2018年中考数学试卷
- 格式:doc
- 大小:416.00 KB
- 文档页数:25
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
2018年中考数学试卷说明:1.全卷共6页,满分为150 分,考试用时为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案 无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.若ABC∆,则'B∆的每条边长增加各自的10%得'''A B C∠的度数相比∠的度数与其对应角B()A.增加了10%B.减少了10%C.增加了(110%)+D.没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC BD⊥.以下是排乱的证明过程:①又BO DO=,②∴AO BD⊥.⊥,即AC BD③∵四边形ABCD是菱形,④∴AB AD=.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .446+=B .004446++=C .46=D .1446-= 13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数kyx=(0x>)的图象是()16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM AC=,BN BC=,测得200MN m=,则A,B间的距离为m.18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = . 三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当BQ =QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(1)m 个月的利润相差最大,求m.。
2018年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.(3.00分)﹣的相反数是()A.3 B.﹣3 C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5 B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()A.﹣3.5×10﹣4 B.﹣3.5×104C.3.5×10﹣4D.﹣3.5×10﹣36.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.887.(3.00分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a28.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a﹣1)2+=0,则a+b=.13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA 在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴, 解得. ∴抛物线表达式:y=﹣x 2+x +4;(2)△ABC 是直角三角形.令y=0,则﹣x 2+x +4=0,解得x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得,在Rt △ABO 中AB 2=BO 2+AO 2=22+42=20,在Rt △AOC 中AC 2=AO 2+CO 2=42+82=80,又∵BC=OB +OC=2+8=10,∴在△ABC 中AB 2+AC 2=20+80=102=BC 2∴△ABC 是直角三角形.(3)∵A (0,4),C (8,0),∴AC==4,①以A 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(﹣8,0),②以C 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(8﹣4,0)或(8+4,0) ③作AC 的垂直平分线,交x 轴于N ,此时N 的坐标为(3,0),综上,若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0). (4)如图,设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D , ∴MD ∥OA ,∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n +2∴MD=(n +2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA ﹣BN•MD =(n +2)×4﹣×(n +2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0)。
2018 年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共30 分)1.( 3 分)﹣的相反数是()A.﹣B.C.﹣D.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 10113.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=15 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是%B.众数是%C.均匀数是 %D.方差是06.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=08.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC于点G,则点G 的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.( 2018.河南 .10)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度y(cm2)随时间x( s)变化的关系图象,匀速运动到点B,图2 是点 F 运动时,△ FBC的面积则 a 的值为()A.B. 2C.D.2二、仔细填一填(本大题共 5 小题,每题 3 分,满分15 分,请把答案填在答题卷相应题号的横线上)11.(3 分)计算: | ﹣5| ﹣=.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点O,∠ EOD=50°,则∠ BOC的度数为.13.( 3 分)不等式组的最小整数解是.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为.15.(3 分)如图,∠△A′BC与△ ABC对于MAN=90°,点 C 在边BC所在直线对称,点AM 上, AC=4,点 B 为边 AN 上一动点,连结BC,D,E 分别为 AC, BC的中点,连结 DE 并延长交A′B所在直线于点F,连结A′E.当△A′EF为直角三角形时,AB 的长为.