初一:数的分类及概念
- 格式:docx
- 大小:32.25 KB
- 文档页数:6
初一数学笔记整理大全单元1:数的概念和运算数的分类:自然数:正整数,包括0。
整数:包括正整数、负整数和0。
有理数:可以表示为两个整数的比例,包括整数和分数。
实数:包括有理数和无理数。
运算法则:加法法则:交换律、结合律、零元素、相反数。
减法法则:减去一个数等于加上它的相反数。
乘法法则:交换律、结合律、分配律、零因子。
除法法则:除以一个非零数等于乘以它的倒数。
单元2:代数式代数式的概念:由数、字母和运算符号组成的式子。
代数式的计算:合并同类项:将含有相同字母的项进行合并。
展开式:将乘法运算进行展开。
因式分解:将代数式分解为多个因子的乘积。
代数式的应用:代入值:给代数式中的字母赋值,求出结果。
解方程:通过代数式的等于关系,求出未知数的值。
单元3:方程与不等式方程的概念:含有未知数的等式。
一元一次方程:解方程的步骤:去括号、合并同类项、移项、化简。
检验解:将解代入方程,检验等式是否成立。
一元一次不等式:不等式的性质:对不等式两边同时加减一个数、乘除一个正数,不等号方向不变;乘除一个负数,不等号方向改变。
解不等式的步骤:移项、化简、确定不等号的方向。
一元一次方程与不等式的应用:实际问题的转化:将实际问题转化为数学方程或不等式,通过求解得到答案。
单元4:图形的认识点、线、面的基本概念。
直线与曲线的区别与特点。
角的概念:顶点、边、内角、外角。
三角形的分类:按边长分类(等边三角形、等腰三角形、普通三角形)、按角度分类(锐角三角形、直角三角形、钝角三角形)。
正方形、矩形、平行四边形、菱形的特点与性质。
圆的概念:圆心、半径、直径、弦、弧、圆周角。
单元5:平面图形的性质和计算直角三角形的性质与定理:勾股定理、正弦定理、余弦定理。
平行线与平行四边形的性质与定理:同位角、内错角、对顶角。
三角形的面积计算:等腰三角形、普通三角形、任意三角形。
矩形、正方形、平行四边形、梯形的面积计算公式。
圆的面积和周长计算公式。
单元6:数据统计数据的收集与整理:调查、观察、实验。
《初一数学知识点总结大全》初一数学是整个中学数学学习的基础,它不仅为后续的学习奠定了重要的基石,还培养了学生的逻辑思维和解决问题的能力。
下面将对初一数学的知识点进行全面总结。
一、有理数1. 有理数的概念有理数包括正有理数、负有理数和零。
可以用分数形式表示的数都是有理数。
2. 有理数的分类(1)按正负性分类:正有理数、零、负有理数。
(2)按整数和分数分类:整数包括正整数、零、负整数;分数包括正分数、负分数。
3. 数轴规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
4. 相反数只有符号不同的两个数叫做互为相反数。
零的相反数是零。
5. 绝对值数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
6. 有理数的大小比较(1)正数大于零,零大于负数,正数大于负数。
(2)两个负数,绝对值大的反而小。
7. 有理数的加减法(1)加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数。
(2)减法法则:减去一个数,等于加上这个数的相反数。
8. 有理数的乘除法(1)乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
(2)除法法则:除以一个不等于零的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数都得零。
9. 有理数的乘方求 n 个相同因数 a 的积的运算叫做乘方,记作\(a^n\)。
正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,零的任何正整数次幂都是零。
二、整式的加减1. 整式的概念单项式和多项式统称为整式。
2. 单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
初一数学上册知识点总结大全数系自然数•自然数的概念•自然数的性质:加法、乘法的封闭性、结合律、交换律、分配律•自然数的分类整数•整数的概念•整数的性质:加法、乘法的封闭性、结合律、交换律、分配律、相反数、绝对值有理数•有理数的概念•有理数的分类:正有理数、负有理数、零•有理数加减乘除的性质实数•实数的概念•实数的分类代数式代数式的概念•代数式的定义•项、系数、次数的定义•代数式的分类代数式的运算•代数式的加减乘除•同类项的合并、分拆•因式分解•化简、展开一元一次方程•方程的概念•一元一次方程的定义•解一元一次方程的方法•未知数的含义一元一次方程的应用•问题与一元一次方程•求解一元一次方程的应用题平面图形平面直角坐标系•坐标系的引入•平面直角坐标系的定义•坐标、横纵坐标轴•坐标系上点的表示和名称平面图形•平面图形的分类•四边形、三角形、圆•图形的名称、性质和分类标准平面图形的运算•判断两个图形是否相等•判断