高二数学 圆锥曲线方程:8.6抛物线的性质教案
- 格式:doc
- 大小:71.00 KB
- 文档页数:4
高中数学选修2 抛物线教案一、教学内容本节课选自高中数学选修2第三章《圆锥曲线与方程》中的抛物线部分。
具体内容包括:抛物线的定义、标准方程、图形及性质;抛物线焦点、准线、对称轴等相关概念;抛物线在实际问题中的应用。
二、教学目标1. 理解并掌握抛物线的定义、标准方程及图形性质。
2. 学会利用抛物线的性质解决实际问题。
3. 培养学生的几何想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及图形性质。
难点:抛物线焦点、准线、对称轴等概念的理解及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中的抛物线实例,如篮球投篮、卫星通信等,引导学生发现抛物线的特点。
2. 知识讲解(10分钟)(1)抛物线的定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
(2)抛物线的标准方程:y^2=2px、x^2=2py。
(3)抛物线的图形性质:开口方向、对称轴、顶点、焦点、准线等。
3. 例题讲解(15分钟)(1)求解抛物线y^2=8x的焦点和准线。
(2)已知抛物线x^2=12y,求顶点坐标、对称轴及焦点坐标。
4. 随堂练习(5分钟)(1)求抛物线y^2=4x的焦点和准线。
(2)已知抛物线x^2=6y,求顶点坐标、对称轴及焦点坐标。
5. 课堂小结(5分钟)六、板书设计1. 定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。
2. 标准方程:y^2=2px、x^2=2py。
3. 图形性质:开口方向、对称轴、顶点、焦点、准线。
4. 例题及解答。
七、作业设计1. 作业题目:(1)求抛物线x^2=16y的焦点和准线。
(2)已知抛物线y^2=10x,求顶点坐标、对称轴及焦点坐标。
2. 答案:八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了抛物线的定义、标准方程、图形性质等基本概念。
《抛物线的简单几何性质》公开课教案一、三维目标:1、知识与能力:(1)掌握抛物线的范围、对称性、顶点、离心率等几何性质;(2)能根据抛物线的方程对抛物线几何性质进行讨论,2、过程和方法:(1)掌握抛物线的简单几何性质并会在实际问题中简单运用;(2)训练自己用坐标法解题的能力;3、情感态度与价值观:(1)通过本节学习训练自己分析问题,解决问题和归纳总结能力,并认识到事物之间是相互联系的。
(2)培养学生数形结合及方程的思想,了解抛物线在实际问题中的初步应用。
二、教学重难点:1、教学重点:抛物线的几何性质及其运用2、教学难点:抛物线几何性质的运用三、教学过程:(一)、复习引入:1、抛物线定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线叫做抛物线的准线.2、抛物线的图象与表示形式:3、学生探究活动:回顾:探究椭圆、双曲线的几何性质时是从哪几个方面研究的?有哪些性质?抛物线呢?简单几何性质:(1)范围,(2)对称轴,(3)顶点,(4)离心率。
(二)新课讲授:1、建构数学归纳:抛物线的几何性质列表如下:程标轴 轴 轴 轴项系数符号决定开口方向,而且可以迅速算出焦点坐标为 (2p,0)和准线方程为x = 2-p 。
2、(学生活动一)问题2:通过和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?抛物线标准方程和椭圆、双曲线的标准方程不同的是:确定抛物线只要一个量p ,而确定椭圆和双曲线则需要两个量a,b 。
(1)、抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线(2)、抛物线只有一条对称轴,没有对称中心;(3)、抛物线只有一个顶点、一个焦点、一条准线(4)、抛物线的离心率是确定的,为1; 问题3:抛物线标准方程中的p 对抛物线开口有何影响?“P越大,开口越开阔”拓展:(1)通径:过焦点而垂直于对称轴的弦AB,称为抛物线的通径,|AB|=2p 利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.2p越大,抛物线张口越大.(2)焦半径:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。