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有人;(2)扇形统计图中,扇形 E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D 的度数为②当∠ D 的度数为时,四边形ECFG为菱形;时,四边形ECOG为正方形.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求y 对于x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售收益w 最大,最大值是元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为;②∠ AMB 的度数为.(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点O 在平面内旋转,AC, BD 所在直线交于点M,若OD=1,OB=,请直接写出当点 C 与点M 重合时AC的长.23.( 11 分)如图,抛物线 y=ax2 +6x+c 交 x 轴于 A, B 两点,交 y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线BC于M.点①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.2018 年河南省中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 2018.河南 .1)﹣的相反数是()A.﹣B.C.﹣D.【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣的相反数是:.应选: B.【评论】本题主要考察了相反数,正确掌握相反数的定义是解题重点.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 1011【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:亿,用科学记数法表示为×1010,应选: C.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【剖析】正方体的表面睁开图,相对的面之间必定相隔一个正方形,依据这一特色作答.【解答】解:正方体的表面睁开图,相对的面之间必定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.应选: D.【评论】本题主要考察了正方体相对两个面上的文字,注意正方体的空间图形,从相对面下手,剖析及解答问题.4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=1【剖析】分别依据幂的乘方、同类项观点、同底数幂相乘及归并同类项法例逐个计算即可判断.【解答】解: A、(﹣ x2)3=﹣ x6,此选项错误;B、 x2、 x3不是同类项,不可以归并,此选项错误;C、 x3x4=x7,此选项正确;D、 2x3﹣ x3=x3,此选项错误;应选: C.【评论】本题主要考察整式的运算,解题的重点是掌握幂的乘方、同类项观点、同底数幂相乘及归并同类项法例.5 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是 %B.众数是 %C.均匀数是 %D.方差是0【剖析】直接利用方差的意义以及均匀数的求法和中位数、众数的定义分别剖析得出答案.【解答】解: A、按大小次序排序为:%, %, %, %, %,故中位数是: %,故此选项错误;B、众数是 %,正确;C、(%+%+%+%+%)=%,应选项C错误;D、∵ 5 个数据不完好同样,∴方差不行能为零,故此选项错误.应选: B.【评论】本题主要考察了方差的意义以及均匀数的求法和中位数、众数的定义,正确掌握有关定义是解题重点.6.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.【剖析】设设合伙人数为【解答】解:设合伙人数为x 人,羊价为 yx 人,羊价为线,依据羊的价钱不变列出方程组.y 线,依据题意,可列方程组为:.应选: A.【评论】本题考察了由实质问题抽象出二元一次方程组,找准等量关系是解题的重点.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=0【剖析】依据一元二次方程根的鉴别式判断即可.【解答】解: A、 x2+6x+9=0△=62﹣ 4× 9=36﹣ 36=0,方程有两个相等实数根;B、 x2=xx2﹣x=0△=(﹣ 1)2﹣ 4×1× 0=1> 0两个不相等实数根;C、 x2+3=2xx2﹣2x+3=0△=(﹣ 2)2﹣ 4×1× 3=﹣8<0,方程无实根;D、( x﹣ 1)2+1=0(x﹣ 1)2=﹣ 1,则方程无实根;应选: B.【评论】本题考察的是一元二次方程根的鉴别式,一元二次方程ax2+bx+c=0( a≠ 0)的根与△=b 2﹣4ac 有以下关系:①当△> 0时,方程有两个不相等的两个实数根;②当△=0 时,方程有两个相等的两个实数根;③当△<0 时,方程无实数根.8.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.【剖析】直接利用树状图法列举出全部可能从而求出概率.【解答】解:令 3 张用 A123,A ,A,表示,用 B表示,可得:,一共有 12 种可能,两张卡片正面图案同样的有 6 种,故从中随机抽取两张,则这两张卡片正面图案同样的概率是:.应选: D.【评论】本题主要考察了树状图法求概率,正确列举出全部的可能是解题重点.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点 D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC 于点 G,则点 G 的坐标为()A.(﹣ 1, 2) B.(, 2) C.( 3﹣,2) D.(﹣2, 2)【剖析】依照勾股定理即可获得Rt△ AOH 中, AO=,依照∠ AGO=∠ AOG,即可获得AG=AO=,从而得出 HG=﹣ 1,可得 G(﹣ 1, 2).【解答】解:∵ AOBC的极点 O( 0,0), A(﹣ 1, 2),∴AH=1, HO=2,∴Rt△ AOH 中, AO=,由题可得, OF 均分∠ AOB,∴∠ AOG=∠ EOG,又∵ AG∥ OE,∴∠ AGO=∠ EOG,∴∠ AGO=∠ AOG,∴AG=AO= ,∴HG= ﹣1,∴G(﹣1,2),应选: A.【评论】本题主要考察了角均分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,而后求出有关的线段长,是解决这种问题的基本方法和规律.10.( 3 分)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度匀速运动到点B,图2 是点 F 运动时,△FBC的面积y( cm2)随时间x( s)变化的关系图象,则 a 的值为()A.B. 2C.D. 2【剖析】经过剖析图象,点 F 从点 A 到 D 用 as,此时,△高 DE,再由图象可知,BD=,应用两次勾股定理分别求【解答】解:过点 D 作 DE⊥ BC于点 E FBC的面积为BE 和 a.a,依此可求菱形的由图象可知,点∴AD=a∴∴DE=2当点 F从 D到∴BD=Rt△ DBE 中,F 由点B 时,用A 到点sD 用时为as,△ FBC的面积为acm2.BE=∵ABCD是菱形∴E C=a﹣1, DC=a Rt△ DEC中,a2=22 +( a﹣ 1)2解得 a=应选: C.