选修4-4 圆参数方程与极坐标练习
- 格式:doc
- 大小:151.50 KB
- 文档页数:4
选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干知识的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯通 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换[典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.[解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.[方法技巧]应用伸缩变换公式时的两个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式本节主要包括2个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系. (2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.能力练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x .3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标.解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by知⎩⎨⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干知识的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化点M直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0)考点贯通 抓高考命题的“形”与“神”极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤 第一步判断极坐标的极点与直角坐标系的原点是否重合,且极轴与x 轴正半轴是否重合,若上述两个都重合,则极坐标方程与直角坐标方程可以互化第二步通过极坐标方程的两边同乘ρ或同时平方构造ρcos θ,ρsin θ,ρ2的形式,一定要注意变形过程中方程要保持同解,不要出现增解或漏解第三步根据极坐标方程与直角坐标方程的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ及ρ2=x 2+y 2将极坐标方程转化为直角坐标方程2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简单,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,根据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ; 第二步,根据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.[例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. [方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴.(3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈[0,2π))的值.极坐标方程的应用[例2] (2017·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. [解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0, 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)因为M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sin φ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.[易错提醒]用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.能力练通 抓应用体验的“得”与“失”1.[考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0.由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.[考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcosθ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.[考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.[考点一、二](2017·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. [全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2015·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.[课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡 1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离.解:因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2017·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2017·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2,所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22.又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M 的轨迹的参数方程为⎩⎨⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的普通方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值.解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ.∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 第二节 参数方程突破点(一) 参数方程基础联通 抓主干知识的“源”与“流”1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点贯通 抓高考命题的“形”与“神”参数方程与普通方程的互化1.参数方程化为普通方程本节主要包括2个知识点:1.参数方程;2.参数方程与极坐标方程的综合问题.基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.普通方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;第二步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入普通方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.[例1] 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). [解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t ,∴x ≠0.