O xyz -()2,3,1P -xOy ()2,3,1--()2,3,1--()2,3,1---()2,3,1--210x my m ++-=10mx y ++=1-1-A BCD -AB 2AM MB = CD AB a = AC b =AD c = MN =111322a b c-- 111322a b c -++ 211322a b c--211322a b c-++()3,2-()2,12310x y ++=2370x y +-=3280x y +-=3240x y ++=1111ABCD A B C D -12AA AB =1CC BD 11A B 1C G EF ()1,2--y =22,3⎡⎤-⎢⎥⎣⎦[)22,00,3⎛⎤- ⎥⎝⎦422,0,33⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦322,0,43⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦ABCD A B C D '-'''ABCD 60A AB A AD ''∠=∠=︒2AB =4AA '=A B ''A C 'AMD 'A H 'ABCD8.过直线上一点P 作圆的切线,,切点为A ,B ,当最小时,直线的方程为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分。