《追赶小明》教案
- 格式:doc
- 大小:85.55 KB
- 文档页数:5
§5.6应用一元一次方程——追赶小明一、教学目标知识与技能1.通过“线段图”分析题目中的数量关系,找出等量关系.2.进一步培养分析问题、解决问题的能力.3.学习如何用一元一次方程解决复杂的实际问题.过程与方法借助“线段图”分析问题中的数量关系,从而解决“追赶”问题,并进一步通过例题学习用“线段图”分析问题的方法和意义.情感态度价值观1.体会如何用简单的数学知识解决复杂的数学问题.2.认识简单的图形在帮助分析问题和解决问题中所起到的重要作用.二、教学重难点【重点】1.学习如何将实际问题用简单的图形表示出来,并通过图形分析问题中的数量关系.2.根据图形中等量关系列出方程进行求解.【难点】1.能准确地用“线段图”表示题目中的量,并在问题与图形中建立准确有效的对应关系.2.理解求解“追赶”问题的一般方法.三、教学准备【教师准备】多媒体课件.【学生准备】预习教材.教学过程一、新课导入问题1在上面两张图片中,蕴含着什么数学问题?这三个量之间有怎样的关系呢?问题2完成下面的问题:(1)若小明每分钟跑200 m,那么他5分钟能跑m.(2)小明用4 min绕学校操场跑了两圈(每圈400 m),那么他的速度为m/min.(3)已知小明家距离学校1000 m,他以250 m/min的速度骑车到达学校需要min.二、知识构建探究活动1追及问题小明每天早上要在7:50之前赶到距家1000 m的学校上学.一天,小明以80 m/min的速度出发,5 min后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180 m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?思路一(1)当爸爸追上小明时,两人所行路程,等量关系为:.(2)你能用线段图表示出等量关系吗?(3)如果设爸爸追上小明用了x分钟,你能用代数式在线段图上表示出各部分吗?思路二结合图形,分析题意可得此题中的等量关系有:小明所用时间=5+.①+=爸爸走过的路程.②设爸爸追上小明用了x min,则小明用的时间为(5+x) min.根据等量关系②,可列出方程:.解得:.因此,爸爸追上小明用了min.探究活动2相遇问题甲、乙两人相距280米,相向而行,甲从A地出发每秒走8米,乙从B地出发每秒走6米,那么甲出发几秒与乙相遇?【师生活动】学生独立思考,正确画出线段图:找出等量关系:甲所用时间=乙所用时间;甲走的路程+乙走的路程=甲、乙两地的距离.【议一议】育红学校七年级学生步行到郊外旅行.七(1)班的学生组成前队,步行速度为4 km/h,七(2)班学生组成后队,速度为6 km/h.前队出发1 h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12 km/h.问题1后队追上前队用了多长时间?问题2联络员第一次追上前队时用了多长时间?问题3后队追上前队时联络员行了多少千米?问题4当后队追上前队时,他们已经行进了多少千米?问题5联络员在前队出发多长时间后第一次追上前队?巩固练习1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒能追上小兵?2.甲骑摩托车,乙骑自行车,同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.[知识拓展]有的问题由于比较复杂,各个量之间的关系不是很容易被理解,这个时候,借助简单的图形,可以使问题中的各种量直观化和明晰化,从而使问题迎刃而解.培养学生利用简单图形分析问题,体会数形结合的数学思想在具体问题中的应用,有助于更好地学习数学的其他方面的知识.【例】甲、乙两站间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.设两车同时开出,同向而行,则快车几小时后追上慢车?三、课堂小结本节课主要是讲解如何利用简单的图形帮助理解和分析比较复杂的问题,并借助“线段图”解决了一类“追赶”问题.四、检测反馈1.一列匀速前进的火车,从它的车头进入600米长的隧道至车尾离开共需30秒,已知在隧道顶部有一盏固定的灯,灯光垂直照射到火车上的时间为5秒,那么这列火车长多少米?2.甲、乙两人从同一地点沿铁轨反向而行,此时,一列火车匀速向甲迎面驶来,列车在甲身旁开过,用了15秒,再在乙身旁开过,用了17秒,已知两人步行速度都为3.6千米/时,这列火车有多长?五、板书设计6应用一元一次方程——追赶小明1.追及问题2.相遇问题议一议六、作业布置一、教材作业【必做题】教材第151页习题5.9的2,3题.【选做题】教材第151页习题5.9的1题.二、课后作业【基础巩固】1.A,B两站间的路程为335 km,一列慢车从A站开往B站,每小时行驶55千米,慢车行驶1小时后另一列快车从B站开往A站,每小时行驶85 km,设快车行驶了x小时与慢车相遇,可列出方程()A.55x+85x=335B.55(x - 1)+85x=335C.55x+85(x - 1)=335D.55(x+1)+85x=3352.小林在铁路旁边行走,速度是6千米/时,一列长300米的火车从他背后驶过来,并从他身旁驶过,驶过小林旁边的时间是20秒,求火车的行驶速度.3.一架飞机在两个城市之间飞行,风速是24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程.4.京津城际铁路开通运营后,高速列车在北京、天津间直达运行时间为半小时,某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计的时间相同,如果这次试车时,由天津返回北京比由北京去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【能力提升】5.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多长时间可以追上学生队伍?【拓展探究】6.A,B两地相距450千米,甲、乙两车分别从A,B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t 的值是多少?教学反思。