当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧ 0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3). [易错提醒](1)将曲线的参数方程化为普通方程时务必要注意x ,y 的取值范围,保证消参前后的方程的一致性.(2)将参数方程化为普通方程时,要注意参数的取值范围对普通方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1.解决直线与圆锥曲线的参数方程的应用问题,其一般思路如下: 第一步,把直线和圆锥曲线的参数方程都化为普通方程; 第二步,根据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.[例2] (2017·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧ x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. [解] (1)将曲线C 的参数方程化为普通方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313. (2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0,因为|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.[方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.能力练通 抓应用体验的“得”与“失”1.[考点一]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k 1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,因为y =6k 21+k 2=6-11+k 2,所以0<y <6, 所以所求的普通方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].2.[考点二](2017·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y-3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.3.[考点二](2017·郑州模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.[考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数).(1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成普通方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0,即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、普通方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要注意:(1)解题时,易将直线与圆的极坐标方程混淆.要熟练掌握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要注意选取直角坐标系还是极坐标系,建立极坐标系要注意极点、极轴位置的选择,注意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的知识,列出等量关系式,特别是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和普通方程表示同一个曲线时,要注意其中x ,y 的取值范围,即注意两者的等价性.考点贯通 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题[典例] (2017·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)判断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.[解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其普通方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 因为圆心(-1,0)到直线l 的距离d =11+k 2≤1, 所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2= 1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. [方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.能力练通 抓应用体验的“得”与“失”1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的普通方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎨⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的普通方程为4x -3y +5=0.(2)因为直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a -5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2015·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4. 4.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32. 6.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. [课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2017·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值. 解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2017·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的普通方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=。
一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.热点一极坐标方程及其应用[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π) (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.热点二 参数方程及其应用[例2] (2014·福建高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.2.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.[例3] (2014·辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2 θ=8cos θ.热点三 极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,即为所求.热点二 参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64.热点三 极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x . (2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同。