高中数学备课教案圆锥曲线的方程与性质高中数学备课教案圆锥曲线的方程与性质一、概述圆锥曲线是数学中重要的曲线形式,常见于几何和物理学的问题中。
本教案将介绍圆锥曲线的方程与性质,并提供相关的示例和练习。
二、椭圆的方程与性质1. 椭圆的定义椭圆是由平面上一点F(焦点)和一条确定长度的线段2a(主轴)组成的图形,满足到焦点的距离之和等于定长2a。
2. 椭圆的方程椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别表示椭圆的长半轴和短半轴。
3. 椭圆的性质- 椭圆是一个闭合曲线,位于椭圆的内部的点满足到焦点的距离之和小于2a,位于椭圆的外部的点满足到焦点的距离之和大于2a。
- 长半轴的长度表示椭圆的伸长程度,短半轴的长度表示椭圆的扁平程度。
- 椭圆的中心点位于坐标原点。
三、双曲线的方程与性质1. 双曲线的定义双曲线是由平面上一点F(焦点)和一条确定长度的线段2a(主轴)组成的图形,满足到焦点的距离之差等于定长2a。
2. 双曲线的方程双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别表示双曲线的长半轴和短半轴。
3. 双曲线的性质- 双曲线是一个开放曲线,位于双曲线的内部的点满足到焦点的距离之差小于2a,位于双曲线的外部的点满足到焦点的距离之差大于2a。
- 长半轴的长度表示双曲线的伸长程度,短半轴的长度表示双曲线的扁平程度。
- 双曲线的两个分支在坐标原点处相交。
四、抛物线的方程与性质1. 抛物线的定义抛物线是由平面上一点F(焦点)和一条确定长度的线段2a(准线)组成的图形,满足到焦点的距离等于到准线的垂直距离。
2. 抛物线的方程抛物线的标准方程为y^2 = 4ax,其中a表示焦点到准线的距离。
3. 抛物线的性质- 抛物线是一个开口朝上或朝下的曲线,开口的方向取决于焦点和准线的位置关系。
- 抛物线的焦点位于坐标原点。
- 抛物线关于y轴对称,准线与抛物线垂直。
五、练习1. 将以下方程转化为标准方程,并画出对应的曲线:a) 9x^2 + 16y^2 = 144b) x^2/9 - y^2/4 = 1c) y^2 = 2x2. 判断以下方程对应的曲线是椭圆、双曲线还是抛物线,并指出焦点、准线等属性:a) x^2/25 + y^2/9 = 1b) x^2/16 - y^2/9 = 1c) y^2 = 4x六、总结通过本教案,我们学习了圆锥曲线中椭圆、双曲线和抛物线的方程与性质。
抛物线性质教案一、引言抛物线是数学中的基本曲线之一,广泛应用于物理学、工程学和计算机图形学等领域。
本教案将通过介绍抛物线的基本性质和相关公式,帮助学生全面理解和掌握抛物线的特点和应用。
二、教学目标1. 了解抛物线的定义和基本性质;2. 掌握抛物线的顶点坐标和焦点坐标的计算方法;3. 理解抛物线与直线的关系,学会通过求解方程组判断抛物线和直线的交点;4. 能够应用抛物线的性质解决实际问题。
三、教学内容1. 抛物线的定义和基本性质抛物线是平面上到定点(焦点)F 和一条定直线(准线)l 的距离相等的点的轨迹。
抛物线的对称轴是过焦点 F 并垂直于准线 l 的直线。
抛物线的顶点是抛物线与对称轴的交点。
抛物线的开口方向是焦点所在的一侧。
2. 抛物线的顶点坐标和焦点坐标的计算方法抛物线的标准方程为 y = ax^2 + bx + c,顶点坐标为 (-b/2a, -D/4a),其中 D = b^2 - 4ac。
焦点到准线的距离为 p,焦点坐标为 (h, k + p),其中 h = -b/2a,k= -D/4a,p = 1/4a。
3. 抛物线与直线的关系与交点的求解设抛物线和直线的方程分别为 y1 = ax^2 + bx + c 和 y2 = mx + n,求解方程组 y1 = y2,可得交点坐标。
4. 实际问题的应用抛物线在物理学、工程学和计算机图形学中的应用非常广泛。
例如,抛物线的形状可以用来模拟飞行物体的轨迹;飞行物体的发射角度和速度可以通过抛物线性质的计算得到。
另外,抛物线的形状也被用于天桥、拱门等工程设计中。
四、教学方法1. 教师讲解与示范教师通过讲解抛物线的定义和基本性质,示范计算抛物线的顶点坐标和焦点坐标,并演示如何求解抛物线和直线的交点。
