第一章-传感器的基础理论
- 格式:ppt
- 大小:1.77 MB
- 文档页数:54
实用文档
传感器原理及工程应用第5版答案
第1章传感与检测技术的理论基础(P26)
1-1:测量的定义?
答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。
所以,测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。
1-2:什么是测量值的绝对误差、相对误差、引用误差?
答:绝对误差是测量结果与真值之差
即:绝对误差=测量值一真值
相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示,即:相对误差=绝对误差/测量值×100%
引用误差是绝对误差与量程之比,以百分数表示,即:引用误差=绝对误差/量程×100%
1-3用测量范围为一50~150kPa的压力传感器测量140kPa的压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
已知:真值L=140kPa测量值x=142kPa测量上限=150kPa测量下限=—50kPa
.绝对误差A=x-L=142-140=2(kPa)
实际相对误差6=2=21.43%
Z140标称相对误差6=A2~1.41%
T142。
第1章概论一传感器的概念与发展1.1 传感器基本概念传感器(transducer/sensor)的定义是:能感受规定的被测量并按一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
其中,敏感元件(sensing element)是指传感器中能直接感受或响应被测量的部分;转换元件(transducer element)是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号以及其它某种可用信号的部分。
传感器狭义地定义为:能把外界非电信息转换成电信号输出的器件。
可以预料,当人类跨入光子时代,光信息成为更便于快速、高效地处理与传输的可用信号时,传感器的概念将随之发展成为:能把外界信息转换成光信号输出的器件。
传感器的任务就是感知与测量。
在人类文明史的历次产业革命中,感受、处理外部信息的传感技术一直扮演着一个重要的角色。
在18世纪产业革命以前,传感技术由人的感官实现:人观天象而仕农耕,察火色以冶铜铁。
从18世纪产业革命以来,特别是在20世纪信息革命中,传感技术越来越多地由人造感官,即工程传感器来实现。
目前,工程传感器应用如此广泛,以至可以说任何机械电气系统都离不开它。
现代工业、现代科学探索、特别是现代军事都要依靠传感器技术。
一个大国如果没有自身传感技术的不断进步,必将处处被动。
现代技术的发展,创造了多种多样的工程传感器。
工程传感器可以轻而易举地测量人体所无法感知的量,如紫外线、红外线、超声波、磁场等。
从这个意义上讲,工程传感器超过人的感官能力。
有些量虽然人的感官和工程传感器都能检测,但工程传感器测量得更快、更精确。
例如虽然人眼和光传感器都能检测可见光,进行物体识别与测距,但是人眼的视觉残留约为0.1s,而光晶体管的响应时间可短到纳秒以下;人眼的角分辨率为1ˊ,而光栅测距的精确度可达1";激光定位的精度在月球距离3×104km范围内可达10cm以下;工程传感器可以把人所不能看到的物体通过数据处理变为视觉图像。
第一章传感器基础l。
检测系统由哪几部分组成? 说明各部分的作用.答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。
当然其中还包括电源和传输通道等不可缺少的部分。
下图给出了检测系统的组成框图。
检测系统的组成框图传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。
测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。
通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。
根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作.显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。
2.传感器的型号有几部分组成,各部分有何意义?依次为主称(传感器)被测量—转换原理—序号主称-—传感器,代号C;被测量—-用一个或两个汉语拼音的第一个大写字母标记.见附录表2;转换原理——用一个或两个汉语拼音的第一个大写字母标记。
见附录表3;序号—-用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。
若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用)。
例:应变式位移传感器: C WY-YB-20;光纤压力传感器:C Y—GQ—2.3.测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法?如何进行?答:测定稳压电源输出电压随负载电阻变化的情况时,最好采用微差式测量.此时输出电压认可表示为U0,U0=U+△U,其中△U是负载电阻变化所引起的输出电压变化量,相对U来讲为一小量。
如果采用偏差法测量,仪表必须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变化就很难测准。