直线的极坐标方程为:,点,参数.(I )求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.1、【详解】(1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++= (2)因为圆心(1,2)--到直线10x y +-=距离为222=, 所以点M 到直线l 距离的最大值为2222 1.r +=+ 2、解:(Ⅰ)设,则,且参数,消参得:所以点的轨迹方程为(Ⅱ)因为所以所以,所以直线的直角坐标方程为法一:由(Ⅰ)点的轨迹方程为圆心为(0,2),半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.6.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲线的参数方程为(,t 为参数).(1)求曲线的普通方程和曲线的极坐标方程;(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】 (1)对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为。
考点突破练22 坐标系与参数方程(选修4—4)1.(2020·全国Ⅱ·理22)已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.2.(2022·陕西榆林三模)在直角坐标系xOy 中,曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ+ρsin θ-12=0. (1)求C 的普通方程与直线l 的直角坐标方程.(2)若P 为C 上任意一点,A 为l 上任意一点,求|PA|的最小值.3.(2022·安徽怀南一模)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2,y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos α-sin α=4ρ. (1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.4.(2022·陕西榆林二模)在数学中,有许多方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,图中的曲线就是笛卡尔心型曲线,其极坐标方程为ρ=1-sin θ(0≤θ<2π,ρ≥0),M 为该曲线上一动点. (1)当|OM|=12时,求M 的直角坐标;(2)若射线OM 逆时针旋转π2后与该曲线交于点N ,求△OMN 面积的最大值.5.(2022·安徽合肥二模)在直角坐标系xOy 中,直线l 的参数方程为{x =1+√2t ,y =1-√2t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=acos2θ(a>0,ρ∈R ). (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线θ=π4(ρ∈R )与直线l 交于点M ,直线θ=π6(ρ∈R )与曲线C 交于点A ,B ,且AM ⊥BM ,求实数a 的值.6.(2022·安徽马鞍山一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2sinα,y =2cosα+1(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的直角坐标方程为x+√3y-2√3=0. (1)写出曲线C 的普通方程和直线l 的极坐标方程;(2)若直线θ=π6(ρ∈R )与曲线C 交于A ,B 两点,与直线l 交于点M ,求|MA|·|MB|的值.7.(2022·河南郑州二模)在直角坐标系xOy 中,曲线C 1的参数方程为{x =1+cosα,y =sinα(α为参数).已知M是曲线C 1上的动点,将OM 绕点O 逆时针旋转90°得到ON ,设点N 的轨迹为曲线C 2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1,C 2的极坐标方程;(2)设点Q (1,0),若射线l :θ=π3与曲线C 1,C 2分别相交于异于极点O 的A ,B 两点,求△ABQ 的面积.8.(2022·山西太原一模)在平面直角坐标系中,直线l 的参数方程为{x =-2+35t ,y =2+45t (t 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρsin θ-3=0,点P 的极坐标为2√2,3π4.(1)求点P 的直角坐标和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,求点P 到线段AB 的中点M 的距离.考点突破练22 坐标系与参数方程(选修4—4)1.解 (1)C 1的普通方程为x+y=4(0≤x ≤4). 由C 2的参数方程得x 2=t 2+1t2+2,y 2=t 2+1t2-2, 所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4. (2)由{x +y =4,x 2-y 2=4得 {x =52,y =32,所以P 的直角坐标为(52,32). 设所求圆的圆心的直角坐标为(x 0,0),由题意得x 02=(x 0-52)2+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.2.解 (1)因为曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数),所以C 的普通方程为x 216+y 29=1.又因为直线l 的极坐标方程为ρcos θ+ρsin θ-12=0,所以直线l 的直角坐标方程为x+y-12=0. (2)设P (4cos θ,3sin θ),|PA|的最小值即点P 到直线l 的距离的最小值,由√2=√2≥7√22,其中tan φ=43.当且仅当θ+φ=π2+2k π,k ∈Z 时取等号,故|PA|的最小值为7√22. 3.解 (1)由{x =t 2,y =2t (t 为参数),得{x =t 2,y 2=t (t 为参数),消去参数t ,得y 2=4x ,即曲线C 的普通方程为y 2=4x.(2)由2cos α-sin α=4ρ,得2x-y=4, 联立{y 2=4x ,2x -y =4得A (1,-2),B (4,4),所以AB 的中点坐标为52,1,|AB|=√45=3√5,故以AB 为直径的圆的极坐标方程为(x -52)2+(y-1)2=454,即x 2+y 2-5x-2y-4=0,将{x =ρcosθ,y =ρsinθ代入,得ρ2-5ρcos θ-2ρsin θ-4=0.4.解 (1)令ρ=12,可得sin θ=12,所以θ=π6或θ=5π6,M 的直角坐标为±√34,14.(2)△OMN 的面积S=12ρ1ρ2=12(1-sin θ)1-sin θ+π2=12(1-sin θ)(1-cos θ)=12[1-(sin θ+cos θ)+sinθcos θ],令t=sin θ+cos θ=√2sin θ+π4∈[-√2,√2], S=121-t+t 2-12=14(t-1)2,当t=-√2时,S 取得最大值3+2√24. 5.解 (1)由{x =1+√2t ,y =1-√2t(t 为参数)得x+y=2,∴直线l 的极坐标方程为ρcos θ+ρsin θ=2.由ρ2=acos2θ,得ρ2cos 2θ=a ,∴ρ2(cos 2θ-sin 2θ)=a ,ρ2cos 2θ-ρ2sin 2θ=a , ∴x 2-y 2=a ,∴曲线C 的直角坐标方程为x 2-y 2=a.(2)直线l 的极坐标方程为ρcos θ+ρsin θ=2,将θ=π4代入直线l 的极坐标方程得ρ=√2,∴点M 的极坐标为√2,π4.将θ=π6代入曲线C 的极坐标方程ρ2=acos2θ,得ρ1=√2a ,ρ2=-√2a ,∴|AB|=|ρ1-ρ2|=2√2a . ∵AM ⊥BM ,且O 为线段AB 的中点, ∴|OM|=12|AB|=√2a ,即√2a =√2,得a=1.6.