镇海炼化公司两套加氢裂化装置的优化运行
- 格式:pdf
- 大小:367.67 KB
- 文档页数:5
加氢裂化装置运行问题分析及经验总结摘要:某石化公司120万吨/年加氢裂化装置在本周期运行期间出现加氢精制反应器床层压降上涨问题,影响装置安全平稳长周期运行。
本文对加氢精制反应器床层压降上涨问题产生原因进行深入分析,对处理措施及检修施工等进行说明,对日常生产问题的处理有一定的指导借鉴作用。
关键词:催化剂;加氢裂化;撇头;压降;重石脑油氮含量1 导言某石化公司120万吨/年加氢裂化装置加氢精制反应器(R-101)第一床层(保护剂和催化剂)压降自2017年7月起上涨趋势明显,最高值达到0.58MPa,严重影响了装置正常平稳运行。
根据整体生产平衡安排,120万吨/年加氢裂化装置于2017年12月25日停工撇头检修,2018年1月4日投料开车成功,消除了制约装置平稳运行的瓶颈。
2 加氢裂化装置概况某石化公司120万吨/年加氢裂化装置由中国石化工程建设有限公司总体设计,采用中国石油化工股份有限公司大连(抚顺)石油化工研究院一段串联全循环加氢裂化技术,原设计加工能力80万吨/年,于1999年6月建成投产;2005年扩能改造至120万吨/年,改为一次通过操作模式。
加氢精制反应器(R-101)装填FRIPP研发的FF-66精制催化剂,加氢裂化反应器(R102)装填FRIPP研发的FC-60裂化催化剂。
3 加氢精制反应器压降上升原因分析120万吨/年加氢裂化装置加氢精制反应器(R-101)第一床层(保护剂和催化剂)压降自2017年7月起上涨趋势明显,最高值达到0.58MPa,严重影响了装置正常平稳运行。
3.1 反应系统紧急泄压造成初始压降偏高自2016年装置检修开工以来,该装置反应系统在三个月内经历了三次紧急泄压,分别为:(1)2016年检修开工阶段,因高压换E105泄漏启动紧急泄压。
R101压降维持在0.25Mpa;(2)2016年10月29日,脱丁烷塔底泵P203密封泄漏启动紧急泄压。
R101压降维持在0.35 Mpa左右;(3)2016年12月30日,高分安全阀故障起跳,造成反应系统泄压。
快速应对加氢裂化装置新氢供应不足的操作对策茅 俊(中国石油化工股份有限公司镇海炼化分公司,浙江省宁波市315207)摘要:根据装置新氢大幅减少预案的操作处理意见,结合实际操作情况,总结处理过程中的经验,提出预案修订、完善意见。
通过简单的计算得出:在系统氢气大幅减少的情况下,可以优先调整新氢机级间返回或无级调量负荷,牺牲装置系统操作压力,为系统氢气管网让出氢气量,实现应急状态下系统和装置的平稳过渡,避免发生次生事故。
通过计算,当让氢量为10000m3/h时,控制系统的压力下降速率为0.074MPa/min即可满足要求,其余让氢量以此类推。
关键词:快速应对 加氢裂化装置 新氢 系统压力降 无级调量 炼油厂中氢气一般由制氢装置生产的氢气、重整氢、乙烯氢组成。
氢气的生产成本较高,富裕量不大。
不管是加氢装置,还是制氢装置、重整装置、乙烯装置出现生产波动,都会对新氢管网压力造成一定影响[1]。
某公司自煤焦油制氢(POX)装置开工运行以来,供氢格局发生了根本性的改变。
供氢装置的增加,使氢气管网运行更加高效安全,但POX装置操作难度大,氢气供应不稳定。
从运行情况看,平均每月气化炉发生跳车1~2次,造成氢气管网短时氢气缺口3000~4000m3/h。
单台气化炉氢气提负荷速率为500m3/min,油制氢和POX装置气化炉均未满负荷运行,可以在30min内补足因POX装置单台气化炉跳车所造成的氢气减少量。
为防止拉低新氢管网压力,影响各新氢压缩机安全运行,耗氢装置限氢操作调整必须在10min内完成。
当POX装置单台气化炉跳车或停炉时,就需各用氢装置大幅让氢。
Ⅰ套加氢裂化装置耗氢量基本维持在50000m3/h左右,作为耗氢大户,为让氢首选。
该装置新氢供应不足预案不完善,未要求第一时间降低新氢机负荷,而是先降温、降量,这将加剧系统氢气管网压力下降。