两个图形是否全等•连通、包含、相交关系平面图形的计算•计算三角形的面积•计算四边形的面积•计算圆的周长、面积数据统计统计的概念•统计的定义•统计数据的分类统计量的概念•频数、频率和频率分布•极差、中位数、众数和平均数的定义•统计量的求解统计图表的制作•数据的分类和分组•构建数据的统计图表•统计图表的解析和应用空间与立体图形空间的概念•空间的概念•空间的三条坐标轴•空间直角坐标系立体图形的概念•立体图形的定义•立体图形的分类•立体图形的名称、性质和分类标准立体图形的运算•两立体图形的比较•两立体图形的相似•立体图形的切割、展开和摆放立体图形的计算•计算立体图形的表面积•计算立体图形的体积计算器使用计算器的键盘•计算器键盘的概念和位置•计算器常用键的名称和用途•计算器不同键的使用规则和特点计算器的常用功能•计算器的基本四则运算•计算器的比例运算•计算器的开方、乘方等高级运算计算器的误差处理•计算器的误差定义和分类•计算器误差的来源和解法•使用计算器时注意事项以上为初一数学上册常见知识点的汇总,希望这个文档能帮助到需要的学生,让大家更好地掌握初一数学上册的知识。
初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
完整版初一数学知识点归纳
初一数学知识点归纳如下:
1. 数的基本概念和运算:包括正整数、负整数、零、自然数等的概念与性质,加法、减法、乘法和除法的基本运算法则。
2. 算式的变形和计算:包括整数的加减法计算、乘法计算、除法计算,以及计算过程中的算式变形。
3. 分数:包括分数的概念、分数的加减法、乘法和除法,以及分数的化简和比较大小。
4. 百分数和百分数的应用:包括百分数的概念和运算、百分数与实际生活中的应用。
5. 小数:包括小数的概念与性质、小数的加减法、乘法和除法,以及小数和分数之间的转化。
6. 坐标系和平面图形:包括平面直角坐标系的构建和使用,平面图形的基本概念与性质,如点、直线、线段、角等。
7. 四边形和三角形的面积:包括四边形和三角形的面积的计算和应用。
8. 平移、旋转和对称:包括平移、旋转和对称操作的概念和性质,以及平移、旋转和对称对图形的影响。
9. 数据的收集和处理:包括调查数据的收集方法、数据的分类和统计,以及数据图表的制作和解读。
10. 简单方程的解法:包括一元一次方程式和应用问题的解法。
初一数学知识点总结整理一、数与式1. 数的概念:自然数、整数、有理数、无理数、实数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的概念和加减法:分数的定义和基本性质。
4. 整数和分数的混合运算。
5. 空集的概念和表示法。
6. 等式的概念:等式的性质、等式的移项。
7. 代数式:字母的含义、代数式的性质。
8. 用字母表示数:字母代表数的大小、字母代表数的性质。
9. 代数式的加减法:同类项的加减法、同指数项的加减法。
10. 解一元一次方程:逆运算法解方程、两边乘以同一个数解方程。
11. 解一元一次方程的实际问题。
二、数的计算1. 大数的认识:亿、万亿的认识、大数的读法和写法。
2. 大数的加减法:列竖式计算、进位和退位。
3. 大数的乘法:列竖式计算、进位的规律。
4. 大数的除法:列竖式计算、退位和进位的规律。
5. 规则运算:优先级与结合律。
三、图形与几何1. 图形的分类:几何图形、平面图形、立体图形。
2. 角的概念和性质:角的定义、角的种类和性质。
3. 直线和线段的性质:直线的定义、线段的定义、直线和线段的比较。
4. 直角、钝角和锐角的认识与比较。
5. 两条直线的位置关系:平行线、垂直线、相交线。
6. 平行四边形的性质:对角线的性质、边的性质。
7. 正方形、长方形、菱形、矩形的性质。
8. 三角形的构造与性质:三角形的定义和分类、三角形的性质。
9. 相似三角形的定义和性质:相似三角形的判定、相似三角形的比例关系。
10. 直角三角形的性质和勾股定理。
11. 平行线的判定和性质:与平行线有关的角、平行线与平行线的交线。
12. 圆的概念和性质:圆的定义、圆心和半径、圆周长和面积。
四、数据与概率1. 数据的收集和整理:调查和询问、数据的组织和表示方法。
2. 平均值的概念和计算:平均数、中位数、众数的计算。
3. 统计图表的制作和分析:条形统计图、折线统计图、饼状统计图。
4. 概率的基本概念和计算:概率的定义、实验和事件、概率的计算。
人教版初一数学知识点总结1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.人教版初一数学知识点总结2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。
它们都是比0小的数。
0既不是正数也不是负数。
我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。
有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。