解 (1)由{x =2sinα,y -1=2cosα(α为参数),得曲线C 的普通方程为x 2+(y -1)2=4.由x+√3y-2√3=0,得直线l 的极坐标方程为ρcos θ+√3ρsin θ-2√3=0,即ρsin θ+π6=√3.(2)(方法1)曲线C :x 2+(y-1)2=4的极坐标方程为ρ2-2ρsin θ-3=0,将θ=π6代入曲线C 的极坐标方程,得ρ2-ρ-3=0,∴ρ1+ρ2=1,ρ1·ρ2=-3. 将θ=π6代入直线l 的极坐标方程,得ρ=2.|MA|·|MB|=|ρ-ρ1|·|ρ-ρ2|=|(2-ρ1)·(2-ρ2)|=|4-2(ρ1+ρ2)+ρ1·ρ2|=1.(方法2)直线θ=π6的普通方程为y=√33x ,与直线l :x+√3y-2√3=0的交点为M (√3,1),直线θ=π6的参数方程为{x =√3+√32t ,y =1+12t(t 为参数),代入曲线C :x 2+(y-1)2=4,得t 2+3t-1=0,则|MA|·|MB|=|t 1·t 2|=1.7.解 (1)C 1的普通方程为(x-1)2+y 2=1,则x 2+y 2-2x=0,由ρ2=x 2+y 2,x=ρcos θ,得ρ2=2ρcos θ,故C 1的极坐标方程为ρ=2cos θ.设N (ρ,θ),则M ρ,θ-π2,将M ρ,θ-π2代入ρ=2cos θ,得ρ=2cos θ-π2=2sin θ,即C 2的极坐标方程为ρ=2sin θ.(2)将θ=π3分别代入曲线C 1,C 2的极坐标方程,得|OA|=ρA =2cos π3=1,|OB|=ρB =2sin π3=√3, 所以|AB|=||OB|-|OA||=√3-1. 又Q 到射线l 的距离d=|OQ|sin π3=√32,故△ABQ 的面积为S=12×(√3-1)×√32=3-√34. 8.解 (1)点P 的极坐标为2√2,3π4,由{x =ρcosθ,y =ρsinθ可得点P 的直角坐标为(-2,2),曲线C :ρ2cos2θ+4ρsin θ-3=0,即ρ2cos 2θ-ρ2sin 2θ+4ρsin θ-3=0, 于是得曲线C 的直角坐标方程为x 2-y 2+4y-3=0. (2)显然点P (-2,2)在直线l 上,将直线l 的参数方程{x =-2+35t ,y =2+45t代入方程x 2-y 2+4y-3=0,得-2+35t 2-2+45t 2+42+45t -3=0,整理得725t 2+125t-5=0,。
统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的正半轴重合,且长度单位相同。
直线l 的极坐标方程为:ρ=√2sin(θ−π4),点P(2cosα,2sinα+2),参数α∈[0,2π].(I )求点P 轨迹的直角坐标方程; (Ⅱ)求点P 到直线l 距离的最大值.1、【详解】 (1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=(2)因为圆心(1,2)--到直线10x y +-==所以点M 到直线l 距离的最大值为 1.r =2、解:(Ⅰ)设P(x,y),则{x =2cosαy =2sinα+2,且参数α∈[0,2π],消参得:x 2+(y −2)2=4所以点P 的轨迹方程为x 2+(y −2)2=4 (Ⅱ)因为ρ=√2sin(θ−π4)所以ρ√2sin (θ−π4)=10 所以ρsinθ−ρcosθ=10,所以直线l 的直角坐标方程为x −y +10=0 法一:由(Ⅰ)点P 的轨迹方程为x 2+(y −2)2=4 圆心为(0,2),半径为2. d =√12+12=4√2,P 点到直线l 距离的最大值等于圆心到直线l 距离与圆的半径之和, 所以P 点到直线l 距离的最大值4√2+2. 法二:d =√12+12=√2|cosα−sinα+4|=√2|√2cos (α+π4)+4|当a =74π时,d max =4√2+2,即点P 到直线l 距离的最大值为4√2+2.6.33.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{x =cosθy =√3sinθ(θ为参数),曲线C 2的参数方程为{x =4−√22ty =4+√22t (t ∈R ,t 为参数). (1)求曲线C 1的普通方程和曲线C 2的极坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】(1)对曲线C 1:cos 2θ=x 2,sin 2θ=y 23,∴曲线C 1的普通方程为x 2+y 23=1.对曲线C 2消去参数t 可得t =(4−x)×√2,且t =(y −4)×√2, ∴曲线C 2的直角坐标方程为x +y −8=0.又∵x =ρcosθ,y =ρsinθ,∴ρcosθ+ρsinθ−8=√2ρsin (θ+π4)−8=0 从而曲线C 2的极坐标方程为ρ=4√2sin(θ+π4)。
极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。
直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。
教学辅导教案学生姓名年级高二学科数学上课时间教师姓名课题极坐标与参数方程综合复习1.已知a∈R,函数f (x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f (x)的单调递增区间;(2)是否存在a使函数f (x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由.解:(1)当a=2时,f (x)=(-x2+2x)e x,∴f ′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f ′(x)>0,即(-x2+2)e x>0,∵e x>0,∴-x2+2>0,解得-2<x<2.∴函数f (x)的单调递增区间是(-2,2).(2)若函数f (x)在R上单调递减,则f ′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f (x)在R上单调递减.2.已知函数f (x)=x3+ax2+bx+5,记f (x)的导数为f ′(x).(1)若曲线f (x)在点(1,f (1))处的切线斜率为3,且x=23时,y=f (x)有极值,求函数f (x)的解析式;(2)在(1)的条件下,求函数f (x)在[-4,1]上的最大值和最小值.解:(1)f ′(x)=3x2+2ax+b.依题意f ′(1)=3,)32(f'=0,得⎪⎩⎪⎨⎧=++⋅=++34)32(33232baba,解之得⎩⎨⎧-==42ba.所以f (x)=x3+2x2-4x+5.(2)由(1)知,f ′(x)=3x2+4x-4=(x+2)(3x-2).令f ′(x)=0,得x1=-2,x2=23.当x变化时,f (x),f ′(x)的变化情况如下表:x -4(-4,-2)-2(-2,23)23)1,32( 1第1 页共24 页单调递减区间为),1(+∞-a.(3)由已知,转化为f (x)max<g(x)max.g(x)max=2,由(2)知,当a≥0时,f (x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f (e3)=a e3+3>2,故不符合题意.)当a<0时,f (x)在)1,0(a-上单调递增,在),1(+∞-a上单调递减,故f (x)的极大值即为最大值,f )1(a-=-1+ln)1(a-=-1-ln(-a),所以2>-1-ln(-a),解得a<-1e3.综上,a的取值范围是a<-1e3.1.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴建立极坐标系,由曲线21:C y x=上的点(,)x y按坐标变换''122x xy y⎧=-⎪⎨⎪=⎩得到曲线2C.(1)求曲线2C的极坐标方程;(2)若射线(0)3πθρ=>和θπ=与曲线2C的交点分别为点,A B,求||AB.解:(1)''122x xy y⎧=-⎪⎨⎪=⎩,即''1222x xy y⎧=+⎪⎪⎨⎪=⎪⎩,代入21:C y x=-,得'2'21y x=+,即曲线2C的方程为221y x=+.由cos,sinx yρθρθ==,所以2C的极坐标方程为22sin2cos1ρθρθ=+,即11cosρθ=-.