网络规划中的链路预算
- 格式:ppt
- 大小:681.50 KB
- 文档页数:20
表示10Log X 斜体 表示10X/10c=2.998e8 光速地球赤道半径 h=35793km 卫星离地面高度K=1.38×10-23J/K 波尔兹曼常数 为单位面积理想天线增益G 0Noise(K)=290×[Noise(dB)-1]D =()()f cos 222e e e e R h R h R R +-++ 天线与卫星的距离 Free space loss =32.4+20Log(D ×f ) 自由空间传输损耗(注:D 单位km ;f 单位MHz )Symbol rate =Date rate /(M ×FEC code rate ) 符号率(MBaud)占用带宽(MHz) Spread factor=1.2噪声带宽(dB.Hz)Allocated transponder bandwidth = (Symbol rate ×Carrier spacing factor )+ Bandwidth allocation step size转发器分配带宽(MHz) 上行链路功放功率与天线选择:EIRP US = Free space loss U + Atmospheric absorption U + Tropospheric scintillation fading U +Mispoint loss U +SFD 上行饱和等效全向辐射功率dBWEIPR U = EIRP US -IBO载波在卫星天线口面上的通量密度dBW(PFD)Total HPA power required= EIRP U - Antenna gain - (Coupling loss)U 所需功放功率W (也可以固定功率来确定天线尺寸)(C/N 0)U =EIRPU -( Free space loss U + Atmospheric absorption U + Tropospheric scintillation fading U +Mispoint lossU (G/T)S(C/N)U = (C/N=SFD IBO (G/T)S - Noise bandwidthAntenna efficiency =Antenna gain ×c 2/(πRf)2 天线增益效率(注:c 单位m ;f 单位Hz ;R 单位m )Antenna noise =⎰⎰πππ200sin ),(),(41f q q f q f q d d T R =⎰⎰Ωπ42),(),(1d A T B f q f q λ 以波长为单位,天线有效面积为权重的亮温度对全天空的积分≈15×Antenna efficiency+(1-Antenna efficiency )×[15×sin θ/(cos θ+sin θ)+(140+θ)×cos θ/(cos θ+sin θ)]G/T= Antenna gainEIRP D = EIRP S -OBO(C/No)D =EIRP D –(Free space loss D + Atmospheric absorption D + Tropospheric scintillation fading D + Mispoint loss D G/T(C/N)D =(C/No)D -Noise bandwidth=EIRP D –(Free space loss D + Atmospheric absorption D + Tropospheric scintillation fading D + Mispoint loss D G/T -Noise bandwidthC/(N+I)C/(N+I) = C/(No+Io) - Noise bandwidthEb/(No+Io)频谱仪读到的MARKE DELTA= C/(N+I) +1=(C+N+I)/(N+I)Es/N 0一、转发器参数SFD、G/T、EIRP、载波输入回退CIBO(Carrier InputBackoff)和载波输出回退COBO(Carrier Output Backoff)G/T 被称为figure of merit,即接收系统的品质因素。
56. 什么是信号传输中的链路预算?56、什么是信号传输中的链路预算?在当今这个高度数字化和信息化的时代,信号传输无处不在。
从我们日常使用的手机通信,到卫星电视的接收,再到各种无线设备之间的数据交换,信号的稳定传输都至关重要。
而要确保信号能够有效地从发送端到达接收端,并保持一定的质量和可靠性,就离不开链路预算这个关键的概念。
那么,到底什么是信号传输中的链路预算呢?简单来说,链路预算就是对信号在传输路径上的各种增益和损耗进行评估和计算的过程。
它就像是一场信号传输的“精打细算”,通过综合考虑各种因素,来预测信号能否成功到达目的地,并达到预期的性能指标。
为了更清楚地理解链路预算,我们可以把信号传输的路径想象成一条长长的道路。
信号从发送端出发,就像是一辆汽车从起点出发。
在行驶的过程中,会遇到各种各样的情况,有的会让汽车跑得更顺畅,这就是增益;有的则会阻碍汽车前进,这就是损耗。
先来说说增益。
增益就像是给信号这辆“汽车”加油助力,让它能够跑得更远更强。