2. 学生练习与合作学生在教师指导下进行练习,计算抛物线的顶点坐标和焦点坐标,以及抛物线和直线的交点。
3. 实践探究学生分组进行实验,利用抛物线性质计算飞行物体的轨迹,或者设计抛物线形状的建筑结构。
2019-2020年高二数学上第八章圆锥曲线方程: 8.5抛物线及其标准方程教案我们知道,与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹,当0<e<1时是椭圆,当e>1时是双曲线.那么,当e=1时它是什么曲线呢?把一根直尺固定在图板上直线l的位置(图8-19).把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A,取绳长等于点A到直角顶点C的长(即点A到直线l的距离),并且把绳子的另一端固定在图板上的一点F.用铅笔尖扣着绳子,使点A到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.从图8-19中可以看出,这条曲线上任意一点P到F的距离与它到直线l 的距离相等.把图板绕点F旋转90°,曲线就是初中见过的抛物线.平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.下面根据抛物线的定义,我们来求抛物线的方程.如图8-20,建立直角坐标系xOy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.设点M(x,y)是抛物线上任意一点,点M到l的距离为d.由抛物线的定义,抛物线就是集合P={M||MF|=d}.将上式两边平方并化简,得y2=2px(p>0).①方程①叫做抛物线的标准方程.它表示的抛物线的焦点在x轴的一条抛物线,由于它在坐标平面内的位置不同,方程也不同.所以抛物线的标准方程还有其他几种形式:y2=-2px,x2=2py,x2=-2py.这四种抛物线的图形、标准方程、焦点坐标以及准线方程列表如下:例1 (1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.线的标准方程是x2=-8y.小结:求标准方程:先定焦点的位置;再定一次项系数。
练习1,已知抛物线方程x=1/6y2 求焦点坐标,准线方程。
抛物线习题课教学目标:熟练掌握抛物线的性质及其求法。
重点:抛物线的求法难点:抛物线的证明教学过程:1 复习回顾简单回顾抛物线的四种方程及其性质2练习:⑴选择题:1,以F(0,1)为焦点,以L:y =- 1为准线的拋物线的方程式为何?(A) y2= 4x(B) y2=- 4x(C) x2= 4y(D) x2=- 4y(E) y =x2答案:C2.下列何者为拋物线y =ax2+bx +c的顶点在第四象限的充分条件?(A) a > 0,b > 0,c > 0 (B) a > 0,b > 0,c < 0(C) a > 0,b < 0,c < 0 (D) a < 0,b < 0,b2 - 4ac < 0答案:C3.设y =y =ax2+bx +c的图形如右,下列何者正确?(A)a< 0 (B) b > 0 (C) c < 0(D) a +b +c > 0 (E) b2- 4ac> 0答案:B,D,E⑵填空题:1.与直线2x + 3y + 2 = 0及点(1,- 1)等距离的点的轨迹方程式为9x2- 12xy + 4y2- 34x + 14y + 22 = 02.与y2 - 4x + 6y + 5 = 0共轴、共焦点且过(3,1)之拋物线方程为(y + 3)2=- 16(x- 4)或(y + 3)2= 4(x + 1)3.拋物线C 1:y 2 = 4x ,椭圆C 2:bx 2 + 9y 2 = 9b 有共同之焦点F 1,P 为C 1,C 2位于x 轴上方之交点,F 2为C 2之另一焦点,且∠PF 2F 1 = α,∠PF 1F 2 = β,求cos α.cos β =⑶证明题1.设线段PQ 为拋物线C 的焦点弦(过焦点的弦),L 为C 的准线,F 为焦点,如图所示,过P ,Q 分别作L 的垂线,令垂足依序为A ,B ,且M 为AB 的中点,试证:(1)MP ⊥MQ(2)MF ⊥PQ证明:(1) F 为拋物线C 的焦点,且弦PQ 过焦点F ,L 为准线,M 为AB 中点, PA ⊥L ,QB ⊥L ,所以PA =PF ,QB =QF ,因此AP +BQ =PF +QF =PQ 。