一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:正整数整数零有理数负整数正分数按有理数的性质符号分类:正整数正有理数正分数有理数0分数负整数负整数负有理数负分数2、正数和负数用来表示拥有相反意义的数。
(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三因素是:原点、正方向、单位长度。
(三)相反数1、定义:只有符号不一样的两个数互为相反数。
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。
3、代数定义:只有符号不一样的两个数叫做互为相反数,0 的相反数是0。
(四)绝对值1、定义:在数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
2、几何定义:一个数a的绝对值就是数轴上表示数 a 的点与原点的距离。
3、代数定义:一个正数的绝对值是它自己,一个负数的绝对值是它的相反数,是 0。
0 的绝对值即关于任何有理数a,都有 |a| =a (a> 0),0( a= 0)– a(a< 0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若 |a| = |b|, 则 a = b 或 a =- b.(3)若 |a|+|b| =0,则 |a| = 0,且 |b| = 0.有关结论:(1) 0 的相反数是它自己。
(2)非负数的绝对值是它自己。
(3)非正数的绝对值是它的相反数。
(4)绝对值最小的数是 0。
(5)互为相反数的两个数的绝对值相等。
(6)任何数的绝对值都是它的正数或0,即 |a| ≥ 0。
(五)倒数1、定义:乘积为“1”的两个数互为倒数。
2、求法:颠倒这个数的分子和分母。
13、a( a≠ 0)的倒数是 a .有理数的运算一、有理数的加法法例:1、同号两数相加,取同样的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。
2024年湘教版初一数学知识点总结____年湘教版初一数学知识点总结一、数的认识1. 数的基础概念:整数、自然数、零、数轴2. 数的表示方法:数字符号、数位、数的读法3. 比较大小:比较两个整数大小的方法4. 数的分类:正数、负数5. 数的相反数和绝对值:相反数的概念、绝对值的概念与计算二、算术运算1. 四则运算:加法、减法、乘法、除法的计算与应用2. 运算律:加法结合律、乘法结合律、加法交换律、乘法交换律、分配律3. 小数的运算:小数的加减法、乘法、除法4. 分数的运算:分数的加减法、乘法、除法5. 括号的运算:带括号的四则运算6. 整数的运算:整数的加减法、乘法、除法三、比例与比例运算1. 比例的概念:比例与比例的意义2. 比例的性质:比例的等价性、比例的反比例性质3. 比例的应用:比例在实际问题中的应用4. 倍数与倍比:倍数的概念、倍比的意义四、数的倍数与公约数、公倍数1. 倍数的概念:倍数的定义与判断2. 公约数与公倍数:公约数的概念、公倍数的概念3. 最大公约数与最小公倍数:最大公约数的求法、最小公倍数的求法4. 分数的化简:约分与分数的最简形式五、分数的加减法与混合运算1. 分数的加法:同分母分数的加法、异分母分数的加法2. 分数的减法:同分母分数的减法、异分母分数的减法3. 带分数的加减法:带分数的加法、带分数的减法4. 分数与整数的加减法:分数与整数的加法、分数与整数的减法六、小数与百分数1. 小数与分数的关系:小数与分数的相互转换2. 小数与百分数的关系:小数与百分数的相互转换3. 百分数的意义与运用:百分数的定义、百分数在实际问题中的应用4. 百分数的计算:百分数的增减、乘除法七、实数的认识1. 无理数的概念:无理数与有理数的关系2. 实数的有序性:实数的大小比较、实数的大小性质3. 实数的运算:实数的加法、减法、乘法、除法4. 实数的应用:实数在实际问题中的应用八、图形的认识与表示1. 二维图形:点、线、线段、射线、角、平行线、垂直线、平行四边形、三角形、四边形、多边形、圆等的概念与性质2. 三维图形:立体图形的概念与种类3. 简单图形的绘制与测量:直线的绘制与测量、角的绘制与测量、实物对应的图形九、图形的运动1. 图形的平移:平移的概念与性质、平移的表示方法2. 图形的旋转:旋转的概念与性质、旋转的表示方法3. 图形的对称:对称的概念与性质、对称的表示方法4. 图形的相似:相似的概念与性质、相似的判定方法十、图形的应用1. 图形的投影:图形的正射投影与斜投影2. 图形的计算:图形面积的计算、图形周长的计算、体积的计算3. 图形的应用:图形在实际问题中的应用2024年湘教版初一数学知识点总结(2)2024年湘教版初一数学知识点总结(3)湘教版初一数学主要包括以下几个知识点:1. 小数与分数小数与分数之间的相互转换是初中数学的基础。
初一数学上册必背知识点总结
以下是初一数学上册的一些必背知识点总结:
1. 数的分类和集合:自然数、整数、有理数、实数等的概念和分类。
