一元一次方程应用问题专题知识复习
- 格式:doc
- 大小:78.00 KB
- 文档页数:9
一元一次方程应用题知识点一、知识概述《一元一次方程应用题知识点》①基本定义:一元一次方程应用题就是在实际生活场景里,有着各种各样关系的事情,我们可以用含有一个未知数(还这个未知数的次数是1呢)的方程来表示,然后求出这个未知数来解决问题。
就像是我们去猜一个神秘数字,但这个数字跟别的一些数字有着特定关系,我们把这些关系用方程写出来,就能找到这个神秘数字啦。
②重要程度:在数学学科里,这可谓相当重要哦。
把实际问题变成数学方程来解,是我们把数学运用到生活中的关键一步。
能帮我们搞定很多现实生活里跟计算有关的事儿,像计算买卖东西的价钱、工程多久完成等等。
③前置知识:要掌握它首先基本的四则运算得很熟练,加、减、乘、除不能出错。
然后得很清楚一元一次方程本身的概念,比如方程的一般形式这些。
④应用价值:在生活中应用超广泛。
就比如说算自己买东西怎么组合花的钱最少。
商家也可以用来算成本、利润等。
工程队用它计算工程进度、需要的人力啥的。
二、知识体系①知识图谱:在数学的方程这部分内容里可是基础中的基础啊。
是从单纯的方程知识迈向解决实际问题的第一步,和很多后续知识像二元一次方程应用题都有联系。
②关联知识:跟代数部分其他知识关系紧密,像整式的运算,你要是整式运算都搞不定,方程里那些式子的变形就难搞。
还有跟函数也有点沾边,一些函数问题也能转化成一元一次方程的应用题形式。
③重难点分析:- 掌握难度:有时候把实际遇到的场景转化成数学语言列方程对不少人来说挺难的。
比如说像水流问题,水速船速搞在一起很容易迷糊。
- 关键点:找准等量关系是关键。
就好像一个拼图,等量关系就是那块能嵌入中心,让整个图完整起来的关键碎片。
④考点分析:在考试里很受出题人的青睐呢。
出题方式很多样,可以直接让你根据某个场景列方程求解,或者给一个方程让你根据情境解释方程的意义。
三、详细讲解(属于方法技能类)①基本步骤:- 先读题好好理解这个情景。
我以前就老想跳着读题,结果经常没搞清楚事情全貌就开始做,最后错得一塌糊涂。
一元一次方程的运用(1)找等量关系一元一次方程应用题归类汇集:1、行程问题;2、工程问题(倍份问题、调配问题、配套问题、);3、销售问题(利润、打折、增长率问题);4、数字问题;5、方案设计与成本分析等。
(一)行程问题(1)行程问题中的三个基本量及其关系:速度×时间=路程; S=vt(2)基本类型有①相遇问题:甲乙②追及问题;甲乙流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水);逆水速度=船速-水速(V逆=V静-V水)(二)工程问题工程问题中的三个量及其关系为:工作效率×工作时间=工作总量经常在题目中未给出工作总量时,设工作总量为单位“1”。
(三)销售问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:售价 = 标价×折扣;利润 = 售价—进价总利润 = 单利润×数量;或总利润 = 总售价—总进价利息=本金×利率×时间;本息和=本金+利息;利息税=利息×税率(20%)(四)数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n-1表示。
(五)方案设计问题的解答步骤(1)分情况计算;(2)比较大小;(3)总结结论基础达标检测一、填空题(每题5分)。
1、一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为。
2、甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班x人,则可列方程。
专题17解一元一次方程(7个知识点3种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)知识点2等式的基本性质(重点)知识点3.利用等式的基本性质解方程(重点)知识点4.利用移项、合并同类项解方程(难点)知识点5.利用去括号解方程(难点)知识点6.利用去分母解方程(重点)知识点7.解一元一次方程的一般步骤(重点)【方法二】实例探索法题型1.方程的解的应用题型2.解一元一次方程题型3.一元一次方程的解的情况【方法三】仿真实战法考法1.方程的解的应用考法2.解一元一次方程【方法四】成果评定法【学习目标】1.了解方程的解与解方程的概念,会根据等式的基本性质解方程。
2.掌握解一元一次方程的方法,了解解一元一次方程的一般步骤,并能灵活运用,能判别解的合理性。
3.经历和体会解一元一次方程中“转化”的思想方法。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程【例1】如果关于x 的方程2x +k ﹣4=0的解x =﹣3,那么k 的值是( ) A .﹣10B .10C .2D .﹣2【变式】如果x =2是方程x ﹣2a =﹣2的解,那么a 的值是( ) A .﹣6B .﹣2C .0D .2知识点2等式的基本性质(重点)1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a c b c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=22x 3x+7+2x=22x+2x 3x+7+2x7=22x+2x7 5x=5 5x ÷5=5÷5 x=1 3)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
