图解汽车(7)3种自动变速箱结构解析
- 格式:docx
- 大小:16.79 KB
- 文档页数:3
一组图文详解:AT变速箱(有级式、无极式、综合式)本期机械知识分享《AT变速箱》,共91页PPT文档,文末提供了下载方式。
1、有级式变速器。
采用齿轮传动,具有若干个数值的传动比。
将传动比等于1的称为直接档;将传动比大于1的称为超速档。
常见的形式有普通齿轮式和行星齿轮式。
2、无级式变速器。
相对有级式变速器而言,无级式变速器的传动比在一定的范围内是可以无限连续变化的。
常见的有电力式、液压式、机械式三种。
电力式无级变速器的变速传动部件为直流串激电动机。
液力式无级变速器的传动部件为液力变矩器。
机械式无级变速器一般采用直径可变的传动轮来实现无级变速。
3、综合式。
传动比在最大值与最小值之间的几个不连续的范围内作无级变化。
例如由液力变矩器和齿轮变速机构组成的液力机械式变速器就属于综合式变速器。
这种综合式变速器目前使用非常普遍。
液压散热器等部件组成:1、液力变矩器:位于自动变速箱的最前端,安装在发动机的飞轮上,作用与离合器相似。
液力变矩器利用液力传动将发动机输出的转矩传递给齿轮变速机构的输入轴。
液力变矩器能实现无级变速,并具有一定的减速增矩的功能。
2、齿轮变速机构:是变速器的重要组成部分,它包括齿轮机构和换挡执行机构。
换挡机构是使齿轮处于不同的档位,以实现不同的转动比。
D82A的齿轮机构有4个前进档和一个倒档。
这些档位与液力变矩器相互配合可实现汽车从起步到最高车速的全过程的无级变速。
3、油泵:安装在液力变矩器的后部,由液力变矩器泵轮直接驱动,为液力变矩器、控制系统、换挡控制机构提供一定压力的油压。
4、控制系统:分为两种,一种液力控制式(液控式);一种电力控制式(电控式)。
D82A为电控式,除了阀板及液压管路之外,还包括电控单元(ECU)、传感器、执行器、控制电路。
阀板总称安装在齿轮变速机构下方的油底壳内。
驾驶者通过选档手柄改变阀板内的手动阀的位置,控制系统通过手动阀的位置、节气门的位置、车速等因素,按照一定的规律控制齿轮变速机构重的换挡执行机构工作,实现自动换挡。
图解自动变速器的构造与原理!AMT 变速器AMT 是英文Automated Mechanical transmission 的缩写,中文译为自动机械式变速器,即电控机械式自动变速器。
AMT 变速器是在传统的手动齿轮式变速器基础上改进而来的,它是融合了AT 和MT 两者优点的机电液一体化自动变速器。
它将手动变速器的离合器分离及换挡拨叉等靠人力操纵的部件实现了自动操纵,即通过电动或液压动力实现。
驾驶员操纵起来和自动变速器是一样的,这样就实现了手动变速器的自动化,即汽车电控机械式自动变速器。
结构通解:AMT 变速器是在普通手动变速器的基础上,改变机械变速器换挡操纵部分进行优化设计,即在总体传动结构不变的情况下通过加装电子控制的自动操纵系统来实现换挡的自动化。
原理通解:主要是在发动机控制单元和变速器控制单元的控制下,由液压泵驱动液压油提供动力,液压油进入选换挡机构和离合器阀体中,实现选挡、换挡和离合器的分离与接合。
DCT 变速器DCT 变速器(Double—clutch Gearbox)即双离合变速器,在大众车系中也称直接换挡自动变速器(DSG)。
DSG 可以形象地设想为将两台变速器的功能合二为一,并建立在单一的系统内。
DSG内含两台自动控制的离合器,由电子控制及液压推动,能同时控制两台离合器的运作。
当变速器运作时,一组齿轮啮合,而接近换挡时,下一挡段的齿轮已被预选,但离合器仍处于分离状态;当换挡时一台离合器将使用中的齿轮分离,同时另一台离合器啮合已被预选的齿轮,在整个换挡期间能确保最少有一组齿轮在输出动力,使动力没有出现间断的状况。
结构通解:双离合器变速器仍然像手动变速器一样,是由众多齿轮、同步器、液压控制单元、电子控制单元和各轴等部件组成的,速比变化靠计算机控制来实现,而且各挡速比是固定不变的。
原理通解:无论6 挡DSG 变速器还是7 挡DSG 变速器,它们的基本原理是一致的,简单地说,就是将两套变速系统合二为一。
汽车MTATAMTCVTDSG变速器构造及原理详解汽车变速器是连接发动机和车轮的一个关键部件,通过变速器可以调整发动机输出的转矩和速度,用来适应不同的路况和驾驶需求。