2. 数的运算:加法、减法、乘法、除法,以及它们之间的性质和规律。
3. 数轴和有理数的大小比较:利用数轴表示有理数,并掌握有理数的大小比较方法。
4. 整数的加减法:正数加减正数、负数加减负数、正数与负数相加、零与正数相加、零与负数相加等的运算方法。
5. 有理数的加减法:有理数加减有理数的运算法则。
6. 分数的概念和运算:分数的表示、分数的化简、分数的加减乘除等运算。
7. 小数的概念和运算:小数的表示、小数的加减乘除等运算。
8. 百分数的概念和运算:百分数的表示、百分数的转化、百分数与分数、小数的相互转化等。
9. 平方根和立方根:平方根的概念、立方根的概念、平方根和立方根的计算方法。
10. 算式的变形和推理:算式的基本性质、算式的变形和推理方法。
11. 常用的计算方法和技巧:口算技巧、竖式计算、列竖式解决问题等。
以上是初一数学上册的一些必背知识点总结,希望对你有帮助!但请注意,具体内容可能会因教材版本和学校的不同而有所差异,建议以教材为准。
初一数学知识点总结归纳义务教育阶段的初一数学主要培养学生的数学思维能力、逻辑推理和问题解决能力。
以下是初一数学的主要知识点总结归纳:1.数的概念与运算(1)自然数及其性质:正整数、零和整数的概念及表示方法;(2)整数及其性质:相反数与绝对值、整数的加减运算;(3)分数的概念:分数的分子和分母、带分数;(4)小数的概念:小数点的表示和读法、小数与分数的转换;(5)数的大小和大小的比较;(6)数的四则运算:整数的加减乘除、分数的加减乘除、小数的加减乘除;(7)多个数的加减乘除运算。
2.几何知识(1)平面图形的认识:点、线、面、平行线、垂直线、角;(2)直角与直角三角形:直角、直角三角形的概念及性质;(3)三角形及其性质:三角形的分类、三角形的边和角的关系、三角形的相似性质;(4)四边形及其性质:四边形的分类、四边形的性质和判定方法;(5)原型图形的认识:正方形、长方形、平行四边形、菱形、梯形;(6)圆及其性质:圆的概念、圆周、圆的面积。
3.代数与方程(1)代数式与多项式:代数式的概念及运算、多项式的概念及简单运算;(2)字母的应用:字母的代表意义及字母在数中的应用;(3)方程:方程的概念、解方程、一元一次方程的应用。
4.统计与概率(1)统计的基本概念:调查、数据、数据的收集和整理;(2)图表分析与应用:直方图、折线图、饼图的绘制和解读;(3)概率与统计:事件、样本空间、概率的基本概念、简单事件的概率计算。
5.逻辑与证明(1)命题与逻辑:命题的概念、命题关系、逻辑运算;(2)图形的证明:相等的证明、等腰三角形的证明。
6.数学计算与问题解决(1)数学计算的基本规则与技巧:整数、分数、小数的计算、注意计算顺序和有效数字的处理;(2)问题解决:数学问题的文字理解与转化、定量关系的建立与应用、解决实际问题的策略。
初一数学的知识点比较多,但是同学们不必担心,只要善于总结与归纳,掌握基本规则和方法,切实提高数学思维能力和解决问题的能力,就能够顺利掌握初一数学内容。
第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)规定了原点,正方向和单位长度的直线叫数轴②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律加法交换律,加法结合律,乘法交换律,乘法结合律,乘法分配律3.运算顺序:A.高级运算到低级运算;三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
3. ||1-2+||2-3+…+||99-100第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
初一数学上册必背知识点归纳
一、数的概念和数量关系
1. 数的分类:自然数、整数、有理数、无理数
2. 数的比较:大于、小于、等于
3. 数的运算:加法、减法、乘法、除法
4. 数的表示法:标数法、科学计数法
二、代数式与函数
1. 代数式的基本概念:字母、系数、幂次、项、多项式、恒等式
2. 一元一次方程:解方程的基本思想与方法
3. 函数的概念:函数的自变量、函数表达式、函数值、函数图象
4. 直线函数:函数的图象、函数的斜率与截距、函数的应用
三、图形与运动
1. 基本几何图形:点、线、面
2. 三角形:三边关系、角的关系、三角形的分类
3. 运动与速度:速度的概念、速度的计算、速度的图象
四、比例与百分数
1. 比例的基本概念:比例关系、比例的性质、比例的运算
2. 百分数的基本概念:百分数与百分数计算
3. 比例与百分数在实际生活中的应用
五、数据与概率
1. 统计图表:直方图、折线图、饼图
2. 数据的分析与解释:数据的集中趋势、数据的离散程度、数据的关系与综合应用
3. 概率的基本概念:事件、频率与概率、概率与运算
六、空间与形体
1. 几何体的认识和分类:立方体、长方体、正方体、棱台、棱锥、棱柱、圆锥、圆柱、球
2. 空间观念的培养和规律的探究
以上是初一数学上册的必背知识点归纳,希望对你的学习有所帮助。