一元一次方程知识梳理和练习题讲解【知识梳理】1、方程的概念方程含有未知数的等式叫做方程重点解读(1)方程含有两个要素,一是含有未知数,二是必须是等式,二者缺一不可;(2)方程一定是等式,但等式不一定是方程;(3)方程中含有的未知数个数不限.2、一元一次方程的概念定义只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程,它的一般形式是()00ax b a +=≠重点解读3、方程的解与解方程定义实质方程的解使方程等号左右两边相等的未知数的值叫做方程的解具体数值解方程求方程解的过程叫做解方程变形过程4、等式的性质语言叙述字母表示等式性质1等式两边加(或减)同一个数(或式子),结果仍相等如果ba=,那么cbca±=±等式性质2等式两边乘同一个数,或除以一个不为0的数,结果仍相等如果ba=,那么bcac=;如果ba=,那么()0≠=ccbca重点解读(1)注意等式左右两边同时加、减、乘或除以不能遗漏任一边,并且同时加、减、乘或除以的数必须是同一个数;(2)等式的两边除以一个数或整式时,这个数或整式不能为0;(3)等式还有以下性质:①如果ba=,cb=,那么ca=;②如果ba=,那么ab=5、解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
变形名称依据具体做法注意事项去分母等式的性质2在等号两边都乘各分母的最小公倍数(1)不要漏乘不含分母的项;(2)若分子是一个多项式,需加上括号去括号乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项;(2)不要弄错符号移项移项法则把含有未知数的项移动到方程的一边,其他的项移动到方程的另一边(1)移项要变号;(2)不要丢项合并同类项合并同类项法则把方程化为()0≠=abax的形式(1)字母及其指数不变,系数相加;(2)不要漏项系数化为1等式的性质2在方程()0≠=abax的两边都除以未知数的系数a,得到方程的解abx=切忌分子、分母位置颠倒6、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
诗词比赛主持词诗词比赛主持词15篇主持词的写作需要将主题贯穿于所有节目之中。
时代不断在进步,主持人参与的事情越来越多,主持人大多通过提前写好的主持词来开展工作,下面是小编帮大家整理的诗词比赛主持词,欢迎大家分享。
诗词比赛主持词1主持人:1、2、3、41、尊敬的各位领导2、敬爱的各位老师3、亲爱的同学们4、大家下午好(一起):一一班诵读展示现在开始1、五千年的历史2、孕育了灿烂的文化3、源远流长的古典诗文4、是文化长河中亮丽的浪花1、今天,我们相聚在这里2、诵读千古美文3、传承千古文明4、下面请欣赏古诗诵读《静夜思》1、无论是生机勃勃的春天2、还是如诗如画的秋天3、大自然都赠给我们美丽的风景4、让我们走进大自然去看蓝天白云、去听小鸟鸣唱1、妈妈的慈爱与温暖2、老师的体贴和关怀3、浓浓的亲情和友爱4、让我们慢慢去品尝去回味1、金色的童年我们亲近中华经典2、校园内外我们诵读经典3、“人不学,不知义。
”让我们知道该好好学习。
4、“融四岁,能让梨。
”让我们懂得做人的道理。
诗词比赛主持词2尊敬的各位领导,老师,亲爱的同学们,大家晚上好!在中华五千年的浩瀚历史中,古诗词就像是一颗璀璨的明珠,在文学艺术的星空中熠熠生辉。
让我们踏上诗词之旅,穿行在诗里词间,留连于亭台之上,徜徉于山水之间,听金戈铁马,看江山如画,悟美丽忧愁,去欣赏狂放的李白,潇洒的苏轼,禅意的王维,多情的柳永,以及那些深入骨髓的古典场景:对花持酒的舞姿,踏雪寻梅的笛声,水晶帘栊后的凝望,古刹空山里的啼鸣今天让我们走进溢满华彩的诗词世界,领略古代诗词大师留给我们的丰厚精神财富!本次比赛得到学校各级领导的大力支持,学校团委特别聘请了语文教研室程云龙主任带领多名骨干教师命题,比赛过程公开透明。
同学们,诚信是我们中华民族的优良传统,让我们本着“诚信第一,比赛第二”的原则,在比赛过程中超水平发挥,赛出水平,赛出风采!本次活动命题老师请看大屏幕:后排从左至右程云龙主任、高海燕老师、何晓萍老师、孟祥熙老师,前排从左至右王芳芳老师、刘庄霞老师、于芳老师、韩美华老师、单体英老师本场比赛命题老师为刘庄霞老师。
《一元一次方程》复习整理(一)解方程(基本概念、运算能力、解题能力)基本概念:一元一次方程;方程的解;同解方程;、、、基本技能:移项;去括号;去分母;系数化为1;、、、一、选择题1、下列各式中是一元一次方程的是( ) A. y x -=-54121B. 835-=--C. 3+xD. 146534+=-+x xx2、下列方程中,是一元一次方程的是( )A 、;342=-x xB 、;01=+xC 、;12=+y xD 、.11x x =-3、方程x x 231=+-的解是( ) A. 31- B. 31C. 1D. -14、方程042=-+a x 的解是2-=x ,则a 等于( )A 、;8-B 、;0C 、;2D 、.85、已知关于x 的方程)(22x m mx -=+的解满足方程03=-x ,则m 的值是( ) A.21B. 2C.23D. 36、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为() A. 10 B. 8 C. 10- D. 8-7、下列根据等式的性质正确的是( )A. 由y x 3231=-,得y x 2= B. 由2223+=-x x ,得4=xC. 由x x 332=-,得3=xD. 由753=-x ,得573-=x8、已知等式523+=b a ,则下列等式中不一定...成立的是( )A 、;253b a =-B 、;6213+=+b aC 、;523+=bc acD 、.3532+=b a9、解方程16110312=+-+x x 时,去分母后,正确结果是( )A. 111014=+-+x xB. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x10、下列方程变形中,正确的是( )A 、方程1223+=-x x ,移项,得;2123+-=-x xB 、方程()1523--=-x x ,去括号,得;1523--=-x xC 、方程2332=t ,未知数系数化为1,得;1=x D 、方程15.02.01=--x x 化成.63=x 11、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ( ) A 、3 B 、4 C 、5 D 、612、当=x ___时,代数式24+x 与93-x 的值互为相反数.A 、-1B 、0C 、1D 、2二、填空题13、已知(2a+b)x 2-x a -3=4是关于x 的一元一次方程,则a=_____,b=_____,x =__。
七年级上册数学一元一次方程应用题的知识点主要包括以下几个方面:
1.方程的概念:了解方程的基本定义,即含有未知数的等式。
2.一元一次方程的解法:通过去分母、去括号、移项、合并同类项等步骤,将一元一
次方程化为标准形式,并求解。
3.方程的解与解集:理解方程的解是指使方程成立的未知数的值,而解集则是指所有
满足方程的未知数的值的集合。
4.实际问题的数学模型:能够将实际问题转化为数学问题,通过建立一元一次方程来
求解。
在应用题方面,通常会涉及到以下几种类型:
1.相遇问题:两个物体在某一点相遇,需要求出它们的速度和时间等参数。
2.追及问题:一个物体追赶另一个物体,需要求出追赶的速度和时间等参数。
3.利润与折扣问题:涉及到商品的利润和折扣计算,需要建立一元一次方程来求解。
4.工程的分配问题:需要分配一定量的工程任务给多个工人或机器,需要根据各自的
效率或能力进行分配,需要建立一元一次方程来求解。
总之,七年级上册数学一元一次方程应用题的知识点包括方程的概念、一元一次方程的解法、方程的解与解集以及实际问题的数学模型等。
通过掌握这些知识点,可以更好地解决实际问题。
一元一次方程应用题知识点一:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知识点点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元, 经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨, 但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜, 在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
一元一次方程应用问题专题知识复习列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
列方程解应用题的主要步骤:1. 认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2. 用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3. 利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4. 求出所列方程的解;5. 检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。
【学习提示】一. 数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a +10b+c。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2N+2或2N—2表示;奇数用2N+1或2N—1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为X+7,个位上的数是3X,等量关系为三个数位上的数字和为17。
例2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数二. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例3. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?[分析]甲独作10天完成,说明的他的工作效率是1/10,乙的工作效率是1/8等量关系是:甲乙合作的效率×合作的时间=1例4. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
例5. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。
三. 行程问题:[解题指导](1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有1)相遇问题;2)追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例6. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程= 480公里。
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480分析:相背而行,画图表示为:等量关系是:两车所走的路程和+ 480公里= 600公里。