应用一元一次方程——追赶小明教案《应用一元一次方程——追赶小明教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标【知识与技能】1.通过“线段题”分析题目中的数量关系,找出等量关系.2.运用一元一次方程解决行程问题.【过程与方法】通过运用一元一次方程解决行程问题,进一步体会方程模型的作用,培养分析问题,解决问题的能力.【情感态度价值观】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【教学难点】借助“线段图”分析复杂问题中的数量关系.课前准备课件教学过程一、情境导入,初步认识在小学我们就学习过运用方程解决行程问题,你还记得路程、速度、时间三个量之间的关系吗?【教学说明】学生通过回忆,掌握行程问题的基本关系式.二、思考探究,获取新知1.追及问题问题1 教材第150页最上方的彩图及图相关的内容问题.【教学说明】学生根据题意画出线段图,借助线段图加以分析,尝试完成.【归纳结论】追及问题中的等量关系:快者行走的路程-慢者行走的路程=追及路程.2.相遇问题问题2 甲、乙两人从相距180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时,经过多少时间两人相遇?【教学说明】学生通过思考、分析,与同伴进行交流,最后展示自己的解答过程.【归纳结论】相遇问题中的等量关系:甲的行程+乙的行程=甲、乙出发点间的路程;若甲、乙同时出发,则甲行的时间=乙行的时间.3.航行问题问题3 一艘轮船在A、B两地之间航行,顺流用3.3h,逆流航行比顺流航行多用30min,轮船在静水中的速度为26km/h,求水流的速度.【教学说明】学生通过思考、分析,与同伴进行交流,尝试完成.【归纳结论】顺水中的航速=静水中的航速+水流速度,逆水中的航速=静水中的航速-水流速度.4.开放探究性问题问题4 育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行速度为4km/h,七(2)班的学生组成后队,速度为6km/h,前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h,根据上面的事实提出问题并尝试去解答.【教学说明】对于问题4,并没有提出问题,需要学生根据已知条件,提出合理的问题,再运用所学知识进行解答.学生可以提出不同的问题,然后与同伴进行交流.三、运用新知,深化理解1.甲的速度是5km/h,乙的速度是6km/h.两人分别从A、B两地同时出发,相向而行,若经过4h相遇,则A、B的距离是_____km;若经过6h还差10km相遇,则A、B的距离是_____km.2.甲、乙两同学从学校到县城,甲每小时走4km,乙每小时走6km,甲先出发1h,结果乙比甲早到1h.则学校与县城间的距离是_____km.3.甲、乙两人都从A地到B地,甲步行每小时走5km,先走了1.5h,乙骑自行车走了50min,两人同时到达B地,乙每小时骑多少千米?4.一船航行于A、B两个码头之间,顺水航行需3h,逆水航行需5h,已知水流速度为4km/h.求两码头之间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决行程问题的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.44 762.243.设乙每小时骑xkm,由题意得:5×(1.5+5/6)=5/6x解得x=14所以乙每小时骑14km.4.设船在静水中的进度为x km/h,由题意得3(x+4)=5(x-4)解得x=16,则3(x+4)=60所以两码头之间的距离为60km.四、师生互动,课堂小结1.师生共同回顾应用一元一次方程解决行程问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.课后作业:1.布置作业:从教材“习题5.9”中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从学生运用一元一次方程解决行程问题,到探究开放性问题,培养学生分析问题,解决问题的能力,激发学生的学习兴趣.应用一元一次方程——追赶小明教案这篇文章共4983字。
第五章一元一次方程6.应用一元一次方程——追赶小明一、教学目标1、知识技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.2、过程与方法:经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.3、情感态度价值观:体会“方程”是解决实际问题的有效模型,并进一步培养学生的文字语言、符号语言、图形语言的转换能力.四、教学重点和难点重点:熟悉追及问题中的路程、时间、速度之间的关系。
