图形与几何—图形的运动
- 格式:pptx
- 大小:1.02 MB
- 文档页数:11
人教版数学小升初衔接练习+解析(图形与几何—图形的运动)试卷满分:100分考试时间:100分钟一.选择题(共5小题.每小题2分)1.快速旋转小棒.下面()小旗转动一周会形成如图的图形.A.B.C.2.将一个周长为12厘米的正方形变换成一个面积是36平方厘米的正方形.是按()的比例放大的.A.1:3 B.2:1 C.3:1 D.4:1 3.下面的图形是按一定比例缩小的.则x=().A.10 B.8 C.7.5 D.74.下列说法正确的是()A.把一个三角形按1:2的比缩小后.它每个角的度数.每条边的长度都缩小为原来的一半B.平行四边形的各边长度确定后.它的周长和面积就确定了C.三角形各边长度确定后.它的周长和面积就确定了D.ab﹣8=12 (a、b都不为0).则a和b成反比例5.下列图形中.不是轴对称图形的是()A. B.C.二.填空题(共8小题.每小题2分)6.在平面图形中.属于轴对称图形的有(至少写2个);一个长方体的长、宽、高分别为9厘米、6厘米和5厘米.这个长方体的棱长总和是厘米.7.正方形有条对称轴.圆有条对称轴.8.小李去北京动物园游玩.回家后把一张照片(如图所示)在电脑上按一定的比例放大.放大后的照片长是14.4cm.放大后的宽是cm.9.折叠一张长方形纸ABCD.如图.折叠时.C点和A点重合.产生折痕为EF.量得AE长22厘米.如果长方形的宽是20厘米.折叠后图形的面积比原来长方形面积少了平方厘米.10.如果三角形ABC按一定的比缩小成三角形DEC.那么BC长cm.11.右边是一个零件的设计图.每个小格都是边长为1cm的正方形.这个零件的体积是cm³.如果把设计图按2:1放大.那么这个零件的体积就是cm³.12.如图.有一张长方形纸片ABCD.AB=10cm.AD=6cm.将纸片折叠.使AD边落在AB边上.折痕为AE.再将三角形AED以DE为折痕向右折叠.AE与BC交于点F.则三角形CEF的面积为cm2.13.如图.把一张长方形纸折叠后.∠1=50°.∠2=.三.判断题(共5小题.每小题2分)14.放大后的长方形与原长方形对应线段的比是2:1.放大后的长方形面积与原长方形的面积比也是2:1. ()15.边长3米的正方形按2:1的比放大后.它的周长与原来的周长的比是2:1.()16.旋转不改变图形的大小和形状.只改变图形的位置.()17.线段、长方形、正方形、等腰梯形、圆都是轴对称图形.()18.婷婷中午12点睡觉.下午闹钟2点准时响起.则时针在这段时间旋转了60°.()四.操作题(共5小题.每小题5分)19.在方格中画出如图的图形.(1)平行四边形向左平移8格后的图形;(2)梯形绕点O逆时针旋转90°后的图形;(3)三角形按3:1放大后的图形.20.(1)将图中三角形向右平移3格后的图形画出来.(2)将图中三角形的各边按2:1扩大后的图形画出来. 21.观察方格图.完成下面的任务.(1)画出下面对称图形的另一半.(2)与点B对称的点C的位置是(. ).(3)以BC为底边.画一个与三角形ABC面积相等、形状不同的三角形BCD.(4)画一个与三角形ABC面积相等的梯形EFGH.22.按要求画图.(1)画出将图形A先向下平移3格.再向右平移4格后的图形;(2)画出将图形A绕点O顺时针旋转90°后的图形;(3)以虚线MN为对称轴.画出图形B的轴对称图形.23.图中的每小格表示边长1厘米的正方形.(1)将图中长方形绕D点顺时针旋转90°.画出旋转后的图形.(2)将长方形按2:1放大.画出放大后的图形.并使A点的位置在(10.5).放大后的长方形面积与原长方形面积的比是:.(3)在放大后的长方形内画一个最大的半圆.这个半圆的面积是平方厘米.(4)图中的A点在D点的偏方向.