《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。
(3)功能:检测和转换。
(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。
(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。
2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。
0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。
分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。
4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。
开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。
传感器培训资料第一部分:传感器的基本概念传感器是一种能够感知环境中的各种物理量并将其转化为电信号的装置。
通过测量物理量,传感器可以帮助我们获得环境中各种数据,从而实现自动化控制和监测。
传感器的种类繁多,常见的传感器包括温度传感器、湿度传感器、压力传感器、光电传感器等。
在不同的应用场景中,需要选择不同类型的传感器来完成具体的任务。
第二部分:传感器的工作原理传感器的工作原理通常通过物理效应来实现。
例如,温度传感器通常利用热敏电阻或热电偶来测量温度;压力传感器则利用压阻效应或压电效应来转换压力为电信号。
在传感器的内部,通常还会带有信号放大电路、模数转换器等元件,用来将感知到的物理量转化为标准的电信号输出。
第三部分:传感器的应用场景传感器广泛应用于工业控制、汽车领域、医疗设备等各个领域。
例如,温度传感器可以用于控制空调温度、汽车发动机的温度监测等;压力传感器可以用于测量液体或气体的压力、监测管道的泄漏等。
第四部分:传感器的选择和安装在选择传感器时,需要考虑其测量范围、精度、响应时间等指标,以及适用的工作环境,如温度、湿度等。
在安装传感器时,需要注意避免干扰源,保证传感器测量的准确性。
第五部分:传感器的维护和保养传感器作为自动化系统中的重要部件,需要进行定期的维护和保养。
对于一些易受环境影响的传感器,如湿度传感器、光电传感器等,需要保持其表面清洁,防止积灰或水汽影响测量精度。
第六部分:传感器的未来发展随着科技的不断进步,传感器的应用范围将会更加广泛,同时传感器本身的性能也将进一步提升。
例如,新型传感器可能会采用纳米技术制备,具有更高的灵敏度和更小的体积;同时,通过无线传输技术,传感器也有望实现无线监测和控制,大大提高其应用灵活性。
通过本次传感器培训,希望大家能够对传感器有更深入的了解,从而能够更好地应用传感器解决实际问题,提高工作效率和产品质量。
同时也希望大家能够关注传感器领域的最新发展,不断更新自己的知识,为行业的发展做出更大的贡献。
第1章传感器与检测技术的 1.1 测量概论1.2 测量数据的估计和处理第1章传感与检测技术的 1.1 测量概论在科学技术高度发达的现代社会中人类已进入瞬息万变的信息时代。
人们在从事工业生产和科学实验等活动中主要依靠对信息资源的开发、获取、传输和处理。
传感器处于研究对象与测控系统的接口位置是感知、获取与检测信息的窗口一切科学实验和生产过程特别是自动检测和自动控制系统要获取的信息都要通过传感器将其转换为容易传输与处理的电信号。
在工程实践和科学实验中提出的检测任务是正确及时地掌握各种信息大多数情况下是要获取被测对象信息的大小即被测量的大小。
这样,信息采集的主要含义就是测量取得测量数据。
“测量系统”这一概念是传感技术发展到一定阶段的产物。
在工程中需要有传感器与多台仪表组合在一起才能完成信号的检测这样便形成了测量系统。
尤其是随着计算机技术及信息处理技术的发展测量系统所涉及的内容也不断得以充实。
为了更好地掌握传感器需要对测量的基本概念测量系统的特性测量误差及数据处理等方面的及工程方法进行学习和研究只有了解和掌握了这些基本才能更有效地完成检测任务。
一、测量测量是以确定量值为目的的一系列操作。
所以测量也就是将被测量与同种性质的标准量进行比较确定被测量对标准量的倍数。
它可由下式表示: x nu (1-1)x或n (1-2)u 式中:x——被测量值u——标准量即测量单位n——比值(纯数)含有测量误差。
由测量所获得的被测的量值叫测量结果。
测量结果可用一定的数值表示也可以用一条曲线或某种图形表示。
但无论其表现形式如何测量结果应包括两部分:比值和测量单位。
确切地讲测量结果还应包括误差部分。
被测量值和比值等都是测量过程的信息这些信息依托于物质才能在空间和时间上进行传递。
参数承载了信息而成为信号。
选择其中适当的参数作为测量信号例如热电偶温度传感器的工作参数是热电偶的电势差压流量传感器中的孔板工作参数是差压ΔP。
测量过程就是传感器从被测对象获取被测量的信息建立起测量信号经过变换、传输、处理从而获得被测量的量值。
传感器工作原理(1)引言概述:传感器是现代科技中广泛应用的一种设备,它可以将各种物理量转化为电信号,从而实现对环境的监测和控制。
本文将详细介绍传感器的工作原理。
一、传感器的基本原理1.1 物理量与电信号的转换传感器的基本原理是将感知到的物理量转换为电信号。
传感器通过内部的感知元件,如光敏元件、压力传感器或温度传感器,将物理量转化为电信号。