从而实现从文字语言到图形语言、从图形语言到符号语言的转化。
难点:借助“线段图”分析复杂问题中的数量关系,从而解决实际问题。
五、教学过程设计本节课设计了六个教学环节:第一环节:情景导入;第二环节:探究新课;第三环节:运用巩固;第四环节:课堂小结;第五环节:当堂检测;第六环节:布置作业.教学流程:环节一、情景导入活动内容:灰太狼追喜羊羊的故事目的:通过喜羊羊与灰太狼的故事揭示生活中蕴含着我们数学的一个常见问题——追及问题,从而引出课题及例题,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣.复习一:如右图,AC=AB+_______;CD=AD─______;AD=______+______+______。
复习二:1.若小明每秒跑4米,那么他5秒能跑___米.2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分.3.已知小明家距离火车站1500米,他以5米/秒的速度骑车到达车站需要_____分钟. 环节二、探究新课1. 相遇问题:例1:爸爸和小明每天早晨坚持跑步,爸爸每秒跑6米,小明每秒跑4米。
如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?解:设x秒后爸爸和小明相遇。
根据题意:4x+6x=10010x=100x=10答:爸爸和小明10秒后相遇活动过程:教师引导学生分析,并演示画线段图的方法。
教学设计教学重点与难点教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.学情分析认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.教学方法教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.教学过程一、情境引入设计说明让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“追赶小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题,便于引起每位同学的兴趣.小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?请让我们一起学习本节,解决这些疑惑.教学说明出示主题故事时,问题1、2、3事先没有直接给出,而是先问学生听到这个故事后想知道什么.绝大部分学生会关注爸爸能不能追上小明、爸爸追上小明用了多长时间、在距离学校多远的地方追上小明等等.根据学生关注点提供质疑的时机,唤起学生“主角”意识,同时提供广阔的思维和探究平台.二、探究学习设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?解:(1)设爸爸追上小明用了x 分钟.根据题意,得80×5+80x =180x .解得x =4.因此,爸爸追上小明用了4分钟.(2)因为180×4=720(米),1 000-720=280(米).所以,追上小明时,距离学校还有280米.教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.三、思维拓展设计说明改变引例情境,学生通过展开讨论,动手画出线段图,在进行图形语言、符号语言与文字语言的相互转化中,理解题中的等量关系,不同的思路就会出现等量关系的不同表现形式,从而列出不同的式子.两个拓展题目有利于培养学生思维的灵活性,凸显“线段图”的直观演示,是建立方程的有利工具.拓展1:如果爸爸要赶在小明进校门之前把书送到,那么小明爸爸的速度最少应为多少?拓展2:若当小明到校后发现忘带英语书,打电话通知爸爸送来.爸爸立即以180米/分钟的速度从家出发,同时小明以100米/分钟的速度从学校返回,两人几分钟后相遇?答案:拓展1:解:如上图,设小明爸爸的速度最少应为x 米/分钟.根据题意,得⎝⎛⎭⎫1 00080-5x =1 000.化简,得7.5x =1 000.x =4003. 因此,小明爸爸的速度最少应为4003米/分钟. 拓展2:解:如上图,设两人x 分钟后相遇.根据题意,得180x +100x =1 000.化简,得280x =1 000.x =257. 因此,两人257分钟后相遇. 教学说明(1)学生了解题意,画出线段图,建议教师让学生板演“线段图”,通过展示不同学生的“线段图”进行比较、分析,取长补短,让学生去体会怎样画“线段图”等量关系表示的更清楚,同时,提示学生体会提出的问题,边解决问题,边在图上标注一些相关的点,为了说明方便,也可借助字母表示点,这样经过再次补充,充实自己的线段图,结合线段图找出等量关系,同时丰富了画“线段图”的体验及画图技巧.(2)拓展2的情境由追击变成了相遇,解决这个问题时,有的同学一下找不着思路.教学时让学生亲身体验相遇过程,同时把这个问题分解成几个小问题,边引导边提问,逐一解决,降低难度,帮助学生理出思路,解决问题.(3)及时引导学生借助“线段图”对追击问题和相遇问题的基本等量关系进行总结.四、总结反思学生们思考总结这节课的收获,从知识与方法两方面去概括.知识方面:1.向学生们进一步指出行程问题中路程、速度、时间之间的关系.2.列方程解应用题设、列、解、答四步骤要齐全.方法方面:1.要借助“线段图”分析,寻找数量关系.2.注意抓住其中不变的量.3.对于复杂的数学问题的分析,借助“线段图”比较容易理解,借助方程更易求解.