【评论】本题综合考察了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点地点之间的关系.二、仔细填一填(本大题共号的横线上)11.( 3 分)计算: | ﹣ 5| ﹣5 小题,每题= 2.3 分,满分15 分,请把答案填在答题卷相应题【剖析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式 =5﹣ 3=2.故答案为: 2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点 O,∠ EOD=50°,则∠ BOC的度数为 140° .【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB=90°,∵∠ EOD=50°,∴∠ BOD=40°,则∠ BOC的度数为: 180°﹣ 40°=140°.故答案为: 140°.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.13.( 3 分)不等式组的最小整数解是﹣2.【剖析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣ 3,解不等式②得:x≤1,∴不等式组的解集为﹣3< x≤ 1,∴不等式组的最小整数解是﹣ 2 ,故答案为:﹣ 2.【评论】本题考察认识一元一次不等式组和不等式组的整数解,能依据不等式的解集得出不等式组的解集是解本题的重点.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为π .【剖析】利用弧长公式L=,计算即可;【解答】解:△ ABC 绕AC 的中点 D 逆时针旋转90°获得△A'B′,C'此时点A′在斜边AB 上,CA′⊥ AB,∴∠ ACA′=∠ BCA′=45,°∴∠ BCB′=135,°∴S 阴==π.【评论】本题考察旋转变换、弧长公式等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.15.(3 分)如图,∠MAN=90°,点 C 在边AM上, AC=4,点B 为边AN上一动点,连结BC,△A′BC与△ ABC对于 BC所在直线对称,点 D, E 分别为 AC, BC的中点,连结A′B所在直线于点 F,连结 A′E.当△ A′ EF为直角三角形时, AB 的长为 4 或DE 并延长交4.【剖析】当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,依据对称的性质和平行线可得:A'C=A'E=4,依据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠ A'FE=90°时,如图2,证明△ ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴A'C=AC=4,∠ ACB=∠ A'CB,∵点 D, E 分别为 AC, BC的中点,∴D、 E 是△ ABC 的中位线,∴D E∥AB,∴∠ CDE=∠ MAN=90°,∴∠ CDE=∠ A'EF,∴AC∥A'E,∴∠ ACB=∠ A'EC,∴∠ A'CB=∠ A'EC,∴A'C=A'E=4,Rt△ A'CB 中,∵ E 是斜边 BC的中点,∴B C=2A'B=8,由勾股定理得:AB2=BC2﹣ AC2,∴AB==4 ;②当∠ A'FE=90°时,如图2,∵∠ ADF=∠ A=∠ DFB=90°,∴∠ ABF=90°,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴∠ ABC=∠ CBA'=45°,∴△ ABC是等腰直角三角形,∴A B=AC=4;综上所述, AB 的长为 4或 4;故答案为: 4或4;等腰直角三角形的判【评论】本题考察了三角形的中位线定理、勾股定理、轴对称的性质、定、直角三角形斜边中线的性质,并利用分类议论的思想解决问题.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.【剖析】依据分式的运算法例即可求出答案,【解答】解:当 x=+1 时,原式 ==1﹣ x=﹣【评论】本题考察分式的运算,解题的重点是娴熟运用分式的运算法例,本题属于基础题型.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有2000人;(2)扇形统计图中,扇形 E 的圆心角度数是° ;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.【剖析】(1 )将 A 选项人数除以总人数即可得;(2)用 360°乘以 E 选项人数所占比率可得;(3)用总人数乘以 D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中 C 选项人数所占百分比可得.【解答】解:( 1)本次接受检查的市民人数为 300÷15%=2000 人,故答案为: 2000;(2)扇形统计图中,扇形 E 的圆心角度数是360°×=°,故答案为:°;(3) D 选项的人数为 2000 × 25%=500,补全条形图以下:(4)估计赞成“选育无絮杨品种,并推行种植”的人数为70×40%=28(万人).【评论】本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.【剖析】(1 )将 P 点坐标代入y=,利用待定系数法即可求出反比率函数的分析式;(2)依据矩形知足的两个条件画出切合要求的两个矩形即可.【解答】解:( 1)∵反比率函数y=(x>0)的图象过格点P( 2, 2),∴k=2× 2=4,∴反比率函数的分析式为 y= ;(2)以下图:矩形 OAPB、矩形 OCDP即为所求作的图形.【评论】本题考察了作图﹣应用与设计作图,反比率函数图象上点的坐标特色,待定系数法求反比率函数分析式,矩形的判断与性质,正确求出反比率函数的分析式是解题的重点.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D的度数为 30°时,四边形 ECFG为菱形;②当∠ D 的度数为° 时,四边形ECOG为正方形.【剖析】( 1)连结 OC,如图,利用切线的性质得∠1+∠ 4=90°,再利用等腰三角形和互余证明∠ 1=∠ 2,而后依据等腰三角形的判断定理获得结论;( 2)①当∠D=30°时,∠ DAO=60°,证明△CEF 和△ FEG 都为等边三角形,从而获得EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠ D=°时,∠ DAO=°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△ OEC≌△ OEG 获得∠ OEG=∠ OCE=90°,从而证明四边形 ECOG为矩形,而后进一步证明四边形ECOG为正方形.