目前市场上常见的汽车变速器有MT、AT、AMT、CVT和DSG等类型,每种变速器都有各自的构造和原理。
1.手动变速器(MT)手动变速器是最传统的变速器类型,由离合器和多个齿轮组成。
驾驶员需要通过踩离合器将发动机和齿轮脱离,然后根据驾驶需求手动选择适当的齿轮进行换挡。
手动变速器可以提供较高的驾驶操控性和油耗经济性,但需要驾驶员具备一定的技术和经验。
2.自动变速器(AT)自动变速器是无需驾驶员手动操作的变速器类型,由液力变矩器(torque converter)和多个齿轮组成。
液力变矩器可以在发动机和齿轮之间传递动力,并允许发动机在低速时保持运转。
自动变速器能够根据车速和发动机负载自动选择适当的挡位进行换挡,提供了更加舒适和省力的驾驶体验。
3.机械自动变速器(AMT)机械自动变速器是一种介于手动变速器和自动变速器之间的变速器类型,它利用电/气动控制系统实现自动换挡。
AMT在结构上与手动变速器相似,但通过电/气动系统控制离合器和齿轮的动作。
相比于手动变速器,AMT的换挡更加顺畅和快速,同时也保留了手动变速器的驾驶操控性。
4.连续变速器(CVT)连续变速器采用了不同于传统变速器的工作原理,它通过无级变速机构(infinite variable transmission)来实现平稳而连续的变速。
CVT不需要离合器和固定齿轮,而是通过两个活动的传动带或金属链条来调整齿轮比例。
这样可以确保发动机和车轮间的动力输出始终保持在理想状态,提供更加平顺和高效的驾驶体验。
5.双离合器变速器(DSG)双离合器变速器是一种相对较新的变速器类型,它由两个独立的离合器和一套液压控制系统组成。
其中一个离合器用于连接发动机和一组齿轮,另一个离合器则连接另一组齿轮和车轮。
高清透视图解行星齿轮式自动变速器,了解一下行星齿轮式自动变速器是由行星齿轮机构和换挡执行元件(离合器、制动器及单向离合器等)组成的。
与其它种类的自动变速器区别在于换挡执行机构是行星齿轮。
行星齿轮式自动变速器1—壳体;2—输入轴;3—液力变矩器;4—ATF 滤清器;5—电子液压控制系统;6—油底壳;7—行星齿轮组;8—输出轴;9—速度传感器;10—离合器;11—ATF 油泵液力变矩器液力变矩器的作用是将发动机的动力传递到变速机构。
液力变矩器里面充满了油液,当与发动机曲轴相连的泵轮转动时,油液被带动并甩在与变速器输入轴相连的涡轮上。
涡轮在油液的作用下转动,从而将发动机的动力传递到变速器内部。
液力变矩器1—前盖;2—锁止离合器;3—减振器;4—涡轮;5—导轮;6—推力轴承;7—泵轮;8—输出轴;9—导轮轴后/全驱式行星齿轮自动变速器此类变速器较长,一般前置后驱或四轮驱动车辆采用,发动机与变速器纵向布置。
此类变速器一般集成中间差速器和前桥主传动,或与分动器配合完成四轮驱动。
奥迪09L自动变速器剖视图1—输出法兰(通往后驱动桥);2—自锁式中间差速器;3—初级传动斜齿齿轮;4—次级行星齿轮组齿圈;5—次级行星齿轮组太阳轮;6—次级行星齿轮组行星齿轮;7—初级行星齿轮组太阳轮;8—初级行星齿轮组行星齿轮;9—初级行星齿轮组齿圈;10—变速器输入轴;11—ATF 泵;12—液力变矩器;13—前桥差速器行星齿轮;14—输出法兰(至前驱动桥);15—前桥驱动器半轴齿轮;16—主减速器齿轮;17—传动轴斜齿齿轮;18—自动变速器电液控制组件;19—传动轴;20—传动轴前桥直齿小齿轮安装花键;21—前桥直齿小齿轮(带有斜面体齿)奥迪0AT自动变速器剖视图1—输出法兰(至后驱动桥或分动器);2—次级行星齿轮组太阳轮;3—次级行星齿轮组行星齿轮;4—次级行星齿轮组齿圈;5—初级行星齿轮组太阳轮;6—初级行星齿轮组行星齿轮;7—初级行星齿轮组齿圈;8—ATF 泵;9—液力变矩器;10—变速器输入轴;11—油底壳;12—自动变速器电液控制单元(阀体板、电磁阀等);13—变速器控制系统接线插口奥迪09L/0AT自动变速器阀体板如下图所示。
图解变速箱,一篇看懂全部结构汽车变速器,是一套用于来协调发动机的转速和车轮的实际行驶速度的变速装置,用于发挥发动机的最佳性能。
变速器可以在汽车行驶过程中,在发动机和车轮之间产生不同的变速比。
手动变速器手动变速器就是必须用手拨动变速器杆,才能改变传动比的变速器。