同时,要养成认真、细致的良好习惯.评价与反思1.教师是教材的主导者和创造者;学生是学习的主体;方法是教学的主线.本节充分利用教材引例资源,让学生运用亲身体验、讨论交流、动手画图、合理表达等手段进行知识探究.在此基础上,改变实际问题情境进行变式思维训练,丰富学生画“线段图”的体验及画图技巧,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.本节采用了启发引导与学生自主探索相结合的方法,让学生自己提出问题后,自己寻求解决问题的途径,使学生真正成为学习的主人,由于学生提出问题的难易有所不同,这里需要教师灵活引导,先解决易解决的问题,先易后难,教师适时点拨学习有困难的学生.学生解答之后可采用生生互评、师生共评的方式,此时学生也能得到成功的喜悦.3.这节课教学效果良好,能让学生感受数学与实际结合的魅力,能感受到列方程解一些实际问题的过程是一个数学化的过程,这个过程中常常需要文字语言、图形语言、符号语言的互译转换.4.本节课的可贵之处还在于在引导学生从身边的现实问题转化为数学模型的过程中,教师始终把自己摆在组织者、引导者、参与者的立场上,要相信学生,给学生提供充分展示自己的机会.学生的能力不可低估.在整节课中,从始至终,所有问题学生基本上可以通过合作交流全部解决,所以教师应注意以培养学生的能力为出发点,避免一言堂.在课堂交流中,采用学生教学生,生生互动的形式更容易调动学生学习的积极性.这节数学课的课堂教学应该说较好地体现了素质教育的真谛.。
应用一元一次方程-追赶小明教学设计
一、教学目标:
1.了解一元一次方程的概念和基本形式。
2.掌握如何根据题目中给出的条件,列出一元一次方程。
3.能够运用所学知识解决实际问题。
二、教学重点难点:
1.如何在实际问题中找到关键信息,确定未知量。
2.如何根据题目中给出的条件,列出一元一次方程。
三、教学过程设计:
1.引入
(1)介绍一元一次方程的概念和基本形式。
(2)给学生举一个例子:小明和小红同时从A地出发,小明的速度为v1,小红的速度为v2,小明比小红早t小时到达B地,求B地与A地的距离d。
(3)让学生思考,该问题中未知量是什么?应该如何列出一元一次方程?
2.操作环节
(1)通过黑板演示和讲解,介绍如何列出一元一次方程。
(2)组织学生进行课堂练习,检验学生的掌握情况。
(3)设计一个小游戏:小明和小红在一个L型迷宫中,小明需要追上小红,求小明最短需要多长时间才能追上小红。
3.巩固练习
(1)提供一些实际问题,让学生自行找出未知量,并列出一元一次方程。
(2)设计小组讨论活动,让学生在小组内交流思路,互相帮助解决问题。
四、教学评价:
1.通过日常练习和考试,检验学生对于一元一次方程的理解和应
用能力。
2.及时反馈学生的表现和问题,并在教学过程中进行引导和辅导。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。
通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。
本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。
二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。
但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。
此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。
三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。
2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。
四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。
2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。
五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。
2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。
3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。
4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。
2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。
3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。
七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。
提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。
第五章一元一次方程
6.应用一元一次方程——追赶小明
一、教学目标
1、知识技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行
程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.
