高一数学必修5基本不等式总结和例题
- 格式:doc
- 大小:363.36 KB
- 文档页数:5
1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
1.基本不等式:)0,0(2>>≥+b a ab b a ,当b a =时取等变形式:)0,0(2>>+≤b a b a ab ,当b a =时取等 2)2(b a ab +≤,当b a =时取等 2.重要不等式:ab b a 222≥+,当b a =时取等 变形式:222b a ab +≤,当b a =时取等 3.重要做题方法:(1)已知p b a =+,求ab 的最大值4)2()2(222p p b a ab ==+≤,当2p b a ==时ab 取得最大值42p (2)已知s ab b a =>>,0,0,求b a +的最小值s ab b a 22=≥+,当s b a ==时b a +取得最小值s 25.典型例题(1).求)50()5(<<-=x x x y 的最大值. 解:425252)5()5(22=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+≤-=x x x x y 当x x -=5即25=x 时,y 取得最大值425. .1618141416121412)41(441)41(441)41(.)410()41()2(22取得最大值时,即当解:的最大值求y x x x x x x x x x y x x x y =-==⎪⎭⎫ ⎝⎛⨯=⎥⎦⎤⎢⎣⎡-+⨯≤-⋅=-=<<-= .12)(23941236294294)(.94)(0)3(取得最小值时,即当解:的最小值,求若x f x x x xx x x x f xx x f x ====⋅≥+=+=>.12)(23941294)(12362)9()4(2)9()4()94(09040.94)(0)4(--=-=--≤+=∴==-⋅-≥-+-=+-∴>->-∴<+=<取得最大值时,即当,,解:的最大值,求若x f x x x xx x f xx x x x x xx x xx x f x.12222221)2(2122121)2(22121)2(22152.21522)5(-+=-=--=--⋅-≥--+-=-+-=-+-=>取得最小值时,即当解:的最小值,求若y x x x x x x x x x y x x y x .301113111)1(2111)1(112133.)1(133)6(22取得最小值时,即当解:的最小值求y x x x x x x x x x x x x y x x x x y =+=+=++⋅+≥++++=+++=+++=->+++= .1)(14514513235415454124)(2541542451)45(2451455415404510450544535415454124)(.54124)(45)7(取得最大值时,即当,,,解:的最大值,求函数已知x f x xx x x x x x f x x x x x x x x xx x x x x x x x f x x x f x =-=-=+-≤+-+-=-+-=∴-≤-+-∴=-⋅-≥-+-=⎪⎭⎫ ⎝⎛-+--∴>->-∴<-∴<+-+-=-+-=-+-=<.161241919169210910991)91()(.191,0,0)8(取得最小值时,即当解:的最小值,求且已知y x y x yx x y y x xy y x x y y x x y y x y x y x y x y x yx y x +⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧=+==⋅+≥++=+++=+⋅+=++=+>>。
不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
高中数学不等式知识点总结不等式高考题型:选择,填空,与函数结合出大题,证明出大题。
分类:绝对不等式:恒成立的不等式相对不等式:在一定条件下成立的不等式一不等式的基本性质(举例法)注意;1)等式是否可逆 2)有条件的,不能强还或弱化条件①(对称性)a b b a >?> ②(传递性),a b b c a c >>?>③(可加性)a b a c b c >?+>+(同向可加性)d b c a d c b a +>+?>>,(异向可减性)d b c a d c b a ->-?<>, ④(可积性)1)bc ac c b a >?>>0, 2)bc ac c ba <?<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >><⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且⑧(倒数法则)b a b a b a b a 110;110>?<<<?>> 灵活记忆:b a >且0>ab b a 11<?例题:1.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0B.-2<α-β<-1C.-1<α-β<0D.-1<α-β<12.a >b ?b a 11<”成立的充要条件是________________.3.若ba 11<<0,则下列结论不正确...的是() A.a 2<b 2 B.ab <b 2 C.a b b a +>2 D.|a|+|b|>|a+b|二、几个重要不等式①重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时等号成立). 变形公式:22.2a b ab +≤②基本不等式:2a b ab +≥ ()a b R +∈,,(当且仅当a b =时等号成立).变形公式: 2a b a b +≥ 2.2a b ab +??≤利用基本不等式求最值:(1)x,y 错误!未找到引用源。
1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.答案 4解析 由log 2x +log 2y =1得xy =2,又x >y >0,所以x -y >0,x 2+y 2x -y =(x -y )2+2xy x -y =x -y +4x -y ≥2(x -y )·4x -y =4,当且仅当x -y =2,即x =1+3,y =3-1时取等号,所以x 2+y 2x -y的最小值为4.3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案 3解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 4.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25.5.(教材改编)已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎨⎧x =12y =18时,(xy )max =116.题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________.(3)函数y =x -1x +3+x -1的最大值为________.答案 (1)1 (2)23+2 (3)15解析 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.(3)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.命题点2 常数代换或消元法求最值例2 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. (2)(高考改编题)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5. 方法二 由x +3y =5xy 得x =3y5y -1, ∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15)≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2,∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0, ∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 思维升华 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m =________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 (1)4 (2)6解析 (1)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ), (当且仅当y x =mxy 时取等号)∴13(1+m +2m )=3, 解得m =4.(2)由已知得x =9-3y1+y .方法一 (消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y =121+y +(3y +3)-6≥2121+y·(3y +3)-6=6, 当且仅当121+y =3y +3,即y =1,x =3时,(x +3y )min =6. 方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立. 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.题型二 基本不等式与学科知识的综合命题点1 用基本不等式求解与其他知识结合的最值问题例3 (1)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是________.(2)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.答案 (1)9 (2)4解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc +5.因为b ,c >0, 所以4c b +b c≥24c b ·bc=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时,等号成立. 命题点2 求参数的值或取值范围例4 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.答案 12解析 由3a +1b ≥ma +3b得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +ab +6≥29+6=12, ∴m ≤12,∴m 的最大值为12.思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________________________________________________________________________. 答案 (1)32 (2)[-83,+∞)解析 (1)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16, 所以2m +n -2=24,所以m +n =6. 所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn 时,等号成立,故1m +4n 的最小值等于32. (2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).