(未化简,保留上式也可)(2)将(0)3πθρ=>代入11cosρθ=-,得2ρ=,即||2OA=,(2,)3Aπ,θπ=代入11cosρθ=-,得12ρ=,即1||2OB=,1(,)2Bπ.所以2121||22cos()432ABππ=+--=.2.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;(Ⅱ)设点Q和点G的极坐标分别为()32,,2,2ππ⎛⎫⎪⎝⎭,若直线l经过点Q,且与曲线C相交于,A B两点,求GAB∆的面积.【解析】(Ⅰ)曲线C化为:22sin8cos0ρθρθ-=,再化为直角坐标方程为28y x=,直线l 的参数方程为2cos,sin,x ty tαα=+⎧⎨=⎩(t为参数).(Ⅱ)由(Ⅰ)将点32,2Qπ⎛⎫⎪⎝⎭的极坐标化为直角坐标得()0,2-,易知直线l的倾斜角4πα=,所以直线l的参数方程为22,22,2x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),将l的参数方程代入曲线C的直角坐标方程,得2228222t t⎛⎫⎛⎫=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭,整理得:()2282320,824322560t t--=∆=+⨯=>,设12,t t为方程282320t t--=的两个根,则121282,32t t t t+=⋅=-,所以()2121212425616AB t t t t t t=-=+-⋅==.由极坐标与直角坐标互化公式得G点的直角坐标()2,0-,易求点G到直线l的距离为2sin454222d PG=⋅︒=⨯=,所以11162216222GABS d AB∆=⨯⨯=⨯⨯=.【学科问题】1.能够根据圆的参数方程解决最值问题.2.能够利用参数方程化为普通方程解决有关问题.3.直线参数方程的综合应用.4.参数方程的应用.【学生问题】1.学习风格2.先行知识分析:(1)理解曲线参数方程的有关概念(2)了解参数方程化为普通方程的意义(3)掌握参数方程化为普通方程的基本方法学习目标:(1)极坐标与直角坐标的互化;(2)常见曲线的参数方程的一般形式;(3)直线参数方程中参数的几何意义.目标分解:1.理解曲线参数方程的有关概念.2.了解参数方程化为普通方程的意义.3.极坐标与直角坐标的互化.4.直线参数方程中参数的几何意义.5.能够利用参数方程化为普通方程解决有关问题.考点1 极坐标1.极坐标系与极坐标(1)极坐标系:如图所示,在平面上取一个定点O叫做极点;自点O引一条射线Ox叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图).(2)极坐标:设M是平面上的任一点,极点O与点M的距离OM叫做点M的极径,记为ρ;∠叫做点M的极角,记为θ.有序数对(),ρθ称为以极轴Ox为始边,射线OM为终边的xOMMρθ.点M的极坐标,记作(),ρ≥,θ可取任意实数.一般地,不做特殊说明时,我们认为0双曲线22221(0,0)x ya ba b-=>>的参数方程为sectanx ay bϕϕ=⎧⎨=⎩(ϕ为参数).抛物线pxy22=的参数方程为222x pty pt⎧=⎨=⎩(t为参数).3.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y中的一个与参数t的关系,例如()x f t=,把它代入普通方程,求出另一个变数与参数的关系()y g t=,那么,()()x f ty g t=⎧⎪⎨=⎪⎩就是曲线的参数方程.1.在极坐标系中,已知曲线:cos()14Cπρθ+=,过极点O作射线与曲线C交于点Q,在射线OQ上取一点P,使2OP OQ⋅=.(1)求点P的轨迹1C的极坐标方程;(2)以极点O为直角坐标系的原点,极轴为x轴的正半轴,建立直角坐标系xOy,若直线:3l y x=-与(1)中的曲线1C相交于点E(异于点O),与曲线21222:22x tCy t⎧=-⎪⎪⎨⎪=⎪⎩(t为参数)相交于点F,求EF的值.解:(1)设(,)Pρθ,(,)Qρθ',则=2ρρ',又cos()14πρθ'+=,2ρρ'=,∴2cos()14πθρ+=∴2cos()cos sin4πρθθθ=+=-为所求1C的极坐标方程.(2)2C的极坐标方程1(cos sin)2ρθθ+=,把23πθ=代入2C得131=+22ρ,把3πθ=-代入1C 得231=+22ρ,∴1231EF ρρ=+=+. 2.在极坐标系中,已知三点()0,0,2,,22,24O A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (1)求经过,,O A B 的圆1C 的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角 坐标系,圆2C 的参数方程为1cos 1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数),若圆1C 与圆2C 外切,求实数a 的值. 解:(1)()0,0,2,,22,24O A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭对应的直角坐标分别为()()()0,0,0,2,2,2O A B ,则过,,O A B 的圆的普通方程为22220x y x y +--=,又因为cos sin x y ρθρθ=⎧⎨=⎩,代入可求得经过,,O A B 的圆1C 的极坐标方程为22cos 4πρθ⎛⎫=- ⎪⎝⎭.(2)圆21cos :1sin x a C y a θθ=-+⎧⎨=-+⎩(θ是参数)对应的普通方程为()()22211x y a +++=,因为圆1C 与圆2C 外切,所以222a +=,解得2a =±.3.在直角坐标系中,直线2cos ,:1sin x t a l y t a=+⎧⎨=+⎩(t 为参数,0a π≤<),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线:4cos C ρθ=. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)已知点(2,1)P ,若直线l 与曲线C 交于,A B 两点,且2AP PB =u u u r u u u r,求tan a .解:(Ⅰ):4cos C ρθ=,得到2:4cos C ρρθ=,因为cos ,sin ,x y ρθρθ=⎧⎨=⎩则曲线C 的直角坐标方程为2240x y x +-=.(Ⅱ)将2cos ,:1sin ,x t a l y t a =+⎧⎨=+⎩代入2240x y x +-=,得到22sin 30t t a +-=.12122sin ,3,t t a t t +=-⎧⎨=-⎩g又因为2AP PB =u u u r u u u r ,则122t t =-,所以1212122sin ,3,2,t t a t t t t +=-⎧⎪=-⎨⎪=-⎩g 解得:6sin 4a =,10cos 4a =或10cos 4a =-,则15tan 5a =或15tan 5a =-. 4.已知在平面直角坐标系xOy 中,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+==242222t y t x (t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程)4cos(2πθρ+=. (Ⅰ)判断直线l 与曲线C 的位置关系;(Ⅱ)设M 为曲线C 上任意一点,求y x +的取值范围.解:(Ⅰ)直线l 的普通方程为420x y -+=,曲线C 的直角坐标系下的方程为2222()()122x y -++=,圆心22(,)22-到直线420x y -+=的距离为52512d ==>,所以直线l 与曲线C 的位置关系为相离.(Ⅱ)设22(cos ,sin )22M θθ+-+,则cos sin 2sin()[2,2]4x y πθθθ+=+=+∈-.5.已知曲线C 的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线L 的参数方程是3212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程;(2)设点P (m ,0),若直线L 与曲线C 交于A ,B 两点,且|P A |•|PB |=1,求实数m 的值. 