2、过程与方法:经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”
也是解决实际问题的有效途径.
3、情感态度价值观:体会“方程”是解决实际问题的有效模型,并进一步培养学生的文字语言、符
号语言、图形语言的转换能力.
四、教学重点和难点
重点:熟悉追及问题中的路程、时间、速度之间的关系。
从而实现从文字语言到图形语言、从图形语言到符号语言的转化。
难点:借助“线段图”分析复杂问题中的数量关系,从而解决实际问题。
五、教学过程设计
本节课设计了六个教学环节:第一环节:情景导入;第二环节:探究新课;第三环节:运用巩固;第四环节:课堂小结;第五环节:当堂检测;第六环节:布置作业.
教学流程:
环节一、情景导入
活动内容:
灰太狼追喜羊羊的故事
目的:通过喜羊羊与灰太狼的故事揭示生活中蕴含着我们数学的一个常见问题——追及问题,从而引出课题及例题,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣.
复习一:如右图,AC=AB+_______;
CD=AD─______;
AD=______+______+______。
复习二:1.若小明每秒跑4米,那么他5秒能跑___米.
2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分.
3.已知小明家距离火车站1500米,他以5米/秒的速度骑车到达车站需要_____分钟. 环节二、探究新课
1. 相遇问题:
例1:爸爸和小明每天早晨坚持跑步,爸爸每秒跑6米,小明每秒跑4米。
如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?
解:设x秒后爸爸和小明相遇。
根据题意:4x+6x=100
10x=100
x=10
答:爸爸和小明10秒后相遇
活动过程:教师引导学生分析,并演示画线段图的方法。
有学生练习画线段图(独立完成),教师将学生画的线段图用实物展台展示,师生交流。
2. 追及问题:
活动内容:
教材实例分析:
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
目的:
分析追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.
实际活动效果:
教师引导学生根据题目已知条件,画出线段图:
找出等量关系:小明所用时间=5+爸爸所用时间;
小明走过的路程=爸爸走过的路程.
板书规范写出解题过程:
解:(1)设爸爸追上小明用了x分钟,
据题意得 80×5+80x=180x.
解,得x=4.
答:爸爸追上小明用了4分钟.
(2)180×4=720(米),1000-720=280(米).
答:追上小明时,距离学校还有280米.
讨论:在什么情况下爸爸追不上小明?
目的:进一步理解追击问题的实质,与课程引入中的灰太狼追喜羊羊故事呼应,问题得到解决。
环节三、运用巩固
活动内容:
育红学校七年级学生步行郊外旅行,1班的学生组成前队,步行速度为4千米/小时,3班的学生组成后队,步行速度为6千米/小时,1班出发一个小时后,3班才出发。
请根据以上的事实提出问题并尝试回答。
问题1:3班追上1班用了多长时间?
问题2:3班追上1班时,他们离学校多远?
问题3:………………
目的:
给学生提供进一步巩固建立方程模型的基本过程和方法的熟悉机会,让学生活学活用,真正让学生学会借线段图分析行程问题的方法,得出其中的等量关系,从而正确地建立方程求解问题,同时还需注意检验方程解的合理性.
实际活动效果:
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.
环节四、归纳小结
活动内容:动画演示行程问题
目的:
强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
实际活动效果:
通过交流学生认识到借线段图来分析行程问题的好处,发现行程问题中的一些规律,并感受到运用方程解决实际问题的优势.充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事学习活动.
环节五、当堂检测
活动内容:
甲、乙两人练习赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米,甲让乙先跑5米,则甲多长时间可以追上乙?
目的:检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.
实际活动效果:
由于时间关系,只能要求学生在课堂上分析其中的等量关系,列出方程,而没有时间解方程,但也达到了检测的目的,知道了学生本课时知识掌握中的共性问题及教师没有考虑到的问题.
环节六、作业
习题5.10 问题解决1.(2) 2.。