这些电信号可以是电压、电流或电阻等形式。
1.2 传感器的灵敏度传感器的灵敏度是指传感器对物理量变化的敏感程度。
传感器的灵敏度取决于感知元件的特性以及信号转换电路的设计。
灵敏度越高,传感器对物理量变化的响应越迅速和准确。
1.3 传感器的精度和误差传感器的精度是指传感器输出值与实际值之间的差异程度。
误差是指传感器输出值与实际值之间的偏差。
传感器的精度和误差受到多种因素的影响,如传感器的质量、环境条件和使用方式等。
二、传感器的工作原理2.1 光传感器的工作原理光传感器是一种将光信号转换为电信号的传感器。
它通过感知光的强度、波长或频率等特性,将光信号转换为电信号。
光传感器通常由光敏元件和信号转换电路组成。
2.2 压力传感器的工作原理压力传感器是一种将压力信号转换为电信号的传感器。
它通过感知物体的压力变化,将压力信号转换为电信号。
压力传感器通常由弹性元件和信号转换电路组成。
2.3 温度传感器的工作原理温度传感器是一种将温度信号转换为电信号的传感器。
它通过感知物体的温度变化,将温度信号转换为电信号。
温度传感器通常由热敏元件和信号转换电路组成。
三、传感器的应用领域3.1 工业自动化传感器在工业自动化中起着至关重要的作用。
它们可以用于监测生产线上的温度、压力、湿度等参数,实现自动控制和优化生产过程。
3.2 智能家居传感器在智能家居中被广泛应用。
它们可以用于监测室内温度、湿度、光线等参数,实现智能调控和能源管理。
3.3 医疗设备传感器在医疗设备中起着重要的作用。
它们可以用于监测患者的心率、血压、体温等参数,帮助医生进行诊断和治疗。
《传感器原理及应用》课后答案第1章传感器基础理论思考题与习题答案1.1什么是传感器?(传感器定义)解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。
1.2传感器特性在检测系统中起到什么作用?解决方案:传感器的特性是指传感器的输入和输出之间的对应关系,因此它在检测系统中起着非常重要的作用。
一般来说,传感器的特性分为两类:静态特性和动态特性。
静态特性是指输入不随时间变化的特性。
当测量值处于稳定状态时,它表示传感器输入和输出之间的关系。
动态特性是指输入随时间变化的特性,代表传感器对随时间变化的输入的响应特性。
1.3传感器的部件是什么?解释每个部分的作用。
解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。
1.4传感器的性能参数与传感器之间的关系是什么?静态参数是什么?各种参数意味着什么义?动态参数有那些?应如何选择?解决方案:在生产过程和科学实验中,为了检测和控制各种参数,传感器需要感知被测非电量的变化,并将其无失真地转换为相应的电量,这取决于传感器的基本特性,即输出-输入特性。
测量静态特性的重要指标是线性度、灵敏度、滞后和重复性。
意思被省略了(见这本书)。
动态参数包括最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。
1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mv,求其灵敏度。
u300?10? 3.60溶液:其灵敏度K??3.x5?101.6测量系统由传感器、放大器和记录仪组成。
每个环节的灵敏度为S1=0.2mv/℃1S2=2.0v/mv,S3=5.0mm/v,计算系统的总灵敏度。
1.7某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5v减至2.5v,求该仪器的灵敏度。
第一章 传感与检测技术的理论基础1. 什么是测量值的绝对误差、相对误差、引用误差? 答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之 比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法, 也用相对误差表示, 它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
2. 什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示 , 引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差 时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3. 用测量范围为 -50 ~+150kPa 的压力传感器测量 140kPa 压力时,传感器测得示值为 142kPa ,求该示值 的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差 142 140 2kPa什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机 误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人 员方面的因素) ,如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员 感觉器官的生理变化等,对测量值的综合影响所造成的。
对于测量列中的某一个测得值来说, 随机误差的出现具有随机性, 即误差的大小和符号是不能预知的, 但当测量次数增大,随机误差又具有统计的规律性,测量次数越多,这种规律性表现得越明显。