【解答】(1 )证明:连结OC,如图,∵CE 为切线,∴OC⊥ CE,∴∠ OCE=90°,即∠ 1+∠4=90°,∵DO⊥AB,∴∠ 3+∠ B=90°,而∠ 2=∠ 3,∴∠ 2+∠ B=90°,而 OB=OC,∴∠ 4=∠ B,∴∠ 1=∠ 2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而 AB 为直径,∴∠ ACB=90°,∴∠ B=30°,∴∠ 3=∠ 2=60°,而 CE=FE,∴△ CEF为等边三角形,∴C E=CF=EF,同理可得∠ GFE=60°,利用对称得 FG=FC,∵F G=EF,∴△ FEG为等边三角形,∴EG=FG,∴E F=FG=GE=CE,∴四边形 ECFG为菱形;②当∠D=°时,∠DAO=°,而 OA=OC,∴∠ OCA=∠ OAC=°,∴∠ AOC=180°﹣°﹣°=45°,∴∠ AOC=45°,∴∠ COE=45°,利用对称得∠ EOG=45°,∴∠ COG=90°,易得△ OEC≌△ OEG,∴∠ OEG=∠ OCE=90°,∴四边形ECOG为矩形,而 OC=OG,∴四边形ECOG为正方形.故答案为 30°,°.【评论】本题考察了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,结构定理图,得出垂直关系.也考察了菱形和正方形的判断.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)【剖析】利用锐角三角函数,在 Rt△ ACE和 Rt△ DBF中,分别求出AE、BF 的长.计算出 EF.通过矩形 CEFH获得 CH 的长.【解答】解:在 Rt△ ACE中,∵tan ∠ CAE=,∴AE==≈≈ 21(cm)在 Rt△ DBF 中,∵tan ∠ DBF= ,∴BF==≈=40( cm)∵E F=EA+AB+BF≈ 21+90+40=151( cm)∵C E⊥ EF, CH⊥ DF, DF⊥EF∴四边形CEFH是矩形,∴C H=EF=151cm答:高、低杠间的水平距离CH 的长为 151cm.【评论】本题考察了锐角三角函数解直角三角形.题目难度不大,注意精准度.21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求 y 对于 x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是80元,当销售单价x= 100元时,日销售收益w 最大,最大值是2000元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元【剖析】(1 )依据题意和表格中的数据能够求得y 对于 x 的函数分析式;(2)依据题意能够列出相应的方程,从而能够求得生产成本和w 的最大值;(3)依据题意能够列出相应的不等式,从而能够获得科技创新后的成本.【解答】解;( 1)设 y 对于 x 的函数分析式为y=kx+b,,得,即 y 对于 x 的函数分析式是 y=﹣ 5x+600,当 x=115 时, y=﹣ 5× 115+600=25 ,即 m 的值是 25;(2)设成本为 a 元/ 个,当 x=85 时, 875=175×( 85﹣ a),得 a=80,w=(﹣ 5x+600)(x﹣ 80) =﹣5x2+1000x﹣ 48000=﹣5( x﹣ 100)2+2000,∴当 x=100时, w 获得最大值,此时w=2000 ,故答案为:80, 100, 2000 ;(3)设科技创新后成本为 b 元,当x=90 时,(﹣ 5× 90+600 )( 90﹣ b)≥ 3750,解得, b≤ 65,答:该产品的成本单价应不超出65 元.【评论】本题考察二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的重点是明确题意,找出所求问题需要的条件,利用函数和数形联合的思想解答.22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为1;②∠ AMB 的度数为40° .(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠ AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点 O 在平面内旋转,AC, BD 所在直线交于点M,若 OD=1,OB=,请直接写出当点 C 与点 M 重合时 AC的长.【剖析】(1 )①证明△ COA≌△ DOB( SAS),得 AC=BD,比值为1;②由△ COA≌△ DOB,得∠ CAO=∠ DBO,依据三角形的内角和定理得:∠AMB=180° ﹣(∠DBO+∠ OAB+∠ABD) =180 °﹣ 140 °=40 °;(2)依据两边的比相等且夹角相等可得△AOC∽△ BOD,则性质得∠ AMB 的度数;(3)正确绘图形,当点 C 与点 M 重合时,有两种状况:如图△BOD,则∠ AMB=90°,,可得AC的长.3 和=,由全等三角形的4,同理可得:△AOC∽【解答】解:( 1)问题发现①如图 1,∵∠ AOB=∠ COD=40°,∴∠ COA=∠DOB,∵OC=OD, OA=OB,∴△ COA≌△ DOB( SAS),∴AC=BD,∴=1,②∵△ COA≌△ DOB,∴∠ CAO=∠ DBO,∵∠ AOB=40°,∴∠ OAB+∠ ABO=140°,在△ AMB 中,∠AMB=180° ﹣(∠ CAO+∠ OAB+∠ ABD)=180°﹣(∠ DBO+∠ OAB+∠ ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比研究如图2,=,∠ AMB=90°,原因是:Rt△ COD 中,∠ DCO=30°,∠ DOC=90°,∴,同理得:,∴,∵∠ AOB=∠ COD=90°,∴∠ AOC=∠ BOD,∴△ AOC∽△ BOD,∴=,∠ CAO=∠ DBO,OAB+∠ ABM+∠ DBO) =90°;在△ AMB 中,∠ AMB=180° ﹣(∠ MAB+∠ ABM) =180°﹣(∠(3)拓展延长①点 C 与点 M 重合时,如图3,同理得:△ AOC∽△ BOD,∴∠ AMB=90°,,设 BD=x,则 AC= x,Rt△ COD 中,∠ OCD=30°, OD=1,∴C D=2, BC=x﹣2,Rt△ AOB 中,∠ OAB=30°, OB=,∴A B=2OB=2 ,在 Rt△ AMB 中,由勾股定理得: AC2+BC2=AB2,,x2﹣x﹣ 6=0,(x﹣ 3)( x+2) =0,x1=3,x2=﹣ 2,∴A C=3 ;②点 C 与点 M 重合时,如图4,同理得:∠ AMB=90°,,设 BD=x,则 AC= x,在 Rt△ AMB 中,由勾股定理得:AC2+BC2=AB2,+( x+2) 2=x2+x﹣ 6=0,(x+3)( x﹣ 2) =0,x1=﹣3, x2=2,∴A C=2 ;综上所述, AC 的长为 3或 2 .【评论】本题是三角形的综合题,主要考察了三角形全等和相像的性质和判断,几何变换问题,解题的重点是能得出:△ AOC∽△ BOD,依据相像三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.( 11 分)如图,抛物线y=ax2 +6x+c 交 x 轴于 A, B 两点,交y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线 BC于点 M.①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.