1 实际案例1.1 案例12019年7月11日07∶50某POX装置单台气化炉跳车,要求Ⅰ套加氢裂化装置10min内氢耗降低10000m3/h。
石化装置典型的开停工事故汇编Ⅰ、人身事故1、镇海炼化炼油五部“9.24”硫化氢中毒事故,二名检修工受伤2009年9月24日,镇海炼化炼油五部Ⅱ加氢裂化按照计划拆除装置界区及装置内所有盲板,准备开工,其中包括与低瓦线相连的放空罐顶V1034出口总管的盲板,盲板位于放空罐顶蝶阀阀前法兰处。
9:00左右,工艺技术员崔某在现场与建安公司施工人员进行了交底,施工人员开始拆除V1034至低压瓦斯线盲板作业。
9:30左右,松开法兰大部分螺栓后,盲板与阀板间积聚的含烃液体溅出,铆工张某、钱某吸入少量气体后立即感到不适,经医院检查治疗,身体逐渐恢复正常。
事故直接原因:放空管线上蝶阀内漏,低压瓦斯在阀与盲板间积聚并冷凝,法兰松开后液体溅出,其中携带的硫化氢气体也随之释放,作业人员吸入后中毒。
事故间接原因:技术人员安全意识不强,工作考虑不周,未对低瓦线拆除盲板作业认真进行危害识别,对蝶阀内漏,盲板与蝶阀间积聚含烃液体及内含硫化氢估计不足,在安排拆盲板作业时,未要求施工作业人员采取防硫化氢中毒保护措施。
2、中原石化承包商“9.22”窒息事故,昏迷2人2011年9月22日,中原石化有限责任公司新建MTO装置进入开车阶段。
下午16时30分,车间安排第十建设公司的1名分包商员工进入装置急冷塔C-2101更换垫片,在更换过程中窒息晕倒,监护人随之进入塔内施救也窒息晕倒。
两人随即被塔外人员救出,1人完全恢复,另1人也基本康复。
事故直接原因:一是急冷塔C-2101与分离工段K-3001系统连接管线没加盲板,而是用两道阀切断隔离。
在进入塔内作业过程中,下游单元分离工段正在对K3001系统进行氮气置换。
在升压过程中,氮气经两道隔离阀反窜到反应再生单元的分离塔,然后进入与之相连的急冷塔。
因塔内氮气逐步积聚,氧气含量逐渐降低,致使两人相继因缺氧而晕倒。
二是在开工物料已经进入装置后,车间管理人员在未办理进入受限空间作业证的情况下,仅凭氧含量分析合格报告单就匆忙安排工人进入受限空间作业。
加氢裂化装置优化运行生产航煤技术攻关为了提高航煤的品质,同时降低其生产成本,加氢裂化装置的优化运行成为了一项具有重要意义的技术攻关。
针对这一问题,本文将从以下三个方面进行探讨:加氢裂化装置的工艺原理和流程;装置优化运行的必要性和挑战;装置优化运行中的关键技术和应用方法。
一、加氢裂化装置的工艺原理和流程加氢裂化是利用催化剂和氢气使长链烃分子在高温下断裂成短链分子的工艺。
加氢裂化装置的主要部件包括加氢反应器、分馏塔、冷却器等。
其工艺流程如下图所示:[插入图片]在这一工艺中,原料油进入加氢反应器后,在氢气的存在下,经过高温高压的加氢反应,长链烃分子被断裂成短链烃分子。
随着反应的进行,反应器中不断有新的短链分子生成,同时也有短链分子进一步加氢,生成更短的分子。
这时,分馏塔将反应产物分为轻质和重质两部分,轻质部分包含甲烷、乙烷、丙烷等气态产品,重质部分则包含乙烯、丙烯、苯等液态产品。
最后,这些产品经过冷却器冷却,通过分选装置分离出不同产品。
二、装置优化运行的必要性和挑战加氢裂化装置的优化运行主要是为了提高产品的催化裂化效率和产品品质,同时降低生产成本。
具体来说,装置优化运行的必要性体现在以下几个方面:1.提高产品的品质。
通过优化反应的温度、压力、质量比等因素,可以使产物中不同组分的含量得到有效控制,从而提高产品的品质和附加值。
2.降低生产成本。
装置优化运行可以帮助企业在提高产品品质的同时,尽可能降低生产成本,提高经济效益和市场竞争力。
3.优化反应系统的安全性。
优化加氢裂化装置的运行参数,可以有效减少一些不必要的反应失控和事故风险,保证生产过程的稳定性和安全性。
然而,装置优化运行所面临的挑战也不容忽视。
首先,加氢裂化反应机理较为复杂,其反应产物不仅涉及到烃类气体和液体,还可能出现其他非烃类物质,例如硫化物、酸性物等。
其次,不同反应物质的加工条件和要求也不尽相同,因此在不同的工作状态下对不同反应物质进行加工还需要进行针对性的优化。