七年级上册数学概念及公式:概念:1.正数、负数:大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数。
2.有理数:整数和分数统称为有理数。
3.相反数:符号相反、绝对值相等的两个数互为相反数。
4.绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
5.数轴:人们通常用一条直线上的点表示数,这条直线叫做数轴。
6.乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
7.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加。
8.乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
9.加法交换律:两个数相加,交换加数的位置,和不变。
10.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
公式:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
5.两个负数相减,得它们的绝对值的和。
6.异号两数相乘除,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
7.一数除以一个不为0的数,等于乘这个数的倒数。
8.一个数同0相乘,仍得0。
9.除以一个不为0的数,等于乘这个数的倒数。
10.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
110和任何整式相乘,先把这个整式的每一项分别乘10,再把所得的积相加。
11.整式的加减运算实际上就是去括号、合并同类项。
一般步骤是:先去括号,然后合并同类项。
12.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
13.合并同类项:把同类项的系数相加,字母和字母的指数不变。
14.平方差公式:两数和乘两数差,等于两数平方差。
15.完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
初一数学上册知识点归纳总结一. 数学基础知识1.1 数的分类自然数、整数、有理数、无理数等数的概念,包含有限数和无限数的概念。
1.2 数轴及相关符号数轴的概念,以及在数轴上数字的正负、大小关系,并着重说明了负数绝对值的概念。
1.3 算式和式子算式和式子的概念,关系及相互转化,同时着重说明方程的概念,以及如何解方程。
1.4 数的四则运算加、减、乘、除四种基本运算符号的概念和运算方法。
1.5 分数分数的概念,分母分子、真分数假分数的分类,以及分数的加减乘除等基本运算方法。
1.6 十进位制十进位制的概念,包括整数和小数的读法,以及如何进行进位和退位。
二. 图形的初步认识2.1 点、线、面三种基本几何要素的概念,以及“面积”和“周长”这两个概念。
2.2 角角的概念,角的度量单位及表示方法,以及常见角(如:直角、钝角、锐角)概念。
2.3 直线与平面图形如点、线段、射线、角、三角形、四边形、圆形等。
三. 各种力的初步认识了解都有哪些基本力,分别对应物体运动或静止时的效果。
四. 数据和图表4.1 统计数据关于平均数、中位数、众数、极差和标准差的概念和计算方法。
4.2 图表包括折线图、柱状图、饼状图、雷达图等。
五. 比例和相似5.1 比例及应用比例的概念及基本性质,比例的应用等。
5.2 相似相似的概念及基本性质,相似比的计算及其应用,类比的概念及其推广。
六. 线性方程组初步6.1 二元一次方程结题法主要是应用消元法和代入法进行问题求解。
6.2 解三元一次方程涉及三元一次方程组,需要先利用二元一次方程组的知识对其进行分解,再应用消元法或代入法的解法。
七. 坐标系初步了解笛卡尔坐标系及其基本性质,学会利用坐标系解决某些几何问题。
八. 实数初步了解实数的深刻意义和含义,学会利用实数解决各种数学问题。
九. 视频学习通过较为生动的视频讲解,帮助学生更好的掌握一些基本数学概念。
结语:初一数学上册知识点虽然不是很难,但是需要同学们认真掌握,理解其中的数学原理,这样才能打下数学学习的基础,为以后的数学学习打下更加坚实的基础。
初一数学数的分类及运算规则归纳数学是一门重要的学科,而数的分类和运算规则是数学中的基础知识之一。
在初一阶段,学生需要掌握数的分类和运算规则,以便能够顺利学习后续的数学知识。
本文将对初一数学中常见的数的分类以及运算规则进行归纳和总结。
一、数的分类1. 自然数:自然数是最基本的数,表示人们所熟知的一、二、三等数,用符号N表示,N={1,2,3,……}。
2. 整数:整数是包括自然数、0和负整数的集合,用符号Z表示,Z={……,-3,-2,-1,0,1,2,3,……}。
3. 有理数:有理数是可以表示为两个整数的比例的数,包括纯小数、纯循环小数和有限小数等,用符号Q表示。
4. 无理数:无理数是不能表示为两个整数的比例的数,它们的十进制表示形式是无限不循环的小数,例如π和√2等。