【剖析】(1 )利用一次函数分析式确立C( 0,﹣ 5), B( 5, 0),而后利用待定系数法求抛物线分析式;(2)①先解方程﹣x2+6x﹣ 5=0 得 A( 1, 0),再判断△ OCB 为等腰直角三角形获得∠OBC=∠OCB=45°,则△ AMB 为等腰直角三角形,因此AM=2,接着依据平行四边形的性质获得PQ=AM=2 ,PQ⊥ BC,作 PD⊥ x 轴交直线 BC于 D,如图 1,利用∠ PDQ=45°获得 PD= PQ=4,设P( m,﹣ m2 +6m﹣ 5),则 D( m,m﹣ 5),议论:当 P 点在直线 BC 上方时, PD=﹣ m2+6m﹣5﹣( m﹣ 5) =4;当 P 点在直线 BC 下方时, PD=m﹣ 5﹣(﹣ m2+6m﹣5 ),而后分别解方程即可获得 P 点的横坐标;②作 AN⊥BC 于 N, NH⊥x 轴于 H,作 AC 的垂直均分线交 BC 于 M 1,交 AC 于 E,如图 2,利用等腰三角形的性质和三角形外角性质获得∠AM1B=2∠ ACB,再确立 N(3,﹣ 2),AC 的分析式为y=5x﹣ 5, E 点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的分析式为 y=﹣x+b,把 E(,﹣)代入求出 b 获得直线 EM1的分析式为 y=﹣x﹣,则解方程组得 M 1点的坐标;作直线BC上作点 M1对于 N 点的对称点M2,如图 2,利用对称性获得∠AM2C=∠ AM 1B=2∠ ACB,设 M2( x,x﹣5 ),依据中点坐标公式获得3=,而后求出x 即可获得M2的坐标,从而获得知足条件的点M 的坐标.【解答】解:( 1)当 x=0 时, y=x﹣5=﹣ 5,则 C( 0,﹣ 5),当 y=0 时, x﹣5=0,解得 x=5,则 B( 5, 0),。
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2018年北京市中考数学试卷(含答案解析) 2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.下列几何体中,是圆柱的为A。
B。
C。
D。
2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A。
|a|>4B。
c-b>C。
ac>D。
a+c>3.方程组的解为3x-8y=14x=-1y=2A。
B。
x=1y=-2C。
x=-2y=1D。
x=2y=-14.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m^2,则FAST的反射面积总面积约为A。
7.14×10^3m^2B。
7.14×10^4m^2C。
2.5×10^5m^2D。
2.5×10^6m^25.若正多边形的一个外角是60°,则该正多边形的内角和为A。
360°B。
540°C。
720°D。
900°6.如果a-b=23,那么代数式的值为A。
3B。
23C。
33D。
437.跳台滑雪是冬季奥运会比赛项目之一。
运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax^2+bx+c(a≠0)。
下图记录了某运动员起跳后的x与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A。
10mB。
15mC。
20mD。
22.5m8.下图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(,),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(,),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5)。
2018年安徽省中考数学试卷一、选择题(共10小题,每小题4分,共40分).1.(2018•安徽)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣2.(2018•安徽)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108 3.(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 4.(2018•安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(2018•安徽)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)6.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b 万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7.(2018•安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为()A.﹣1B.1C.﹣2或2D.﹣3或1 8.(2018•安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(2018•安徽)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 10.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l 向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共4小题,每小题5分,共20分).11.(2018•安徽)不等式>1的解集是.12.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.13.(2018•安徽)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(2018•安徽)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)(2018•安徽)计算:50﹣(﹣2)+×.16.(8分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8分)(2018•安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10分)(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12分)(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12分)(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14分)(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE ⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.参考答案一、选择题(共10小题,每小题4分,共40分).1.(2018•安徽)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:∵﹣8<0,∴|﹣8|=8.