解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,(3)分析:等量关系为:快车所走路程-慢车所走路程+ 480公里= 600公里。
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+ 480公里。
解:设x小时后快车追上慢车。
由题意得,140x=90x+480分析:追及问题,等量关系为:快车的路程=慢车走的路程+ 480公里。
解:设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+480例7. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?[分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。
狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间解:设甲用X小时追上乙,根据题意列方程5X=3X+5 解得X=2.5,狗的总路程:15×2.5=37.5答:狗的总路程是37.5千米。
例8. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
[分析]这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
相等关系为:顺流航行的时间+逆流航行的时间=7小时。
四. 利润赢亏问题1)销售问题中常出现的量有:进价、售价、标价、利润等2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例9.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[分析]通过列表分析已知条件,找到等量关系式等量关系:商品利润率=商品利润/商品进价解:设标价是X元,例10.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。
五. 储蓄问题1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例11. 某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)[分析]等量关系:本息和=本金×(1+利率)例12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:1)直接存入一个6年期;2)先存入一个三年期,3年后将本息和自动转存一个三年期;3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。
解:1)设存入一个6年的本金是X元X(1+6×2.88%)=20000,X=170532)设存入两个三年期开始的本金为Y元,Y(1+2.7%×3)(1+2.7%×3)=20000,X=171153)设存入一年期本金为Z元,Z(1+2.25%)6=20000,Z=17894所以存入一个6年期的本金最少。
六. 日历中的方程例13. 1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出的四个数的和为58,这四天分别是几号?2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?[分析]观察、分析四个数的关系,设法用一个未知数圈出的四个数解:1)设竖列的四个数中最小的一个是X,其余三数分别为X+7,X+14,X+21X+X+7+X+14+X+21=58,X=4。
所以这四个数是4号,11号,18号,25号2)设四个数中最大的一个数Y,其余三个数是Y—1,Y—7,Y—8Y+Y-1+Y-7+Y-8=76,Y=23,所以这四个数是15、16、22、23初一年级数学第5章一元一次方程的应用题集班级姓名学号数字问题:1、一个两位数,十位上的数比个位上的数小1。
十位上的数与个位上的数的和是这个两位数的,求这个两位数。
2、一个两位数,个位上的数与十位上的数的和为7,如果把十位与个位的数对调。
那么所得的两位数比原两位数大9。
求原来的两位数。
3、一个两位数的十位上的数比个位上的数小1,如十位上的数扩大4倍,个位上的数减2,那么所得的两位数比原数大58,求原来的两位数,4、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。
5、某考生的准考证号码是一个四位数,它的千位数是一;如果把1移到个位上去,那么所得的新数比原数的5倍少49,这个考生的准考证号码是多少?年龄问题:1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的1.5倍,求姐姐今年的年龄。
2、1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4倍.3、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.4、甲、乙两人共63岁,当甲是乙现在年龄一半时,乙当时的年龄是甲现在的岁数,那么甲多少岁,乙多少岁.5、父亲与儿子的年龄和是66岁,父亲的年龄比儿子的年龄的3倍少10岁,那么多少年前父亲的年龄是儿子的5倍.等积问题1、现有一条直径为12厘米的圆柱形铅柱,若要铸造12只直径为12厘米的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式R2,R为球半径)2、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。