3月份,镇海炼化1号乙烯装置应用理论配比燃烧优化技术,通过控制系统优化燃烧和空气的配比,达到理论值,使得裂解炉能以最小的燃料消耗满足工艺要求。
据测算,单台裂解炉每年可节省燃料气300吨。
这是镇海炼化“东海炉王”技术团队攻关的又一成果。
自2010年乙烯装置开工后,技术团队就开始了节能降耗攻关,十年如一日,从未停止。
他们结合实际工况,通过创新技术应用、设备节能改造、优化能源利用等措施,装置吨乙烯综合能耗逐年下降。
2021年,镇海炼化1号乙烯装置吨乙烯综合能耗比2011年下降了11.5%,创投产11年以来最好成绩,在工业和信息化部组织的遴选中,连续第三年获得全国乙烯行业能效领跑者称号。
本刊记者 卞江岐 通讯员 徐 欣镇海炼化:集智创新破解节能降耗密码关注292022 / 07 中国石化团队攻关破解技术密码裂解炉运行一段时间后,炉管内会结焦,要保证长周期稳定运行,必须进行烧焦操作。
一般单台裂解炉所需烧焦时长接近两天,而1号裂解炉日前烧焦操作只用了24小时就完成了,这得益于镇海炼化“东海炉王”技术团队2021年的创新成果。
炉管上的结焦绝大部分都是碳,烧焦简单的说,就是碳和氧气反应成为二氧化碳,烧焦太快会造成焦块脱落,像“血栓”一样堵塞炉管,不但影响烧焦进程甚至影响裂解炉的长周期运行。
怎么能够做到既快又安全呢?技术团队从2017年开始攻关,他们和北化院合作进行了快速烧焦的试验,积累了部分数据。
此后4年,每次烧焦时,技术团队都加大数据监测的力度。
大数据成为创新攻关的基础,他们在软件上模拟烧焦进程,不断调整优化,形成了新的烧焦技术方案。
新方案实现了烧焦过程提速。
数据统计显示,实施一次快速烧焦,可以节省燃料气34.5吨、中压蒸汽600吨,可节能83.4吨标油。
多年来,围绕节能降耗的目标,技术团队应用新技术,自主创新技术的步伐不曾停歇。
“只要有优化空间就不放过,现在‘西瓜’都捡得差不多了,‘芝麻’我们也要。
”烯烃一部技术组组长陆向东说。
展,以求公司自身价值和所创社会价值的最大化,改制后的公司档案工作要最大限度的服务于公司发展的新目标,对档案资源的收集和馆藏结构方面也应做必要的和相应的调整,以充分发挥档案优势,方便开发和利用。
如果死守过去的模式不变,势必给新情况下的档案利用、开发带来诸多不便和不利。
公司改革、改制后,档案工作者要迅速适应新的公司形式,变换思考问题的角度,把新知识、新观念和新鲜的气息带到公司档案工作中,深层次开发和挖掘档案信息资源的价值,为公司档案事业的发展开辟新的空间。
①应该特别重视档案工作的服务特性,在提供利用上下功夫。
根据档案工作自身的性质和发展要求,努力做到档案工作在服务中求创新。
档案工作的服务性是档案工作赖以存在和发展的条件,档案服务是档案工作的重心,档案工作通过服务才能发挥其应有的作用。
档案服务创新是档案工作持续发展的根本动力,要坚持创新和创造性地开展档案工作,档案工作才能达到有高度、有特色。
②要注意利用和发挥协作的优势。
现代社会,协同学理论为我们发展各项事业提供了理论的支持。
公司改革、改制后,档案工作要寻求新的发展点,可以考虑与本单位有关部门合作,乃至引入社会力量和资金共同开发、挖掘档案信息资源,充分发挥档案工作人员和各专业技术人员在各个领域方面的优势,这样既能解决档案部门人员、经费不足的状况,又能解决档案开发利用和深层次挖掘与各方面需求的矛盾。
同时,通过合作,密切了档案工作与公司其他部门乃至社会各方面的关系,为以后档案工作的发展提供有利契机,使公司档案工作更好地贴近公司、贴近社会、贴近服务对象。
③要学会把“产品”的理念引入档案管理。
公司档案工作在新的形势下,应该用新的思维、新的视角来看待,把开发和利用及档案编研成果当作“产品”来生产不失为一种好的做法。
档案是公司文化的一部分,是一种特殊的公司文化产品。
因此,对于在不同公司的不同部门,档案的开发和利用是有不同的特色和作用的,档案工作者要在深层次开发和挖掘档案信息的价值上多下功夫、多做文章,要力争多出“好产品”,多出“龙头产品”,为公司经营发展提供服务,有作为才能有地位,以此树立和不断提高档案工作在新型公司中的地位。