5. 实数:实数是包括有理数和无理数的集合,用符号R表示。
二、数的运算规则1. 加法规则:(1) 同号相加:同号数相加,取其绝对值相加,符号不变。
例如:5+3=8,(-7)+(-2)=-(7+2)=-9。
(2) 异号相加:异号数相加,取绝对值较大的数减去绝对值较小的数,结果的符号取绝对值较大的数的符号。
例如:4+(-5)=4-5=-1,(-8)+6=6-8=-2。
2. 减法规则:减法可以转化为加法运算,即a-b=a+(-b)。
3. 乘法规则:(1) 同号相乘:同号数相乘,结果为正数。
例如:5×3=15,(-7)×(-2)=14。
(2) 异号相乘:异号数相乘,结果为负数。
例如:(-4)×2=-8,5×(-3)=-15。
4. 除法规则:除法可以转化为乘法运算,即a÷b=a×(1/b)。
5. 乘方规则:(1) 正数的乘方:如果a是正数,n是自然数,则a的n次方等于连乘n个a。
例如:2的3次方等于2×2×2=8。
(2) 负数的乘方:如果a是负数,n是自然数且n为偶数,则a的n次方等于连乘n个a,结果为正数;若n为奇数,则结果为负数。
数的分类及概念实数:无理数(无限不循环小数)有理数正分数负分数正整数O负整数整数分数正无理数负无理数“分类”的原则:1相称(不重、不漏)2有标准2非负数:正实数与零的统称。
Ia1(a⅞0)a为一切实数)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:性质:A.a≠1∕a(a≠±1);B.1/a中,aW0;C.OVaV1时1∕a>1;a>1时,1/a<1;D.积为Io4.相反数:性质:A.a/0时,0/』人.@与f在数轴上的位置;(;.和为0,商为-1。
5.数轴:(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质教、金数奇数:2n-1(n为自然数)偶数:2n(n为自然数)7.绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是Oo代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②IaI20,符号“II”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“||”出现,其关键一步是去掉“II”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个一加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1.已知:a、b、X在数轴上的位置如下图,求证:Ix-a∣+∣χ-b∣=b-a.2.已知:a-b=-2且ab<O,(a≠0,b≠0),判断a、b的符号。
第二章代数式单项式多项式整式分式样有理式无理式代数式重要概念1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积一包括单独的一个数或字母)几个单项式的和,叫做多项式。
①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的平方根([a20—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=∣a∣②区别:Ia1中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数⑴(一事,乘方运算)①a>0时,>0;②aVO时,>0(n是偶数),VO(n是奇数)⑵零指数:=1(a≠0)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:=(m≠0)⑵符号法则:5.乘法法则:⑴单X单;⑵单X多;⑶多X多。
6.乘法公式:(正、逆用)7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:7提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:=;;(a⅛O,b⅛O);(a2O,b>O)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;(3)分母有理化:A.;B.;C..11.科学记数法16引耳其他回答(1)宝来7级*-06-19,第一章整式的运算1、整式:只含“x”“÷”运算的代数式叫单项式含“X”“÷,, “一”的代数式叫多项式2、整式的加减:(1)去括号时,括号前是时,直接去括号。
(2)去括号时,括号前是“一”时,括号内符号要变号。
(3)整式加减的实质是合并同类项。
3、同底数塞的乘法:同底数的幕相乘,底数不变,指数相加。
4、幕的乘方与积的乘方:(1)幕的乘方,底数不变,指数相乘。
(2)积的乘方,等于各个底数的乘方。
5、同底数的幕的除法:(1)同底数的幕相除,底数不变,指数相减。