在信号传输中,增益可能来自多个方面。
比如,发送端的发射功率增大,这就相当于给汽车装上了更强大的发动机,能让信号一开始就具有更强的“动力”。
还有,使用高增益的天线,就好比给汽车装上了一个高效的导流装置,能让信号更集中、更有效地朝着接收端的方向传播。
再看看损耗。
损耗则是信号传输道路上的各种“绊脚石”。
比如,信号在空气中传播时,会因为距离的增加而逐渐减弱,这就是路径损耗。
就好像汽车跑得越远,汽油消耗得越多,速度也会逐渐变慢。
另外,信号穿过建筑物、障碍物或者受到其他电磁干扰时,也会产生损耗,这就像是汽车在路上遇到了堵车、路况不好等情况,会影响其前进的速度和效率。
链路预算要把这些增益和损耗都综合考虑进去。
通过精确的计算和分析,来确定接收端最终能够接收到的信号强度是否足够。
如果计算结果表明接收端的信号强度低于某个阈值,那么就可能会出现通信中断、数据错误或者图像模糊等问题。
GPON网络中ODN链路预算部分1、ODN链路包括:ODN ( Optical Distribution Network) :光配线网络,用于在OLT和ONT 间提供光通道,其中入户光缆段是ODN实施中最困难的部分。
目前GPON最大支持1:64分光,后续可支持1:128分光,ODN组网不能超过两级分光ODN链路的分光比不是由连接上的设备数量决定的,因为只要你接上分光器,光衰已经产生。
对于第一个链路,分光比为1:8×1:16=1:128,超过了当前可以支持的最大分光比2、ODN产品包括:ODF、分光器(上架式)、分光器(小体积)、适配器(FC-FC、SC-SC )、尾纤、跳纤、光缆。
3、ODN网络关键参数:1.衰减(光缆),2.插入损耗(ODN器件),3.回波损耗(ORL)衰减(光缆)插入损耗(ODN器件)插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝数。
插入损耗的测量方法同衰减的测量方法相同。
回波损耗(ORL)回波损耗又称为反射损耗,它是指在光纤连接处,后向反射光相对输入光的比率的分贝数回波损耗愈大愈好,以减少反射光对光源和系统的影响建议线路最小ORL 45 db精度为PC的回波损耗为>45db APC>55db。
对于CATV业务,要求ODN所有节点必须使用APC类型接头。
4、ODN测试步骤步骤1:链路总损耗预算步骤2:馈线段链路测试步骤3:配线段和入户段测试步骤4:分光器链路测试步骤5:业务发放步骤一:总损耗预算根据部署的PON 类型,测试前应认真检查ODN网络的每个元件,ODN链路总损耗包括以下几个方面1)分光器损耗2) 熔接和冷接损耗3)连接器、适配器(法兰盘)损耗4)光纤传输损耗5)线路额外损耗,一般取3db左右对于集成CATV业务,需要另外增加考虑:6)WDM 的损耗,每个WDM 耦合器的损耗通常约为0.7 到1.0 dB。
7)1550nm波长应用于CATV传输时,链路功率预算需另外计算,1550 nm 的衰减约为0.2 dB/km,CATV接收机光功率最小为-8 dBmODN链路衰减预算要求:GPON光模块满足ClassB+标准,满足20km、1:64分光比建议ODN1:根据协议规定,OLT的接收机范围是在15db以内,及最大光衰和最小光衰的差值应该在15db以内,否则一旦超出OLT接收机的动态范围,会导致误码率上升,甚至某些ONU 掉线2:如果按照标准规划ODN网络,链路总损耗符合协议规定,一般不会出现这个问题。
5G传播损耗及链路预算5G技术作为新一代移动通信技术,具有传输速度快、延时低、连接设备多等特点,已经成为人们关注的焦点。
在实际应用中,5G通信链路的传播损耗是一个重要的问题,其预算对于优化网络性能和降低成本具有重要意义。
本文将从5G传播损耗的定义和影响因素入手,介绍5G通信链路的预算方法和优化策略。
一、5G传播损耗的定义和影响因素传播损耗是指信号在传输过程中由于自由空间传播损失、多径效应、大气衰减等因素而减弱的情况,通常以分贝(dB)为单位进行衡量。
在5G通信中,传播损耗主要受以下几个因素的影响:1. 自由空间传播损失:自由空间传播损失是指信号在没有障碍物的空间中传播时由于信号功率随距离的增加而减弱的情况。
根据自由空间传播模型,信号的传播损耗与传输距离的平方成正比,因此在5G通信中需要合理规划基站的布局,以减小传输距离,降低自由空间传播损失。
2. 多径效应:多径效应是指信号在传播过程中受到来自不同路径的反射、散射等影响,导致信号波形产生畸变和功率衰减的现象。
在5G通信中,多径效应是一个不可忽视的因素,对于多径效应的抑制和补偿是提高5G链路质量的重要途径。
3. 大气衰减:大气衰减是指信号在穿越大气介质时由于大气吸收和散射等因素而产生的衰减现象。
在5G通信中,大气衰减主要取决于频率和天线高度,因此需要根据实际情况选择合适的频段和天线高度,以减小大气衰减对信号的影响。
以上因素都会对5G通信链路的传播损耗产生影响,因此在5G网络规划和优化中需要综合考虑这些因素,确定合理的传播损耗预算。
二、5G通信链路的预算方法在进行5G通信链路规划和设计时,需要对传播损耗进行合理的预算,以确保网络性能和覆盖范围的满足。