五.解答题(共8小题.每小题5分)24.按要求画图.(1)先画出图①的对称轴.再把图①绕点B逆时针旋转90度. (2)把图②各边按2:1的比放大后画在图②的东面.(3)点D的位置用数对表示是(. ).以点D为圆心画一个半径是3厘米的圆.(每小格的边长表示1厘米)25.按要求完成下面各题.每个小方格边长是1cm.(1)图中的平行四边形沿高分成了两部分.把其中阴影部分的三角形向平移cm.平行四边形就变成了长方形. (2)把三角形ABC绕点C顺时针旋转90.画出旋转后的图形.旋转后与原三角形B点相对应的点的位置用数对表示是.(3)画出图M中图形的另一半.使它成为一个轴对称图形. (4)在合适的位置画出(3)题中对称图形按1:2缩小后的图形.26.下面小方格边长表示1厘米.请按要求完成下面各题.(1)把图中的三角形绕点C逆时针旋转90°.画出旋转后的图形;旋转后.A点对应的位置用数对表示是.(2)按2:1的比将原三角形放大.画出放大后的图形.放大后的三角形面积与原来面积的比是.27.在方格子里按要求完成以下各题.(1)将平行四边形ABCD先向上平移4格后.再向右平移5格.画出平移后的图形.用数对表示出经过两次平移后点A对应点的位置是(. ).(2)将平行四边形ABCD绕A点顺时针旋转90°.画出旋转后的图形.28.画一画.(1)小旗子绕O点逆时针旋转90°后的图形.(2)小旗子按2:1扩大后的图形.29.按要求填空并在方格纸上画出图形.(每个小正方形表示1平方厘米)(1)图①中.O点的位置用数对表示是(. ).把图①绕O点逆时针旋转90°.把图①按2:1的比放大.(2)图②中.以B点为观测点.C点在B点的偏方向上.图②中.过点A作BC边上的高.(3)图③中.已经涂了4个方格.请你再涂一个方格.使得5个方格组成的图形是轴对称图形.并画出它的对称轴.30.如图.在3×3的正方形网格中.已有两个小正方形被涂黑.再将图中其余小正方形涂黑一个.使整个图案构成一个轴对称图形.31.(1)把圆平移到圆心是(6.8)的位置上.(2)把长方形绕A点顺时针旋转90°.(3)画出轴对称图形的另一半.答案解析一.选择题(共5小题.每小题2分)1.解:如图:快速旋转小棒.上面小旗转动一周会形成如图的图形.故选:B.2.解:12÷4=3(厘米)即周长是12厘米的正方形边长是3厘米;因为36=6×6所以面积是36平方厘米的正方形边长是6厘米;6:3=2:1答:是按2:1的比例放大的.故选:B.3.解:根据题意.5:4=x:64x=30x=30÷4x=7.5故选:C.4.解:由分析可得.选项A、B、C都是错误的.只有选项D正确. 故选:D.5.解:根据轴对称图形的意义可知:选项A不是轴对称图形.选项B、C都是轴对称图形;故选:A.二.填空题(共8小题.每小题2分)6.解:(9+6+5)×4=20×4=80(厘米)属于轴对称图形的有长方形、正方形;一个长方体的长、宽、高分别为9厘米、6厘米和5厘米.这个长方体的棱长总和是80厘米.故答案为:长方形、正方形;80.7.解:两组对边中点连线所在的直线以及两条对角线所在的直线就是其对称轴.如下图:正方形有四条对称轴;圆的直径所在的直线都是圆的对称轴.圆有无数条直径.就用无数条对称轴.故答案为:4.无数.8.解:14.4÷6=2.44×2.4=9.6(cm)答:放大后的宽是9.6cm.故答案为:9.6.9.解:20×22÷2=440÷2=220(平方厘米)答:折叠后图形的面积比原来长方形面积少了220平方厘米. 故答案为:220.10.解:设BC的长为x厘米.9:6=x:86x=9×8x=x=12答:BC长12厘米.故答案为:12.11.解:3.14×2×2×6×=12.56×2=25.12(立方厘米)2×2=4(厘米).