教学设计板书:§8.6 抛物线的简单几何性质抛物线的几何性质 例题 练习 课时小结 教 学 过 程教学内容 教师导拨与学生活动 设计意图 一、知识回顾1、 抛物线的定义:平面内与一个点F 和一条定直线L 的距离相等的点的轨迹叫做抛物线。
点F →焦点,直线L →准线。
2、 抛物线的标准方程。
图形 标准方程焦点坐标准线方程抛物线的定义及标准方程由学生口述,老师展示结论提出这一问题的研究方法——对比、数形结合二、引入课题若大桥的桥拱为抛物线型,其水面宽度为8米,拱顶离水面4米,方形货船宽4米,高2.6米. 问:能安全通过大桥吗?提出问题由学生完成,引导学生由“数学模型”到“数学问题”通过“过桥”事件模型引发学生探究问题本质的)0(22>=p px y )0,2(p2p x -=)0(22>-=p px y )0,2(p-2p x =)0(22>=p py x )2,0(p2p y -=)0(22>-=p py x )2,0(p -2p y =的解决问题的方法。
并思考抛物线的几何性质。
热情,同时巩固抛物线方程的知识并提出本节课的标题,起着承上启下的自然过度。
三、讲授新课我们根据抛物线的标准方程)0(22 p px y =来研究它的几何性质。
1、 范围:0≥x2、 对称性:关于x 轴对称抛物线的对称轴叫做抛物线的轴3、 顶点:(0,0)抛物线和它的轴的交点叫做抛物线的的顶点。
4、 离心率:e=1抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。
标准 方程图形范围 0≥x 0≤x0≥y0≤y对称 轴 关于x 轴对称 关于x 轴对称关于y 轴对称关于y 轴对称顶点 (0,0) 离心率e=1补充说明:1、抛物线只位于半个平面坐标内,虽然他可以无通过类比椭圆与双曲线的几何性质,从范围、对称性、顶点、离心率方面研究抛物线的几何性质,并由学生归纳总结出其他三种标准方程的几何性质。
精锐教育学科教师辅导教案学员编号:年 级: 课 时 数: 学员姓名: 辅导科目:学科教师:课程主题: 授课时间:学习目标1. 理解抛物线的定义及几何性质2. 会应用抛物线的性质解答综合题目。
教学内容知识梳理1、抛物线的定义定义:平面内与一个定点F 和一条定直线l (定点F 不在定直线l 上)的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
思考:如果定点F 在定直线l 上,动点的轨迹是什么? 2、抛物线的标准方程和性质标准方程 图形 顶点 对称轴 焦点 准线px y 22=(0,0) x 轴(2p,0) 2p x -= px y 22-=(0,0) x 轴 (-2p,0) 2p x =py x 22=(0,0) y 轴(0, 2p ) 2p y -= py x 22-=(0,0) y 轴(0,-2p ) 2p y =我们把上述四种位置的抛物线方程都称为抛物线的标准方程。
3、直线与抛物线它们的位置关系无外乎三种情况,即相切、相交、相离。
具体来说:(1)相离的问题常转化为二次曲线上的点到已知直线的距离的最大值或最小值来解决; (2)只有一个公共点,对抛物线表示直线与其相切或表示与其对称轴平行; (3)有两相异的公共点,表示相割,此时直线被截线段称为圆锥曲线的弦。
4、抛物线的特殊性质(1)过抛物线px y 22=(0>p )的焦点F 的直线l 交抛物线于),(11y x A 、),(22y x B 两点,设m FA =,n FB =,O 为原点,则有:(1)4221p x x =;(2)221p y y -=;(3)4-=OB OA k k ;(4)pn m 211=+。
(2)直线l 交抛物线px y 22=(0>p )于),(11y x A 、),(22y x B 两点,O 为原点,若OA ⊥OB ,则直线l 经过定点(2p ,0),2214p y y -=,反之亦然(证明略)。
抛物线的几何性质教案抛物线的几何性质教案一、教学目标:1. 知识与技能:掌握抛物线的定义,了解抛物线的几何性质。
2. 过程与方法:通过观察实例、辨析图形等方式,培养学生的观察能力和分析能力。
3. 情感态度价值观:培养学生对几何形状的兴趣,通过发现规律和解决问题的过程,提高学生的动手实践能力和逻辑思维能力。
二、教学重难点:1. 教学重点:抛物线的定义,抛物线的几何性质。
2. 教学难点:通过具体实例推导抛物线的一般式方程。
三、教学过程:Step 1:导入新课1. 通过投射物体的实例,引出抛物线的定义并写在黑板上。