(2)零指数和负整数指数:aθ=1(a≠0)a-p=1/ap(a≠0,P为正整数)6、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幕分别相乘,其余字母连同它的指数不变,作为积的因式。
(2)单项式与多项式相乘:m(a+b)=ma+mb(3)多项式与多项式相乘:(m+n)(a+b)=ma+na+mb+nb7、平方差公式:(1)平方差公式:(a+b)(a-b)=a2-b2(2)两数和与这两数差的积,等于它们的平方差。
8、完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2(2)两个完全平方公式之间的关系:(a+b)2-(a-b)2=4ab9、整式的除法:(1)单项式相除,把系数、同底数事分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章并行线与相交线1、余角与补角:(1)如果两个角的和是直角,那么称这两个角互为余角。
(2)如果两个角的和是平角,那么称这两个角互为补角。
(3)同角或等角的余角相等,同角或等角的补角相等。
(4)对等角相等。
2、探索直线平行的条件:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
3、并行线的特征:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
4、用标尺作线段和角:(1)只用没有刻度的直尺和圆规作图称为标尺作图。
(2)标尺作图时,直尺的功能是:作①直线,②线段,③射线;圆规的功能是①画图,②画弧。
第三章生活中的资料1、认识百万分之一:1米=106微米,1米=109纳米,百万分之一米即1微米=10-6米,1纳米=10-9。
2、近似数和有效数字:(1)测量的结果都是近似的。
(2)利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
(3)对于一个近似数,从左边第一个不是0的数字数起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
3、世界新生儿图:(1)我们知道的统计图有:条形统计图,扇形统计图,折线统计图。
(2)“象形统计图”的实质就是图形统计图。
第四章概率1、游戏公平吗:(1)游戏公平是指双方获胜的可能性相同,只有当双方获胜的可能性相同时,游戏才公平,否则游戏不公平。
(2)利用数轴上0、1之间的部分表示可能性的大小。
必然发生的可能性用1表示,不可能事件发生的可能性用0表示,不确定事件发生的可能性在0〜1之间。
2、摸到红球的概率:(1)通常用P二摸到红球可能出现的结果数/摸出一球所有可能出现的结果数来表示摸到红球的可能性,也称为摸到红球的概率。
(2)必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)二0;如果A为不确定事件,那么0<P(A)<13、停留在黑砖上的概率:几何概型的意义:几何事件发生的概率等于该事件所有可能所组成图形的面积除以所有可能结果所组成图形的面积。
P不确定事件二不确定事件的面积/时间总面积补充:第五章三角形1、认识三角形:(1)由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形(2)两点之间的所有连线中,直线最短。
(3)三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(4)三角形的内角和为180。
;直角三角形的两个锐角互余。
(5)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。
(6)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(7)从三角形的一个顶点向它的对边所在直线作垂线,顶点与对边之间的线段叫做三角形的高线。
2、图形的全等:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
3、全等三角形:全等三角形的对应边相等,对应叫相等。
4、探索三角形全等的条件:(1)三边对应相等的两个三角形全等,简写为边边边或SSS。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为角边角或ASAo (3)两角和其中一角的对边对应相等的两个三角形全等,简写为角角边或AAS。
(4)两边和它们的夹角对应相等的两个三角形全等,简写成边角边或SASo 5、作三角形:00000000000000006、利用三角形全等测距离判定三角形全等的方法有角角边、角边角、边角边、边边边。
7、探索直角三角形全等的条件:(1)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或直1”(2)判定两个直角三角形全等,方法有H1,SAS,ASA,SSS,AAS o共五种。