解:(1)曲线C 的极坐标方程是2cos ρθ=,化为22cos ρρθ=,可得直角坐标方程:sin()224πρθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程; (2)设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值.解:(1)曲线C 的普通方程为2213x y +=,直线l 的直角坐标方程为40x y +-=. (2) 设点P 坐标为(3cos ,sin )θθ,点P 到直线l 的距离|3cos sin 4|222sin()32d θθπθ+-==-+所以点P 到直线l 距离的最大值为32.8.在平面直角坐标系x y O 中,3+2cos ,12sin )A αα+点的直角坐标为((α为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标中,直线l 的极坐标方程为2cos()6m πρθ+=.m (为实数). (1)试求出动点A 的轨迹方程(用普通方程表示);(2)设A 点对应的轨迹为曲线C ,若曲线C 上存在四个点到直线l 的距离为1,求实数m 的取值范围.解:(1)由32cos 12sin x y αα⎧=+⎪⎨=+⎪⎩(α为参数)消去参数得:22(3)(1)4x y -+-=.故动点A的普通方程为22(3)(1)4x y -+-=.(2)由(1)知,动点A 的轨迹是以(3,1)为圆心,2为半径的圆.由2cos()6mπρθ+=展开得:3cos sin 0m ρθρθ--=,∴l 的普通方程为:30x y m --=,要使圆上有四个点到l 的距离为1,则必须满足212m-<,解得(0,4)m ∈.1.在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.3.己知曲线C 的极坐标方程是ρ= 4cosθ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是(t 是参数).(I )将曲线C 的极坐标方程化为直角坐标方程;(II )若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,求直线的倾斜角a 的值. 解:(I )由=4cos ρθ得:22(2)4x y -+=.(II )将1cos sin x t y t αα=+⎧⎨=⎩代入圆的方程并整理得22cos 30t t α--=.设A 、B 两点对应的参数分别为1t 、2t ,则12122cos 3t t t t α+=⎧⎨=-⎩∴22121212()44cos 1214AB t t t t t t α=-=+-=+=,∴24cos 2α=,故2cos 2α=±,即4πα=或34πα=. 4.已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求l 的极坐标方程;(2)过点13(,)44M -任作一直线交曲线C 于,A B 两点,求||AB 的最小值.解:(1)sin 24πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 24πρθ⎛⎫+= ⎪⎝⎭.(2)曲线C 的方程222x y +=可知曲线C 为圆心在原点半径为2的圆.设圆心()0,0到直线AB 的距离为d ,则可得2222AB d ⎛⎫+= ⎪⎝⎭,222AB d ∴=-.由分析可知12d OM ≤=,2min12272AB ⎛⎫∴=-= ⎪⎝⎭.归纳总结1.在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法,但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意,x y 的取值范围在消参前后应该是一致的,也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.2.直线的参数方程及应用根据直线的参数方程的标准式中t的几何意义,有如下常用结论:(1)直线与圆锥曲线相交,交点对应的参数分别为12,t t,则弦长12l t t=-;(2)定点M是弦12M M的中点⇒12t t+=;(3)设弦12M M中点为M,则点M对应的参数值122Mt tt+=(由此可求12M M及中点坐标).3.圆与圆锥曲线的参数方程及应用解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.4.化参数方程为普通方程的方法: 化参数方程为普通方程的基本思路是消去参数,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④恒等式(三角的或代数的)消元法.参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围,这一点最易忽视.5.利用直线参数方程中参数的几何意义求解问题的方法经过点()000,P x y,倾斜角为α的直线l的参数方程为0cossinx x ty y tαα=+⎧⎨=+⎩(t为参数).若,A B 为直线l上两点,其对应的参数分别为12,t t,线段AB的中点为M,点M所对应的参数为0t,则以下结论在解题中经常用到:(1) 1202t tt+=;(2) 1202t tPM t+==;(3)21AB t t=-;(4)12PA PB t t⋅=⋅.1.已知曲线221:149x yC+=,直线l:2,22,x ty t=+⎧⎨=-⎩(t为参数).(I)写出曲线C的参数方程,直线l的普通方程;(II)过曲线C上任意一点P作与l夹角为30︒的直线,交l于点A,PA的最大值与最小值.(2)若把曲线1C上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C,设点P是曲线2C上的一个动点,求它到直线λ的距离的最小值.解:(1)λ的普通方程为1),1(3Cxy-=的普通方程为.122=+yx联立方程组⎪⎩⎪⎨⎧=+-=,1),1(322yxxy解得λ与1C的交点为)0,1(A,)23,21(-B,则1||=AB.(2)2C的参数方程为θθθ(.sin23,cos21⎪⎪⎩⎪⎪⎨⎧==yx为参数).故点P的坐标是)sin23,cos21(θθ,从而点P 到直线λ的距离是]2)4sin(2[432|3sin23cos23|+-=--=πθθθd,由此当1)4sin(-=-πθ时,d取得最小值,且最小值为)12(46-.一、(第1天)1.在极坐标系中,直线cos3sin10ρθρθ--=与圆2cosρθ=交于A,B两点,则||AB=______.解:分别将直线方程和圆方程化为直角坐标方程:直线为310x y--=过圆22(1)1x y-+=圆心,因此2AB=,故填:2.2.在直角坐标系xOy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为θα=,其中α满足tanα=2,若曲线C1与C2的公共点都在C3上,求a.解:cos1sinx a ty a t=⎧⎨=+⎩(t均为参数),∴()2221x y a+-=①,∴1C为以()01,为圆心,a为半2ρ=2,|MN |=1ρ-2ρ=2,因为2C 的半径为1,则2C MN V的面积o 121sin 452⨯⨯⨯=12. 5.将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.【解析】(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y +=得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩== (t 为参数).(Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩.不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-. 教学反思。
1.圆心为(0,0),半径为r 的圆的参数方程
2、圆心为(a,b),半径为r 的圆的参数方程是什么?