故选:B.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2018•安徽)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=695 2000 0000=6.952×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(2018•安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看上边是一个三角形,下边是一个矩形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(2018•安徽)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)【考点】55:提公因式法与公式法的综合运用.【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.6.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b 万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a【考点】32:列代数式.【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.7.(2018•安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为()A.﹣1B.1C.﹣2或2D.﹣3或1【考点】AA:根的判别式.【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(2018•安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.【点评】此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.9.(2018•安徽)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.10.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l 向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.【点评】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,共20分)11.(2018•安徽)不等式>1的解集是x>10.【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式得基本步骤依次计算可得.解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.12.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=60°.【考点】L8:菱形的性质;MC:切线的性质.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.【点评】本题考查的是切线的性质、等边三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键13.(2018•安徽)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【考点】G8:反比例函数与一次函数的交点问题.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出A,B点坐标是解题关键.14.(2018•安徽)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【考点】KH:等腰三角形的性质;KQ:勾股定理;LB:矩形的性质;S7:相似三角形的性质.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.【点评】本题考查的是相似三角形的性质、勾股定理和矩形的性质,掌握相似三角形的性质定理、灵活运用分情况讨论思想是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)(2018•安徽)计算:50﹣(﹣2)+×.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算零次幂和乘法,然后再计算加减即可.解:原式=1+2+4=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.(8分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【考点】8A:一元一次方程的应用.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【考点】R8:作图﹣旋转变换;SD:作图﹣位似变换.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.【点评】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.18.(8分)(2018•安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【考点】37:规律型:数字的变化类.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE=米.证明∠AEF=90°.解直角△AEF,求出AE=EF•tan∠AFE ≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,平行线的性质,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.20.(10分)(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【考点】MA:三角形的外接圆与外心;N3:作图—复杂作图.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.六、解答题(本大题满分12分)21.(12分)(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【考点】V8:频数(率)分布直方图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、解答题(本题满分12分)22.(12分)(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.八、解答题(本题满分14分)23.(14分)(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE ⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2018年中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.