2. 引导学生观察抛物线的形状,并讨论抛物线的特点。
Step 2:抛物线的定义1. 提问:根据之前的观察,你能用自己的话解释一下什么是抛物线吗?2. 学生回答后,教师给出正确答案并进行解释。
3. 学生跟随教师的解释,将定义写在笔记本上。
Step 3:抛物线的性质1. 引导学生观察抛物线的对称性,并讨论抛物线的对称轴是什么。
2. 引导学生发现抛物线的定点,并解释为什么这些点在同一条直线上。
3. 教师引导学生用引例方法,用一个实际问题(如抛射运动)解释为什么会产生抛物线,引导学生探索抛物线的另外两个性质。
(如,抛物线在对称轴上的点到定点的距离相等,抛物线上任意一点到定点和对称轴的距离相等)Step 4:抛物线的一般式方程1. 教师提出具体实例,引导学生观察,并用抛物线的定义和已知条件推导出一般式方程。
2. 学生与教师一起完成推导过程,并将结果写在黑板上。
3. 学生跟随教师的推导过程,将结果写在笔记本上。
Step 5:练习与巩固1. 教师出示几个实例,并要求学生根据观察结果,写出相应的抛物线方程。
2. 学生进行练习,并相互检查和讨论结果。
四、教学反思:通过本节课的教学,学生们对抛物线的定义和几何性质有了初步的了解。
通过观察、探索的方式,激发了学生的兴趣,让他们在实践中感受到了数学的魅力。
在教学过程中,教师注重培养学生的观察能力和分析能力,通过引导学生发现规律和解决问题的过程,培养学生的动手实践能力和逻辑思维能力。
《抛物线及其标准方程》教案(公开课一、教学内容本节课选自高中数学选修22第三章《圆锥曲线与方程》第三节《抛物线及其标准方程》。
具体内容包括:1. 抛物线的定义及简单性质;2. 抛物线的标准方程推导;3. 抛物线的焦点、准线及几何图形的绘制。
二、教学目标1. 让学生掌握抛物线的定义及其标准方程;2. 使学生理解抛物线的焦点、准线等概念,并能运用它们解决相关问题;3. 培养学生的空间想象能力及逻辑思维能力。
三、教学难点与重点1. 教学难点:抛物线标准方程的推导及焦点、准线的理解;2. 教学重点:抛物线的定义及标准方程的掌握。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:直尺、圆规、量角器。
五、教学过程1. 导入:通过展示生活中常见的抛物线图形,如篮球抛投轨迹、拱桥等,引发学生对抛物线的兴趣,进而导入新课。
2. 知识讲解:(1)抛物线的定义:介绍抛物线的概念,引导学生思考抛物线的特点;(2)抛物线的标准方程推导:以焦点在y轴上的抛物线为例,引导学生通过探究、合作交流的方式推导出标准方程y^2=2px(p>0);(3)抛物线的焦点、准线:讲解焦点、准线的定义,并引导学生通过实际操作,感受焦点、准线与抛物线的关系。
3. 例题讲解:选取具有代表性的例题,讲解解题思路和方法。
4. 随堂练习:设计难易适中的练习题,让学生巩固所学知识。
六、板书设计1. 定义:抛物线是平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹;2. 标准方程:y^2=2px(p>0);3. 例题解答步骤;4. 练习题及答案。
七、作业设计1. 作业题目:(1)求抛物线y^2=8x的焦点、准线;(2)已知抛物线的焦点为(2,0),求该抛物线的标准方程;(3)已知抛物线的焦点为(0,3),求该抛物线的标准方程。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义及标准方程掌握程度较好,但对焦点、准线的理解还需加强,今后教学中应增加实际操作环节,提高学生的理解程度;2. 拓展延伸:引导学生了解抛物线在其他学科领域的应用,如物理学中的抛体运动、天文学中的行星轨道等。
高二数学第八章圆锥曲线方程教材分析本章是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。