传播损耗的预算通常可以通过以下方法进行计算:1. 理论模型法:根据自由空间传播模型和大气损耗模型,利用信号频率、天线高度、传输距离等参数,计算出理论上的传播损耗值。
这种方法简单直观,适用于一般的规划设计,但并不考虑实际环境的影响,因此预算结果可能存在一定的误差。
LTE FDD链路预算及覆盖估算方法研究摘要:链路预算是移动通信网络规划和设计过程中的重要环节。
链路预算通过对链路中的增益、余量与损耗进行核算,计算空中链路的最大允许路径损耗,从而结合传播模型确定小区覆盖范围及站间距。
本文结合LTE FDD系统的特点对其链路预算参数进行分析,并着重研究了LTE FDD系统的链路预算方法,并根据链路预算介绍小区覆盖半径和单站覆盖面积的方法。
本文给出的方法可用于LTE FDD网络规划和设计。
关键词:LTE FDD;链路预算;传播模型;基站半径;最大允许路径损耗中图分类号:TN929.533 文献标识码:AOn LTE FDD Link Budget and Coverage EstimationAbstract: Link budget is an important section in wireless communication network planning and designing. By accumulating the gains, margains and losses of the radio link, link budget gives the maximum allowed pathloss(MAPL) as the result. With the MAPL and propagation model, engineers can calculate the radius of the site, the sites spacing and coverage area of the site. The system characteristics of LTE FDD and its linkbudget parameters are analysed in this paper. The link budget method of LTE FDD system is the most important part of this paper. The methods given in this paper can be used to calculate the radius, sitesradius and coverage area per site, and subsequently help the planning and designing of LTE FDD network.Key words: LTE FDD; Link budget; Propagation model; Sites radius; Maximum allowed path loss1 引言目前,3G网络在全球范围内已经完全成熟,全球信息科技领域的飞速发展带动了人们对更高业务带宽的需求,从而推动目前的移动通信网络向更高带宽的新技术体制演进,于是催生了长期演进(Long Term Evolution,LTE)。
掌握链路预算的原理推算基站覆盖距离链路预算是一种基站规划中常用的手段,用于推算基站的覆盖距离。
它通过考虑多种因素,如功率、频率、天线增益、传输损耗等参数,来分析信号的传输过程,并计算出信号的接收功率,从而确定基站的覆盖范围。
链路预算的原理包括以下几个重要的步骤:1.确定发射功率:首先需要确定基站的发射功率,即基站的工作功率。
通常,基站工程师会根据实际情况和需求来选择合适的发射功率。
2.选择频率:在选择合适的频率时,需要考虑到干扰和多径效应。
频率越高,通常覆盖距离越短,但可以提供更高的传输速率。
频率选择的不当可能会导致干扰。
3.计算传输损耗:传输损耗是指信号在传输过程中所受到的损耗,主要包括自由空间损耗、传输线损耗等。
自由空间损耗是信号在空中传输过程中因为衰减而产生的损耗,可以通过计算得到。
传输线损耗主要是信号在传输线中经过一定长度后所产生的损耗,可以通过传输线的特性和长度来确定。
4.考虑天线增益:天线增益是指天线的发射和接收信号能力相对于理想点源天线的增益。
它可以通过天线的方向图和增益值来确定。
天线增益越高,覆盖距离也越远。
5.判断信号接收功率:通过以上步骤计算出的发射功率、频率、传输损耗和天线增益等参数,可以推算出信号的接收功率。
在信号传输过程中,信号的接收功率会逐渐减弱。
当信号的接收功率低于一定阈值时,就无法正常解调和识别信号了。
通过链路预算推算基站的覆盖距离时,需要综合考虑以上各个因素,并结合具体的环境和实际情况来进行分析。
因为实际情况常常会受到地形、建筑物、干扰源等多种因素的影响,所以链路预算只是一个初步的估算结果,实际的覆盖距离还需要进一步调整和优化。
综上所述,链路预算是一种基站规划中常用的手段,通过考虑多种因素来推算基站的覆盖距离。
它是基站规划中非常重要的一步,可以有效地评估基站的覆盖范围,并帮助工程师制定合理的基站部署方案。
但需要注意的是,链路预算只是一个估算结果,实际的覆盖距离还需要结合实际情况进行调整和优化。