高是6×2=12(厘米)3.14×4×4×12×=3.14×16×4=3.14×64=200.96(立方厘米)答:这个零件的体积是25.12cm³.如果把设计图按2:1放大.那么这个零件的体积就是200.96cm³.故答案为:25.12.200.96.12.解:4×4÷2=8(cm2);故答案为:8.13.解:由图可知∠1+∠2+∠3=180°.所以∠2+∠3=180°﹣∠1=180°﹣50°=130°.又因为∠2=∠3.130°÷2=65°所以∠2=65°故答案为:65°.三.判断题(共5小题.每小题2分)14.解:2×2=4答:放大后的长方形与原长方形对应线段的比是2:1.放大后的长方形面积与原长方形的面积比也是4:1.故答案为:×.15.解:根据正方形的周长公式:C=4a.可知正方形的周长比等于边长比.所以放大后的周长比等于边长比.原题说法正确.故答案为:√.16.解:旋转后图形的形状、大小不变.只是位置发生变化.所以原说法正确;故答案为:√.17.解:根据轴对称图形的意义可知:线段、长方形、正方形、等腰梯形、圆都是轴对称图形.说法正确;故答案为:√.18.解:婷婷中午12点睡觉.下午闹钟2点准时响起.则时针在这段时间旋转了60°.说法正确;故答案为:√.四.操作题(共5小题.每小题5分)19.解:如图:20.解:画图如下:21.解:(1)作图如下:(2)与点B对称的点C的位置用数对表示是(7.2).(3)以BC为底边.画一个与三角形ABC面积相等、形状不同的三角形BCD(画法不唯一).作图如下:(4)画一个与三角形ABC面积相等的梯形EFGH(画法不唯一). 作图如下:故答案为:7.2.22.解:①把图形A先向下平移3格(蓝色部分).再向右平移4格(红色部分).②把图形A绕O点顺时针方向旋转90°.画出旋转后的图形(黄色部分).③以虚线MN为对称轴.画出图形B的轴对称图形.(蓝色部分). 如图:23.(1)将图中长方形绕D点顺时针旋转90°.画出旋转后的图形(图中红色部分):(2)将长方形按2:1放大.画出放大后的图形.并使A点的位置在(10.5)(图中绿色部分).放大后的长方形面积与原长方形面积的比是4:1.(3)在放大后的长方形内画一个最大的半圆(图中蓝色部分).这个半圆的面积是:3.14×32÷2=28.26÷2=14.13(平方厘米)(4)图中的A点在D点的西偏北方向.故答案为:4.1;14.13;西.北.五.解答题(共8小题.每小题5分)24.解:(1)先画出图①的对称轴(下图红色虚线).再把图①绕点B逆时针旋转90度(下图).(2)把图②各边按2:1的比放大后画在图②的东面(下图). (3)点D的位置用数对表示是(14.7).以点D为圆心画一个半径是3厘米的圆(下图).故答案为:14.7.25.解:(1)图中的平行四边形沿高分成了两部分.把其中阴影部分的三角形向右平移6cm.平行四边形就变成了长方形(下图). (2)把三角形ABC绕点C顺时针旋转90.画出旋转后的图形.旋转后与原三角形B点相对应的点的位置用数对表示是(17.6). (3)画出图M中图形的另一半.使它成为一个轴对称图形(下图).(4)在合适的位置画出(3)题中对称图形按1:2缩小后的图形(下图).故答案为:右.6;(17.6).26.解:(1)(2)如图:(1)旋转后.A在第三列第四行.所以数对为(3.4);(2)放大后.底和高都扩大为原来的2倍.根据S=ah.面积扩大为原来的2×2=4倍.面积比为:4:1.故答案为:(3.4);4:1.27.解:(1)将平行四边形ABCD先向上平移4格后.再向右平移5格.画出平移后的图形(下图).用数对表示出经过两次平移后点A对应点的位置是(9.7).(2)将平行四边形ABCD绕A点顺时针旋转90°.画出旋转后的图形(下图).故答案为:9.7.28.解:作图如下:29.解:(1)O点的位置是第4列.第6行.作图如下:(2)图②中.以B点为观测点.C点在B点的西偏南45°方向上.如上图;(3)如上图(画法不唯一).30.解:如图所示:31.解:(1)由数对与位置找到平移后的圆心点是(6.8).以半径为2格长画圆即可得到平移后的位置;(2)根据图形旋转的方法.将与点A连接的两条边顺时针旋转90°.再作这两条边的平行线即可得出旋转后的图形;(3)根据轴对称图形的特征.对称点到对称轴的距离相等.找出三个对称点.然后连接即可.作图如下:.。