3. 已知圆参数方程: θθ
θ
(sin 2cos 2⎩⎨
⎧==y x ,如果圆上一点P 所对应的参数6πθ=,求P 点坐标
4.已知圆参数方程: θθ
θ
(sin 2cos 2⎩⎨
⎧==y x ,如果圆上两点P 1P 2
所对应的参数65πθ=,3
2π
θ=
,
求弦P 1P 2长
1.
12
2=+y x
2. 4)2()1(22
=-+-y x
3. 2)2(22=++y x
4.化圆的普通方程x 2+y 2-6x +2y +1=0为参数方程
1. θθθ
(sin 2cos 2⎩
⎨
⎧==y x
2.
⎩
⎨⎧+=-=2sin 21
cos 2θθy x
3.⎩⎨⎧=+-=θ
θsin 8cos 81y x 4. θθθ
(sin 32cos 31⎩
⎨⎧-=+-=y x
5.)(sin 1cos θθθ
⎩⎨⎧+==y x
6. ⎩
⎨⎧+=-=ααsin 235
cos 2y x
1、参数方程⎩⎨
⎧==θ
θsin 3cos 3y x (-
2
2
πθπ≤
≤)表示的图形是以原点为圆心,半径为3的 ( )
A .左半圆 B.上半圆
C. 下半圆
D.右半圆
2、点(1,2)在圆⎩⎨⎧=+-=θ
θ
sin 8cos 81y x 的
A.内部
B.外部
C.圆上
D.与θ值有关
3、已知圆的参数方程是5cos 5sin x y θ
θ
=⎧⎨
=⎩圆心坐标为________ ,半径为_______,圆的标准方程为__________
4、求圆 θθ
θ
(sin 32cos 31⎩⎨⎧-=+-=y x 与圆(x+6)2+y 2=8的圆心之间的距离.
1、圆⎩⎨⎧--=-=θ
θsin 1cos 2y x 的圆心坐标是( )半径为 ______.
2、已知曲线c 1:⎩
⎨⎧+=+=t y t
x sin 3cos 4(t 为参数),则圆心为 ______,半径为 ______.
3、圆⎪⎩⎪⎨⎧--=-=1
sin 3cos 3αα
y x 的圆心坐标是______.半径为 ______.
4、已知曲线C 的参数方程为⎩⎨⎧+=+=θ
θ
sin 1cos 1y x (θ为参数),则曲线C 的普通方程是 ______;
1、参数方程⎩⎨
⎧-=-=θ
θsin 1cos y x 化成普通方程为_______.
2、把圆的参数方程⎩⎨
⎧--=+-=1
sin cos 1t y t
x 化成普通方程是______.
3、将参数方程⎩⎨
⎧=+=θ
θ
sin 2cos 21y x (θ为参数)化成普通方程为 ______.
1、若直线l :y=kx 与曲线C :⎩⎨⎧=+=θ
θ
sin cos 2y x 有唯一的公共点,则实数k=______.
2、若直线x+y-a=0与圆⎩⎨⎧+=+=θ
θsin 1cos 1y x (θ为参数)没有公共点,则a 的取值范围是_____.
3、曲线C :⎩⎨⎧+==θ
θ
sin 1cos 1y x 的普通方程是______,如果曲线C 与直线x+y+a=0有公共点,那么实数a 的取值范围是______
4、直线3x+4y-7=0截曲线⎩⎨
⎧+==θ
θ
sin 1cos y x (α为参数)的弦长为______.
5、直线x+2y=0被曲线C :⎩⎨
⎧+=+=θ
θsin 51cos 53y x (θ为参数)所截得的弦长等于______..