催化裂化装置的节能改造及运行分析催化裂化装置的节能改造及运行分析摘要:催化裂化装置耗能量在整个炼油生产装置耗能总量中占有非常大的比重,所以,对催化裂化装置进行节能改造意义重大。
如何对催化裂化装置实现节能改造也是炼化企业中必须解决的问题。
某炼化厂对催化裂化装置进行节能改造以后,取得了显著的成果,本文主要是对该催化裂化装置耗能大的原因进行认真分析,把节能前后的各项耗能数据进行对比,并提出进一步的节能改造方案。
关键词:催化裂化装置节能改造运行分析近年来,世界经济发展模式发生了深刻的变革,降低能源消耗、实现低投入高产出已经是企业提高市场竞争力的主要手段。
在2003年,某炼化公司建成了100kt/a催化裂化装置,然而,此装置不但技术工艺复杂,而且耗能巨大,它的全年耗能量已经达到全厂全年总耗能量的39%。
对催化裂化装置实行节能改造已经刻不容缓,只有这样,才能真正降低生产成本,提高企业核心竞争力。
一、催化裂化装置耗能大的原因1.催化裂化装置各能源消耗情况通过对该装置在2010年的操作资料进行认真的分析研究,结果表明催化裂化装置的能源消耗主要由耗电量、循环水、烧焦、蒸馏水、脱盐水、烟气等构成,其中电量、烧焦又是主要的能源消耗者。
详情请见表一。
2.电量消耗分析三机组是催化裂化装置的主要耗电设备,烟机的运行效率会对其用电量产生重要影响,比如,当催化裂化装置正在运行的时候,烟机偶尔会因为震动强度过大而被强制退出系统,这就会增大催化裂化装置的耗电量[1]。
除此之外,催化剂细粉的数量也会对三机组的运行效率产生影响,比如,当细粉在烟机转盘上粘黏堆积的时候,有可能会导致三机组轮轴震动。
3.烧焦消耗分析催化裂化装置的反再系统和分馏、稳定系统需要在一定的生焦率下来维持自身运转对能量的需求,但生焦率需要控制在一定的比例内,一般受原料轻重和反应深度的影响,生焦率在6%~9%左右。
生焦率过高则系统内部热量严重过剩,会造成能耗大幅度增加,液收也会降低。
加氢裂化装置优化运行生产航煤技术攻关近年来,随着航空业的发展和煤化工技术的不断成熟,航空煤油(即航煤)作为航空燃料的重要来源,受到了广泛关注。
而在生产航煤的关键环节中,加氢裂化装置的优化运行技术攻关显得尤为重要。
加氢裂化技术是一种将重质石油馏分加氢裂化制取轻质石油产品的重要工艺,其技术和工艺参数的优化将直接影响到航煤产品的质量和产量。
加氢裂化技术的优化运行,不仅需要充分考虑原料性质、反应条件、催化剂性能等因素,同时也需要结合现代化控制技术,实现对加氢裂化装置的全面精细化管理。
为此,国内外的研究机构和企业纷纷投入到加氢裂化装置优化运行生产航煤技术攻关中,不断探索更加高效、节能、环保的加氢裂化技术。
加氢裂化装置的优化运行需要充分考虑原料的性质。
由于原料不同、质量不同,对于加氢裂化工艺参数的要求也各有不同。
在生产实践中,需要开展多方面的原料研究,确定最佳的原料组合和质量指标,以确保加氢裂化反应的高效进行。
也需要引入先进的原料预处理技术,对原料进行预处理,提高其稳定性和纯净度,从而更好地满足反应的要求。
加氢裂化装置的优化运行还需要重点考虑反应条件的优化。
在加氢裂化过程中,反应条件的设定对于产品产率和产品质量有着至关重要的影响。
包括反应温度、压力、催化剂种类和性能等参数的选择和调整,都需要进行深入研究和综合考量。
通过合理的反应条件优化,可以提高产品的产量和质量,同时还能够降低生产过程中的能耗和排放,实现资源的高效利用和环境的友好保护。
加氢裂化装置的优化运行也需要考虑催化剂的性能和使用寿命。
催化剂是加氢裂化反应的关键,其选择和使用对于反应的进行有着至关重要的作用。
需要对催化剂的性能进行深入研究,包括活性、稳定性、抗中毒性等指标的优化。
还需要研究催化剂的再生技术,延长催化剂的使用寿命,降低生产成本,提高装置的经济效益。
加氢裂化装置的优化运行还需要结合现代化控制技术,实现对装置的全面精细化管理。
通过引入先进的自动化设备和技术,对加氢裂化装置进行全过程的在线监测和控制,实时调整各项工艺参数,保证装置的安全稳定运行。