图形的运动知识图形的运动是指在平面或者空间中,图形在某个参考系下移动的过程。
图形的运动不仅仅是几何学中的一个重要概念,也在很多实际应用中得到了广泛的应用。
本文将从平面运动和空间运动两个方面,介绍图形的运动知识。
一、平面运动在平面中,图形的运动可以分为平移、旋转、翻转和放缩几种基本运动。
1. 平移平移是指图形在平面中沿着平行于原来位置的某个方向移动,移动的距离相同。
可以用向量来表示平移的特征,移动的向量就是平移向量。
例如,当图形向右平移2个单位时,可以表示为(2, 0)。
2. 旋转旋转是指图形绕某个点或者绕某条线旋转一定角度。
旋转可以用角度来表示,例如,逆时针旋转90度表示为-90度。
旋转的中心点可以是图形内的点,也可以是图形外的点。
3. 翻转翻转是指图形上的点相对于某个点、某条线或者某个面对称。
可以分为对称于点、对称于线和对称于面三种情况。
例如,当图形关于坐标原点对称时,可以表示为(x, y) -> (-x, -y)。
4. 放缩放缩是指图形按照一定比例进行拉伸或者压缩。
可以用比例因子来表示,例如,将图形放大一倍可以表示为(x, y) -> (2x, 2y)。
以上是平面运动的基本方式,实际应用中,图形的运动往往是多种运动方式的组合。
二、空间运动在空间中,图形的运动可以分为平移、旋转、翻转和放缩几种基本运动。
1. 平移和平面运动类似,空间中的平移是指图形在空间中沿着平行于原来位置的某个方向移动,移动的距离相同。
可以用三维向量来表示平移的特征,移动的向量就是平移向量。
2. 旋转空间中的旋转是指图形绕某个轴旋转一定角度。
旋转可以用轴线和旋转角度来表示。
例如,绕x轴逆时针旋转90度表示为x轴旋转-90度。
3. 翻转空间中的翻转和平面中的翻转类似,也可以分为对称于点、对称于线和对称于面三种情况。
对称的中心可以是空间中的点、线或者面。
4. 放缩空间中的放缩也和平面中的放缩类似,是指图形按照一定比例进行拉伸或者压缩。
2019小学数学总复习题七图形与几何2——图形的运动、图形与位置——图形的运动、图形与位置(图形与几何2——图形的运动、图形与位置)一、知识要点:1. 图形的运动:(1)轴对称图形;(2)平移和旋转;(3)图形的放大与缩小;2. 图形与位置:(1)确定物体的相对位置;(2)辨认方向和描述路线图;(3)比例尺.二、想一想、填一填.1.下面图形中,只有一条对称轴的是(),有两条对称轴的是(),有三条对称轴的是(),有无数条对称轴的是().2.下面现象中,平移的是(),旋转的是().①升国旗②水龙头开关的运动③转动方向盘④拉抽屉⑤旋瓶盖3.一个立体图形,从正面看是,摆这个立体图形至少需要()个小正方体.4.有一个九位数是169069961,逆时针旋转180°后这个九位数是().5.在1︰20000000的地图上,量得甲、乙两地之间的距离是3cm,甲、乙两地实际距离是()km,若画在1︰40000000的地图上,两地相距()cm.6.完成下面各题.(小方格的每边长表示50m)(1)书店位于(3,4),方格中标出书店.(2)博物馆位于书店的正东方向150m处,请你在方格中找出博物馆的位置.(3)超市的位置(8,2),在博物馆()偏()()方向上.