手动变速器主要由壳体、传动组件(输入输出轴、齿轮、同步器等)、操纵组件(换挡拉杆、拨叉等)。
手动变速器构造变速器原理变速器为什么可以调整发动机输出的转矩和转速呢?其实这里蕴含了齿轮和杠杆的原理。
变速器内有多个不同的齿轮,通过不同大小的齿轮组合在一起,就能实现对发动机转矩和转速的调整。
用低转矩可以换来高转速,用低转速则可以换来高转矩。
变速器原理变速器的作用主要表现在三方面:第一,改变传动比,扩大驱动轮的转矩和转速的变化范围;第二,在发动机转向不变的情况下,实现汽车倒退行驶;第三,利用空挡,可以中断发动机动力传递,使得发动机可以启动、怠速。
手动变速器原理手动变速器的工作原理,就是通过拨动变速杆,切换中间轴上的主动齿轮,通过大小不同的齿轮组合与动力输出轴结合,从而改变驱动轮的转矩和转速。
发动机的动力输入轴是通过一根中间轴,间接与动力输出轴连接的。
中间轴的两个齿轮(红色)与动力输出轴上的两个齿轮(蓝色)是随着发动机输出一起转动的。
但是如果没有同步器(紫色)的接合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。
图中同步器位于中间状态,相当于变速器挂了空挡。
简单变速器结构5挡手动变速器5挡手动变速器原理5挡手动变速器剖面图5挡手动变速器组成换挡机构不仅增强驾驶员换挡感觉,而且可以防止同时挂入两个挡位。
换挡机构同步器变速器在进行换挡操作时,尤其是从高挡向低挡的换挡很容易产生轮齿或花键齿间的冲击。
为了避免齿间冲击,在换挡装置中都设置同步器。
同步器有常压式和惯性式两种,目前大部分同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,主要是依靠摩擦作用实现同步。
各型号汽车变速箱高清分解图变速器工作原理图ID:ko-car变速器的种类AT自动变速箱CVT自动变速箱DSG双离合变速箱手动变速箱变速箱整体剖面图——变速箱内部元件示意——1.速度表齿套夹;2.速度表从动齿轮套;3.倒车灯开关;4.密封垫;5.钢球;6.阻尼弹簧;7.钢球;8.密封塞;9.弹簧;10.空档回位塞A;11.空档回位塞B;12.延伸壳体;13.延伸壳体密封垫ID:14.下盖;15.下盖密封垫;16.卡环;17.主轴后轴承;18.提升塞;19.提升弹簧;20.钢球;21.3档~4档换档拨叉用弹簧销;22.1档~2档换档拨叉用弹簧销;23.超速档~倒档换档拨叉用弹簧销;24.超速档~倒档换档滑轨;25.3档~4档换档滑轨;26.超速档~倒档换档拨叉;27.互锁塞;28.反向轴锁紧螺母;29.反向轴后轴承;30.反向轴超速档齿轮;31.1档~2档换档滑轨32.主轴锁紧螺母;33.反向轴倒档齿轮;34-35.垫片;36.钢球;37.超速档齿轮;38.滚针轴承;39.轴承套;40.轴承垫片;41.超速档同步器环;42.超速档~倒档同步器套;43.超速档~倒档同步器弹簧;44.超速档~倒档同步器毂;45.超速档~倒档同步器键;46.倒档齿轮;47.滚针轴承;48.轴承套;49.垫片;50.开口销;51.开槽螺母;52.止推垫圈;53.倒档惰齿轮;54.滚针轴承;55.螺栓;56.倒档惰齿轮轴;57.螺栓;58.后轴承座;77. 倒档同步器环75.主轴总成;76.变速箱壳体自动变速箱的分解要领——拆卸延伸壳体拆卸3~4档及1~2档换档拨叉弹簧销拆卸超速档~倒档换档拨叉弹簧销拆卸主轴锁紧螺母拆卸超速档齿轮轴承套拆卸时,MD998020与MD998028配合使用拆卸倒档惰齿轮轴拆卸主驱动齿轮轴承动图自动变速箱的组装要领——安装主驱动齿轮轴承动图安装卡环动图选择卡环并安装,使主驱动齿轮轴承的轴向间隙达到标准值。
图解汽车(7)3种自动变速箱结构解析
众所周知,汽车变速箱可以分为自动变速箱和手动变速箱。
但并不是所有的人都能够完整地说出自动变速箱的种类以及各种类自动变速箱究竟在运作原理上有什么不同。
本期的图解汽车,我们将要来剖析一下AT、CVT、DSG这三种自动变速箱的运作原理。
阅读提示:
PCauto技术频道图解类文章都可以使用全新的高清图解形式进行阅读。
大家可以通过点击上面图片链接跳转到图解模式。
高清大图面积提升3倍,看着更清晰更爽,赶紧来体验吧!
