几何五大模型
- 格式:doc
- 大小:1.41 MB
- 文档页数:9
小学数学五大几何模型知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO baS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD ABCDEF G①AD AE DE AFAB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。
几何之五大模型在小学奥数知识体系中,几何五大模型是几何专题中非常重要的一块知识点,方法性很强,掌握了几何的五大模型,对于我们解决组合型直图形或者非规则图形是非常有帮助的,所以几何五大模型在小学几何体系中的重中之重!几何五大模型的难点在于我们要在掌握各个模型适用的题型、相应的方法、公式的基础上学会灵活运用,还有就是有时要根据题意同时运用多种模型,从而更好的解决问题!PS:对于不同题型均会有例题讲解分析以及精选练习题,以供大家有针对性学习巩固,相信大家对于应用题的攻克将不在话下!一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。
例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。
(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知S△ADE:S△ABE=AD:ABS△ABE:S△CBE=AE:CE所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC因此S△ADE:S△ABC =(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。
例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。
平面几何五大基本模型平面几何是几何学中的一个分支,它研究平面内的各种形状和性质。
在平面几何中,有五大基本模型,即:点、直线、线段、角和平行线。
首先,让我们从点开始说起。
点是平面几何中最基本的概念,它没有大小和形状,只有位置。
可以想象成一个没有任何维度的数学点,用来描述平面上的位置。
点在几何上用大写字母来表示,如点A、点B 等。
接下来,我们来说说直线。
直线是由无限多个点组成的,它没有宽度,可以延伸到无穷远。
直线在几何上用一条带箭头的线段来表示,如AB线段。
直线具有无数个点和方向,可以通过两个点确定一条直线。
线段是由两个端点和端点之间的所有点组成的,它有固定的长度和方向。
线段在几何上用两个点之间用线段符号来表示,如CD线段。
线段是直线的一部分,它有起点和终点。
角是由两条共同起点的射线组成的部分,它有大小和方向。
角可以用两条线段之间的夹角来描述,如∠ABC。
角的大小可以通过数值的度量来确定,范围从0度到360度。
最后,让我们来看看平行线。
平行线是在同一个平面上,永远不相交的直线。
这意味着它们始终保持相同的距离。
平行线在几何上用两个竖线符号来表示,如∥。
平行线的性质和定理在几何学中有着广泛的应用。
综上所述,平面几何的五大基本模型分别是点、直线、线段、角和平行线。
熟悉和理解这些基本模型对于深入学习和掌握平面几何的知识是至关重要的。
通过对这些模型的研究和运用,可以帮助我们更好地理解和解决平面几何问题。
因此,我们应该加强对这五大基本模型的学习和掌握,为在几何学中取得更好的成绩打下坚实的基础。
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
几何五大模型定理
几何学是一个古老的学科,并在数学领域发挥着不可替代的作用。
过去2000多年来,一些极具影响力的几何学家们有力地推动了几何学研究的发展,创造了许多引人注目的几何模型定理。
以下将介绍五大几何模型定理,它们是几何学的代表性研究成果。
第一个几何模型定理是欧几里得定理,也称为“欧几里得尺规定理”,这是古希腊数学家欧几里得著名的定理。
它声明:“三角形内角之和等于180度”。
它是数学基本概念的基础,借此可以证明各种几何图形的构成关系。
第二个几何模型定理是埃及人定理,也称为“埃及三角形定理”。
这是一个基本定理,它宣称:“正三角形的高等于它的底乘以三角形的高”。
第三个几何模型定理是勾股定理,这是古希腊数学家勾股第六世纪首次提出的定理。
它表明:“三角形的斜边的平方等于两常规边的平方之和”。
第四个几何模型定理是朱丽叶定理,由十八世纪法国数学家朱丽叶蒙德拉克提出。
它宣称:“在平面内,给定一个三角形与
它的外接圆,三角形内角周长和半径之比等于外角角度和圆周长的比之和”。
第五个几何模型定理是莱布尼茨定理,由德国数学家马克斯·莱布尼茨于1794年提出的定理。
它声明:“存在唯一的平行四边形,其面积等于任何给定四边形的面积之和”。
以上就是几何学五大模型定理的主要内容,它们的发现和推导象征着几何学的成熟,也为更深入研究几何学提供了基础。
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方.五、燕尾定理模型S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB典型例题精讲例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0。
一、等积变换模型
⑴等底等高的两个三角形面积相等;
其它常见的面积相等的情况
⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =
⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;
反之,如果ACD
BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;
⑸三角形面积等于与它等底等高的平行四边形面积的一半;
二、鸟头定理(共角定理)模型
五大模型
1S 2
S
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC
上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△
图1 图2
三、蝴蝶定理模型
任意四边形中的比例关系(“蝴蝶定理”):
①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)
①2213::S S a b =
②221324::::::S S S S a b ab ab =;
③梯形S 的对应份数为()2
a b +。
四、相似模型
相似三角形性质:
金字塔模型 沙漏模型
①
AD AE DE AF
AB AC BC AG
===
; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:
⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB
典型例题精讲
例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三
角形的面积是21平方厘米。
问:长方形的面积是__________平方厘米。
例
1图
例2 如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE。
则两块地ACF和CFB的面积比是__________。
例2图
【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?
举一反三
图
【拓展】如图,已知长方形ADEF的面积16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是多少?
拓展图
例3 如图,将三角形ABC 的AB 边延长1倍到D ,BC 边延长2倍到E ,CA 边延长3倍到F 。
如果三角形ABC 的面积等于1,那么三角形DEF 的面积是__________。
例3图
【拓展】如图,在△ABC 中,延长AB 至D ,使BD =AB ,延长BC 至E ,使12
CE BC ,F 是AC 的
中点,若△ABC 的面积是2,则△DEF 的面积是多少?
拓展图
例4 如图,在△ABC 中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于O ,若△AOM 、△ABO
和△BON 的面积分别是3、2、1,则△MNC 的面积是__________。
例4图
【秒杀题】四边形ABCD的对角线AC与BD交于点O(如图所示)。
如果三角形ABD的面积等
于三角形BCD的面积的1
3
,且AO=2,DO=3, 那么CO的长度是DO的长度的
__________倍。
秒杀题图
例5 如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积。
例5图例6 如右图长方形ABCD中,EF=16,F=9,求AG的长。
例6图
【铺垫】图中四边形ABCD是边长为12cm的正方形,从G到正方形顶点C、D连成一个三角形,已知这个三角形在AB上截得的EF长度为4cm,那么三角形GDC的面积是多少?
铺垫图
例7 如图,长方形ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH=5cm,HF =3cm,求AG。
例7图
例8 如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB。
例8图【拓展】如图,三角形ABC的面积是1,BD=DE=EC, CF=FG=GA,三角形ABC被分成9部分,请写出这9部分的面积各是多少?
拓展图例9 如右图,△ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG交于M,
AF与BG交于N,已知△ABM的面积比四边形FCGN的面积大7.2平方厘米,则△ABC的面积是多少平方厘米?
例9图
例10 如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF=2DF,连接BF,DE,相交于点G,过G作MN,PQ得到两个正方形MGQA和正方形PCNG,设正方形MGQA 的面积为S1,正方形PCNG的面积为S2,则S1:S2=______。
例10图。