(3分)﹣4的相反数是()A.4 B.﹣4 C.﹣D.2.(3分)2018年我市财政计划安排社会保障和公共卫生等支出约00元支持民生幸福工程,数00用科学记数法表示为()A.18×108 B.×108C.×109D.×10103.(3分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.4.(3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B. C.D.5.(3分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的6.(3分)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=7.(3分)下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)38.(3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=109.(3分)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补10.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(3分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y212.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分)13.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按顺时针方向旋转而得到的,则旋转的角度为.14.(3分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是.职务经理副经理A类职员B类职员C类职员人数12244月工资(万元/人)215.(3分)计算:= .16.(3分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为.17.(3分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是.18.(3分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l 1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l 2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为.三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分)19.(6分)先化简,再求值:(x+2)(x﹣2)+x(1﹣x),其中x=﹣1.20.(6分)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.21.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.22.(8分)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)24.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x (元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大最大利润是多少25.(10分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB 匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形若存在,求出t 的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S 关于t的函数关系式.2018年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.(3分)﹣4的相反数是()A.4 B.﹣4 C.﹣D.【解答】解:﹣4的相反数是4.故选:A.2.(3分)2018年我市财政计划安排社会保障和公共卫生等支出约00元支持民生幸福工程,数00用科学记数法表示为()A.18×108 B.×108C.×109D.×1010【解答】解:00=×109,故选:C.3.(3分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.(3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B. C.D.【解答】解:从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间.故选:A.5.(3分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.6.(3分)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.7.(3分)下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)3【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.8.(3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=10【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为万千克,根据题意列方程为:﹣=10.故选:A.9.(3分)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补【解答】解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.10.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.11.(3分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.12.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b <0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴x=﹣1时,y=0,即a﹣b+c=0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+c=0,所以①错误;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(本题共6小题,每小题3分,共18分)13.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.【解答】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.14.