这一章主要学习椭圆、双曲线、抛物线的定义、方程、简单几何性质以及它们的简单应用6个小节,教学时间约为18课时,各小节的教学时间分配如下:8.1椭圆及其标准方程 3课时8.2椭圆的简单几何性质 4课时8.3双曲线及其标准方程 2课时8.4双曲线的简单几何性质 3课时8.5抛物线及其标准方程 2课时8.6抛物线的简单几何性质 2课时小结与复习 2课时一、内容与要求(一)本章的教学内容圆锥曲线这一章研究的对象是图形,包括三种曲线:椭圆、双曲线、抛物线,使用的方法是代数方法,它的基础是第七章学过的曲线和方程的概念我们知道,曲线可以看成是符合某种条件的点的轨迹,在解析几何里用坐标法研究曲线的一般程序是:建立适当的坐标系;求出曲线的方程;利用方程讨论曲线的几何性质;说明这些性质在实际中的应用在第七草里学生已经初步学习了这种方法,不过,“圆锥曲线”这一章中,这种研究曲线的方法和过程以及它的优势体现得最突出所以,“圆锥曲线”一直是解析几何的重点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用本章研究的椭圆、双曲线、抛物线的方程,主要是它们在直角坐标系中的标准方程,所谓标准方程就是曲线在标准位置时的方程,即曲线的中心或顶点在坐标原点,对称轴在坐标轴上时的方程,通过对这种方程的讨论得到的曲线的性质,可以利用平移图形推广到曲线的其他位置上去,所以,曲线的标准方程及它们在标准位置上的性质是本章的重点(二)教学要求本章的教学要求归纳起来有以下几点:1.掌握椭圆、双曲线、抛物线的定义、标准方程和几何性质;2.能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用;3.进一步掌握坐标方法;4.结合本章内容的教学,使学生进一步领会运动变化、对立统一的观点解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式和三角函数式的变形,这对学生能力的要求较高坐标方法是要求学生掌握的,但是,作为普通高中的必修课的教学要求不能过高,只能以绝大多数学生所能达到的程度为标准二、本章的主要特点(一)突出重点1.突出重点内容本章所研究的三种圆锥曲线,都是重要的曲线因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种曲线没有平均使用时间和力量,而是把重点放在椭圆上通过求椭圆的标准方程,使学生掌握列这一类轨迹方程的一般规律,化简的常用办法这样,在求双曲线、抛物线方程的时候,学生就可以独立地,或在教师的指导下比较顺利地完成在讨论椭圆的几何性质时,教材以椭圆为例详细地说明了在解析几何中讨论曲线几何性质的一般程序,以及怎样利用方程研究曲线的X围、对称性,怎样确定曲线上的点的位置等,这样,学生在学习双曲线和抛物线时,就可以练习使用这些方法,从而在掌握解析几何基本方法上得到锻炼和提高在讨论曲线的几何性质时,不求全,有选择地介绍主要性质以便学生集中精力掌握圆锥曲线的最基本的性质2.突出坐标方法要重视数学思想方法的教学,结合教学内容,把反映出来的数学思想方法的教学,作为高中数学教学的一项重要任务来完成根据圆锥曲线这部分内容的特点,在这一章里把训练学生掌握坐标法作为这一章数学方法教学的重点例如教材在第8.6节中选择了一个求正三角形边长的例题,解这个题目时,首先要证明正三角形的对称轴就是抛物线的对称轴,这是用方程证明图形性质的问题,并且是比较典型的(二)注意内容的整体性和训练的阶段性高中数学教材是一个整体,各部分知识和技能之间是有机联系着的,特别是教材采用了“混编”的形式,将代数、立体几何、解析几何合成统一的高中数学,这就更需要加强各章之间的联系,互相配合,发挥整体的效益(三)注意调动学生学习的主动性教材是为教学服务的,归根结底是为学生服务的学生是学习的主人,只有他们有主动性,才能达到学会学好的目的目前,高中学生被动学习的现象比较突出,在调动学生学习的主动性方面,注意交代知识的来龙去脉,教给学生解决问题的思路例如,在讲椭圆的几何性质时,由于这是第一次出现,所以教材增加了一些说明性的文字,首先说明解析几何里讨论曲线性质时,通常要讨论哪些性质,然后说明用方程讨论这些性质时的一般方法,这就使学生知道为什么学习,怎样去学习,学习就会变得主动又如,学生学习中遇到的另一个问题是不会分析问题,遇到问题不知从什么地方入手,只好被动地听讲教材注意提高例题的质量,在一些例题中给出了分析或小结(例题解后的注),通过对一些典型例题的分析,使学生学会分析解题思路,找出问题的关键,减少解题的盲目性;通过小结,指出解决问题的一般规律,提高学生解决问题的能力,提高学习效率三、教学中应注意的问题(一)注意准确地把握教学要求准确地把握教学要求包括两个方面,第一是把握好大纲的精神,第二是学生的实际根据大纲的精神,圆锥曲线部分是属于控制教学要求的内容,但目前由于考试的影响,这一部分教学的要求