● AT自动变速箱的结构及工作原理:
现在自动变速箱一般都是液力变矩器式自动变速箱,也就是俗称的“AT”自动变速箱。
它主要由两大部分构成:1、和发动机飞轮连接的液力变矩器。
2、紧跟在液力变矩器后方的变速机构。
液力变矩器一般是由泵轮、定叶轮、涡轮以及锁止离合器组成的。
锁止离合器的作用是当车速超过一定速度时,采用锁止离合器将发动机与变速机构直接连接,这样可以减少燃油消耗。
液力变矩器的作用是将发动机的动力输出传递到变速机构。
它里面充满了传动油,当与动力输入轴相连接的泵轮转动时,它会通过传动油带动与输出轴相连的涡轮一起转动,从而将发动机动力传递出去。
其原理就像一把插电的风扇能够带动一把不插电的风扇的叶片转动一样。
AT自动变速箱每个档位都由一组离合片控制,从而实现变速功能。
现在的AT自动变速箱采用电磁阀对离合片进行控制,使得系统更简单,可靠性更好。
AT自动变速箱的传动齿轮和手动变速箱的传动齿轮并不相同。
AT自动变速箱采用的是行星齿轮组实现扭矩的转换。
AT自动变速箱的换挡控制方式如上图所示。
变速箱控制电脑通过电信号控制电磁阀的动作,从而改变变速箱油在阀体油道的走向。
当作用在多片式离合片上的油压达到致动压力时,多片式离合片接合从而促使相应的行星齿轮组输出动力。
行星齿轮组包括行星架、齿圈以及太阳轮。
当上面提到的三个部件中的一个被固定后,动力便会在其他两个部件之间传递。
如果还是不理解,可以参看以下视频
● CVT自动变速箱的结构及工作原理:
CVT无级变速箱的主要部件是两个滑轮和一条金属带,金属带套在两个滑轮上。
滑轮由两块轮盘组成,这两片轮盘中间的凹槽形成一个V形,其中一边的轮盘由液压控制机构控制,可以视不同的发动机转速,进行分开与拉近的动作,V形凹槽也随之变宽或变窄,将金属带升高或降低,从而改变金属带与滑轮接触的直径,相当于齿轮变速中切换不同直径的齿轮。
两个滑轮呈反向调节,即其中一个带轮凹槽逐渐变宽时,另一个带轮凹槽就会逐渐变窄,从而迅速加大传动比的变化。
当汽车慢速行驶时,可以令主动滑轮的凹槽宽度大于被动滑轮凹槽,主动滑轮的金属带圆周半径小于被动滑轮的金属带圆周半径,即小圆带大圆,因此能传递较大的转矩;当汽车逐渐转为高速时,主动滑轮的一边轮盘向内靠拢,凹槽宽度变小迫使金属带升起,直至最高顶端,而被动滑轮的一边轮盘刚好相反,向外移动拉大凹槽宽度迫使金属带降下,即主动滑轮金属带的圆周半径大于被动滑轮金属带的圆周半径,变成大圆带小圆,因此能保证汽车高速行驶时的速度要求,
● DSG自动变速箱的结构及工作原理:
手动挡汽车在换挡时,离合器在分离和接合之间存在动力传递暂时中断的现象。
这对于一般的民用车影响不大,但对于争分夺秒的赛车来说,会极大地影响成绩。
双离合变速箱能够消除换挡时动力传递的中断现象,缩短换挡时间,同时换挡更加平顺。
上图是一个大众6速DSG双离合变速箱的工作原理图。
两个离合器与变速箱装配在同一机构内,其中一个离合器(1)负责挂1、3、5和倒挡;另一个离合器(2)负责挂2、4、6挡。
当驾驶员挂上1挡起步时,换挡拨叉同时挂上1挡和2挡,但离合器1结合,离合器2分离,动力通过1挡的齿轮输出动力,2挡齿轮空转。
当驾驶员换到2挡时,换挡拨叉同时挂上2挡和3挡,离合器1分离的同时离合器2结
合,动力通过2挡齿轮输出,3挡齿轮空转。
其余各档位的切换方式均与此类似。
这样就解决了换挡过程中动力传输中断的问题。
上图是一个大众7速DSG双离合变速箱的工作原理图,其工作原理与6速类似。
离合器1负责控制1、3、5、7挡;离合器2负责控制2、4、6和倒档。
如果大家还是没弄懂双离合变速箱的原理,大家可以看看上面这个大众6速DSG双离合变速箱的原理简图。
这个简图非常清晰地说明了双离合变速箱的传动原理。
下面是一个关于双离合变速箱工作原理的视频。