(3分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是万元、万元.职务经理副经理A类职员B类职员C类职员人数12244月工资(万元/人)2【解答】解:由表可知万元和万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是万元和万元,故答案为:万元、万元.15.(3分)计算:= x﹣1 .【解答】解:==x﹣1.故答案为:x﹣1.16.(3分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为75°.【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠FAE+∠E=45°+30°=75°.故答案为:75°.17.(3分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是16 .【解答】解:∵ABCD是平行四边形,∴OA=OC,∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=8,∴平行四边形ABCD的周长是2×8=16.故答案为16.18.(3分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l 1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l 2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为1009 .【解答】解:由题意可得,A 1(1,﹣),A2(1,1),A3(﹣2,1),A4(﹣2,﹣2),A5(4,﹣2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:1009,故答案为:1009.三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分)19.(6分)先化简,再求值:(x+2)(x﹣2)+x(1﹣x),其中x=﹣1.【解答】解:原式=x2﹣4+x﹣x2=x﹣4,当x=﹣1时,原式=﹣5.20.(6分)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.21.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.【解答】解:(1)70到80分的人数为50﹣(4+8+15+12)=11人,补全频数分布直方图如下:(2)本次测试的优秀率是×100%=54%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BC、BD、CD,所以小明和小强分在一起的概率为.22.(8分)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆【解答】解:(1)作CP⊥AB于P,由题意可得出:∠A=30°,AP=2000米,则CP=AC=1000米;(2)∵在Rt△PBC中,PC=1000,∠PBC=∠BPC=45°,∴BC=PC=1000米.∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,∴他到达宾馆需要的时间为=10<15,∴他在15分钟内能到达宾馆.23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)【解答】解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∵OD=OG,∴四边形ODEG是正方形,∴OA=OD=OG=CG+CE=2+2=4,∠DOG=90°,在Rt△AOG中,∵OA=2AG,∴∠AOG=30°,∴∠BOD=60°,则的长度为=.24.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x (元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大最大利润是多少【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.25.(10分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【解答】解:(1)①如图1,∵y=﹣2x2+2x+4=﹣2(x﹣)2+,∴顶点为M的坐标为(,),当x=时,y=﹣2×+4=3,则点N坐标为(,3);②不存在.理由如下:MN=﹣3=,设P点坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∵PD∥MN,=(舍去),当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,解得m1m=,此时P点坐标为(,1),2∵PN==,∴PN≠MN,∴平行四边形MNPD不为菱形,∴不存在点P,使四边形MNPD为菱形;(2)存在.如图2,OB=4,OA=2,则AB==2,当x=1时,y=﹣2x+4=2,则P(1,2),∴PB==,设抛物线的解析式为y=ax2+bx+4,把A(2,0)代入得4a+2b+4=0,解得b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣2(a+1)x+4,当x=1时,y=ax2﹣2(a+1)x+4=a﹣2a﹣2+4=2﹣a,则D(1,2﹣a),∴PD=2﹣a﹣2=﹣a,∵DC∥OB,∴∠DPB=∠OBA,∴当=时,△PDB∽△BOA,即=,解得a=﹣2,此时抛物线解析式为y=﹣2x2+2x+4;当=时,△PDB∽△BAO,即=,解得a=﹣,此时抛物线解析式为y=﹣x2+3x+4;综上所述,满足条件的抛物线的解析式为y=﹣2x2+2x+4或y=﹣x2+3x+4.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB 匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形若存在,求出t 的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S 关于t的函数关系式.【解答】解:(1)如图1中,连接BP.在Rt△ACB中,∵AC=BC=4,∠C=90°,∴AB=4∵点B在线段PQ的垂直平分线上,∴BP=BQ,∵AQ=t,CP=t,∴BQ=4﹣t,PB2=42+t2,∴(4﹣t)2=16+t2,解得t=12﹣8或12+8(舍弃),∴t=12﹣8s时,点B在线段PQ的垂直平分线上.(2)①如图2中,当PQ=QA时,易知△APQ是等腰直角三角形,∠AQP=90°.则有PA=AQ,∴4﹣t=•t,解得t=.②如图3中,当AP=PQ时,易知△APQ是等腰直角三角形,∠APQ=90°.则有:AQ=AP,∴t=(4﹣t),解得t=2,综上所述:t=s或2s时,△APQ是以PQ为腰的等腰三角形.(3)如图4中,连接QC,作QE⊥AC于E,作QF⊥BC于F.则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4.∵S=S△QNC +S△PCQ=•CN•QF+•PC•QE=t(QE+QF)=2t(0<t<4).。