(4)博物馆向正南方向走100m,再向西走150m就是公园,标出位置并写数对.班级姓名座号三、画一画.1.连一连.下面的物体分别是由哪个平面图形旋转得到的?2.将图形A向右平移4格,得到图形B,再以直线L为对称轴画出图形B的另一半;把图形C按1︰2的比例缩小;把图形D绕O点顺时针旋转90°.3.(1)观察下左图,文庙在长汀一中()方向,()m处;三元阁在长汀一中的()偏()()°方向,直线距离大约()m处. (2)下右图的方格纸每格代表50m,博物馆的位置在(5,5)处,请在方格纸上标出左图中各建筑的位置..。
图形的运动知识总结图形的运动是指图形在平面上进行移动的过程。
图形的运动可以是平移、旋转、翻转等不同的变换方式,这些运动会改变图形的位置、形状或方向。
通过研究图形的运动,可以帮助我们更好地理解几何学中的各种概念和性质。
平移运动是指图形在平面上沿某一方向移动一定距离,保持图形的大小、形状和方向不变。
平移运动是一种刚体运动,即图形的每一个点都沿着相同的方向和距离移动。
可以用平移向量来描述平移运动,平移向量的大小和方向决定了图形的平移量。
由于平移运动不改变图形的形状和大小,所以平移后的图形与原图形是全等的。
旋转运动是指图形绕某一点或某一直线旋转一定的角度。
旋转运动可以分为顺时针旋转和逆时针旋转两种。
图形绕某一点旋转时,该点称为旋转中心;图形绕某一直线旋转时,该直线称为旋转轴。
旋转运动改变了图形的方向和形状,但不改变图形的中心点位置。
翻转运动又称为对称运动,是指图形关于某一直线或某一点对称。
图形关于直线对称时,称为轴对称;图形关于点对称时,称为中心对称。
轴对称图形按照轴线翻转180度,而中心对称图形则按照中心点旋转180度。
翻转运动改变了图形的形状和方向,但保持了图形的大小。
除了这些基本的运动方式,图形还可以通过组合运动来达到更复杂的效果。
例如,可以先进行平移运动,再进行旋转运动,或者先进行旋转运动,再进行翻转运动。
组合运动可以改变图形的位置、形状、方向和大小,而具体的效果取决于运动的顺序和方式。
图形的运动可以通过向量和矩阵来进行描述和计算。
向量表示平移运动的大小和方向,矩阵表示旋转和翻转运动的变换关系。
通过矩阵乘法的运算,可以将一个图形经过一系列的运动变换之后得到新的图形。
图形的运动在实际生活中有着广泛的应用。
例如,在工程设计中,图形的运动可以用来模拟机械装置的运动轨迹和变换方式;在计算机图形学中,图形的运动可以用来实现动画效果和模拟物体的运动行为。
此外,在数学教育中,图形的运动也是学习几何学和空间感知的重要内容。
五年级数学下册重要知识点汇总:图形与几何第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8个正方体可拼成较大的正方体,27个64个125个。
都可拼成较大正方体。
二、图形的运动图形变换的基本方式是对称、平移和旋转。
对称点是关于一条直线对称的点 (对称点一般用于轴对称),对应点是一个图形经变换后的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)(一)图形的平移1、平移不改变图形的大小和形状。
2、平移的三要素:原图形的位置、平移的方向、平移的距离。
平移的方向一般为:水平方向、垂直方向两种。
平移的距离:一般为几个单位长度(也即几个方格)3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。
4、把图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移。
(4)顺次连接平移后的各点,标明各点名称。
(二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。