比较高,题目的难度很大如何控制教学要求是个难点高中的教学时间有限,作为全体学生都必须掌握的必修课程,应以最基础的知识和最基本的技能、能力为主,要使学生切实把基础打好不要过分重视技巧性很强的难题从学生的学习规律来说,训练不能一次完成,要循序渐进,打好基础才能有较大的发展余地,急于求成是不可取的;学生的基础、兴趣、志向都是不同的,要根据学生的实际提出恰当的教学要求,这样学生才有学习的积极性,才能使学生达到预定的教学要求(二)注意形数结合的教学解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在这一章的教学过程中,要时刻注意这种数学思想的教学,并注意以下几点:1.注意训练学生将几何图形的特征,用数或式表达出来,反过来,要使他们能根据点的坐标或曲线的方程,确定点的位置或曲线的性质,使学生能比较顺利地将形的问题转化为数或式的问题,将数或式的问题转化为形的问题。
抛物线的方程与性质【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
一般情况归纳:④从方程形式看,求抛物线的标准方程仅需确定一次项系数。
用待定系数法求抛物线的标准方程时,首先根据已知条件确定抛物线的标准方程的类型(一般需结合图形依据焦点的位置或开口方向定型),然后求一次项的系数,否则,应展开相应的讨论.⑤在求抛物线方程时,由于标准方程有四种形式,易混淆,可先根据题目的条件作出草图,确定方程的形式,再求参数p ,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一种情况。
高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。
2. 学习圆锥曲线的标准方程及其求法。
3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。
二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。
2. 难点:圆锥曲线标准方程的推导与应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。
2. 利用图形演示,让学生直观理解圆锥曲线的特点。
3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。
4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。
五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。
2. 教学素材:圆锥曲线的实例问题。
3. 学生用书:《高中数学》圆锥曲线相关章节。
教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。
请随时查阅。
六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。
2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。
3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。
4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。
2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。
3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。
八、课后作业1. 完成学生用书上的课后练习题。
2. 选取一个实际问题,运用圆锥曲线方程进行解答。
九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。