6、设曲线C 的参数方程为⎩⎨⎧+=+=θ
θ
sin 31cos 32y x (θ为参数),直线l 的方程为4x-3y+4=0,则
7、在直角坐标系中,圆C 的参数方程为⎩⎨⎧+==θ
θ
sin 22cos y x (θ为参数),则坐标原点到该圆的圆心的距离为______.
8、圆C :⎩⎨⎧=+=θ
θsin cos 1y x (θ为参数)的圆心坐标是______;若直线ax+y+1=0与圆C 相切,则a 的值为______
9.已知圆⎩⎨
⎧-=-=2sin 3cos 32θθy x ,直线a y x 222=+相切,求a.
10、已知圆C 参数方程为⎩⎨⎧=+=θ
θ
sin cos 1y x (θ为参数),则点P (4,4)与圆C 上的点的最远距离是
11、已知曲线C 的参数方程为⎩⎨
⎧=+=θ
θsin cos 1y x (θ为参数),则曲线C 上的点到直线x-y+1=0的距离的最大值为______.
12、已知实数x 、y 满足⎩⎨
⎧=+=θ
θsin cos 1y x (θ为参数,0≤θ≤π),,则
3
-x y
的取值范围是( )
1.已知圆422=+y x ,点M (x,y )在圆上,①求xy,x+y 范围②若x+y+m ≥0恒成立,求m 范围
2. 已知圆的参数方程:⎩⎨⎧=+-=θ
θsin 3cos 31y x ,M 为其上任意一点,则x+y 范围。
3、已知圆x 2+y 2-2y=0上任一点p (x ,y ) (1)求2x+y 的取值范围
(2)若x+y≥c 恒成立,求实数c 的最小值.
4、设实数x 、y 满足x 2+(y-1)2=1,若x+y+c >0恒成立,求实数c 的取值范围.
5、若实数对(x ,y )满足x 2+y 2=4,则xy 的最大值为______.
1、在直角坐标系下,曲线C 的参数方程为:⎩⎨⎧=+=θ
θ
sin cos 1y x 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系下,曲
线C 的极坐标方程为___________
2、曲线⎩⎨
⎧+==θ
θ
sin 1cos y x (α为参数)与曲线ρ2-2ρcosθ=0的直角坐标方程分别为______与______,两条曲线的交点个数
为______个.
3、已知圆C 的参数方程为⎩⎨
⎧+==1
sin cos αα
y x (a 为参数)以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐
标方程为ρsinθ=1,则直线l 与圆C 的交点的直角坐标系为____.
4、以直角坐标系的原点为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线ι的极坐标方程为ρsin(θ-3
π)=6,圆C 的参数方程为⎩⎨
⎧==θ
θsin 10cos 10y x (θ为参数),求直线ι被圆C 截得的弦长.
5、 已知圆C :⎪⎩⎪⎨
⎧+=+=θ
θsin 21cos 21y x ,与直线
2
2cos sin +=+θρθρ交于MN ,求|MN|
6、已知直线的极坐标方程为ρsin(θ+
4
π)=
2
2,圆M 的参数方程为⎩
⎨
⎧+==2sin 2cos 2θθ
y x (其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M 上的点到直线的距离的最小值.
7、以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位,圆O 1的方程为ρ=4cosθ,圆O 2的参数方程为⎩⎨⎧+==2
sin 2cos 2θθ
y x ,求两圆的公共弦的长度.
8、已知⊙C 的参数方程为⎩⎨
⎧=+=θ
θ
sin 6cos 62y x ,(θ为参数),p 是⊙C 与y 轴正半轴的交点,以圆心C 为极点,x 轴正半
轴为极轴建立极坐标系.(Ⅰ)求⊙C 的普通方程.(Ⅱ)求过点P 的⊙C 的切线的极坐标方程.
9、已知曲线C 的参数方程为⎩⎨
⎧==θ
θsin 2cos 2y x (θ为参数),直线l 的极坐标方程为ρsinθ-2ρcosθ+7=0,设点A 为曲线C 上
任意一点,点B 为直线l 上任意一点,则A ,B 两点间的距离的最大值是______.
10.曲线C 的参数方程⎩
⎨
⎧==θθ
sin 3cos 3y x ,直线L 的极坐标方程4cos sin =+θρθρ,在曲线C 上任取一点P ,
使P 到L 的距离最小,求最小距离。
11、以直角坐标系的原点为极点,x 轴的正半轴为极轴.并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为
4
πθ=
(ρ∈R ),它与曲线⎩⎨
⎧+=+=θ
θ
sin 22cos 21y x (为参数)相交于两点A 和B ,则|AB|=________.
12、已知某圆的极坐标方程为ρ2-4ρcos (θ-
4
π)+6=0.
(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(2)若点P (x ,y )在该圆上,求x+y 的最大值和最小值.。