课 题:8.6抛物线的简单几何性质(二)教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程: 一、复习引入: 抛物线的几何性质:标准方程 图形顶点 对称轴 焦点 准线 离心率()022>=p pxyx y O F l ()0,0 x 轴 ⎪⎭⎫ ⎝⎛0,2p 2p x -= 1=e()022>-=p pxy x yO F l()0,0 x 轴 ⎪⎭⎫ ⎝⎛-0,2p 2p x = 1=e ()022>=p pyx ()0,0y 轴 ⎪⎭⎫ ⎝⎛2,0p 2p y -= 1=e()022>-=p pyx ()0,0y 轴 ⎪⎭⎫ ⎝⎛-2,0p 2p y = 1=e注意强调p 的几何意义:是焦点到准线的距离 抛物线不是双曲线的一支,抛物线不存在渐近线二、讲解新课:1.抛物线的焦半径及其应用:定义:抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径 焦半径公式:抛物线)0(22>=p px y ,0022x p p x PF +=+= 抛物线)0(22>-=p px y ,0022x p p x PF -=-= 抛物线)0(22>=p py x ,0022y p p y PF +=+= 抛物线)0(22>-=p py x ,0022y p p y PF -=-= 2.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 下面分别就公共点的个数进行讨论:对于)0(22>=p px y当直线为0y y =,即0=k ,直线平行于对称轴时,与抛物线只有唯一的交点 当0≠k ,设b kx y l +=:将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离综上,得:联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点)当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点)0<∆,无公共点 (相离)(2)相交弦长: 弦长公式:21k ad +∆=,其中a 和∆分别是02=++c bx ax (*)中二次项系数和判别式,k 为直线b kx y l +=:的斜率当代入消元消掉的是y 时,得到02=++c by ay ,此时弦长公式相应的变为:d =(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。
8.6 抛物线的简单几何性质
我们根据抛物线的标准方程
y2=2px(p>0)
①
来研究它的几何性质.
1.范围
因为p>0,由方程①可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程①不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程①中,当y=0时,x=0,因此抛物线①的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
例1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过
解:因为抛物线关于x轴对称,它的顶点在原点,并且经过点M(2,
y2=2px(p>0).
因为点M在抛物线上,所以
即
p=2.
因此所求方程是
y2=4x.
的范围内几个点的坐标,得
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(图8-23).
在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
这就是标准方程中2p的一种几何意义(图8-24).利用抛物线的几何性
抛物线基本特征的草图.
例2探照灯反射镜的轴截面是抛物线的一部分(图8-25(1)),光源位于抛物线的焦点处.已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.
解:如图8-25(2),在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是y2=2px(p>0).由已知条件可得点A的坐标是(40,30),代入方程,得
302=2p×40,
练习
1.求适合下列条件的抛物线方程:
(1)顶点在原点,关于x轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
(3)顶点在原点,准线是x=4;
(4)焦点是F(0,-8),准线是y=8.
小结:
1、抛物线的几何性质
2、在解题过程中要注意利用数形结合的数学思想
作业:
课本P123 1、2、3。