题型三 不等式的实际应用例5 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100].(或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时时,这次行车的总费用最低,最低费用的值为2610元. 思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250.当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250 =1 200-(x +10 000x).∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x)(x ≥80).(2)当0<x <80时,L (x )=-13x 2+40x -250.对称轴为x =60,即当x =60时,L (x )最大=950(万元). 当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当x =100时,年获利最大.9.忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6. 解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y) =3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案 (1)3+22 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[方法与技巧]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. [失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:30分钟)1.下列不等式一定成立的是________.①lg(x 2+14)>lg x (x >0); ②sin x +1sin x≥2(x ≠k π,k ∈Z ); ③x 2+1≥2|x |(x ∈R );④1x 2+1>1(x ∈R ). 答案 ③解析 当x >0时,x 2+14≥2·x ·12=x , 所以lg(x 2+14)≥lg x (x >0), 故①不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2成立”的__________条件. 答案 必要不充分解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0, 所以“a 2+b 2≥2ab ”是“a b +b a≥2成立”的必要不充分条件. 3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意,得1a +4b =12(1a +4b)·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号, 即1a +4b 的最小值是92. 4.(2014·重庆改编)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.答案 7+4 3解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a =7+43, 当且仅当3a b =4b a时取等号. 5.已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________.答案 8解析 由x +2y -xy =0,得2x +1y=1,且x >0,y >0. ∴x +2y =(x +2y )×(2x +1y )=4y x +x y+4≥4+4=8. 6.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a 、b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗x x的最小值为________. 答案 1 3解析 1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍去).∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3, 当且仅当x =1x ,即x =1时等号成立. 7.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为________.答案 2解析 ∵x >0,y >0,x +2y ≥22xy ,∴4xy -(x +2y )≤4xy -22xy ,∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.8.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是________. 答案 6解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.9.若当x >-3时,不等式a ≤x +2x +3恒成立,则a 的取值范围是________. 答案 (-∞,22-3]解析 设f (x )=x +2x +3=(x +3)+2x +3-3, 因为x >-3,所以x +3>0,故f (x )≥2(x +3)×2x +3-3=22-3, 当且仅当x =2-3时等号成立,所以a 的取值范围是(-∞,22-3].10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 答案 (-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8. 11.(2015·南通二模)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020, 当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组 专项能力提升(时间:20分钟)12.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________. 答案 16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16.13.已知m >0,a 1>a 2>0,则使得m 2+1m≥|a i x -2|(i =1,2)恒成立的x 的取值范围是________________________________________________________________________.答案 [0,4a 1] 解析 因为m 2+1m =m +1m≥2(当且仅当m =1时等号成立), 所以要使不等式恒成立,则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,所以0≤a i x ≤4,因为a 1>a 2>0, 所以⎩⎨⎧ 0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1, 所以使不等式恒成立的x 的取值范围是[0,4a 1]. 14.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号).综上可知4≤x 2+4y 2≤12.15.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________. 答案 4解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b=4, 当且仅当a =b =12时,等号成立. 16.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t=30时,W(t)有最小值W(30)=4432,3所以t∈[1,30]时,W(t)的最小值为441万元.。
基本不等式知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
基本不等式及其应用[考点梳理]1.如果a >0,b >0,那么________叫做这两个正数的算术平均数. 2.如果a >0,b >0,那么________叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥________ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则________,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有________,即a +b ≥________,a 2+b 2≥________.简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即________,亦即________;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即_____.简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤________≤a +b 2≤________,当且仅当a =b 时等号成立.自查自纠: 1.a +b 2 2.ab 3.2ab 4.a +b 2≥ab 5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 22 7.ab a 2+b 22[基础自测]设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( )A .6B .4 2C .2 2D .2 6解:因为2a >0,2b >0,由基本不等式得2a +2b ≥22a ·2b =22a +b =42,当且仅当a =b =32时取等号,故选B.已知向量m =(2,1),n =(2-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为( ) A.12B .1C .2D .4 解:依题意得2a =2-b ,即2a +b =2(a >0,b >0),∴2=2a +b ≥22ab ,∴ab ≤12,当且仅当2a =b =1时取等号,∴ab 的最大值是12.故选A.设f (x )=lnx ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 解:p =f (ab )=ln ab ,q =f ⎝ ⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x 在(0,+∞)上单调递增,∵a +b 2>ab ,∴f ⎝⎛⎭⎪⎫a +b 2>f (ab ).∴q >p =r.故选C. 若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x2≥22,当且仅当x =±42时等号成立.故填22.已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则实数a =________. 解:f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,∴a2=3,∴a =36.故填36. [典例解析]类型一 利用基本不等式求最值(1)函数y =(x +5)(x +2)x +1(x >-1)的值域为________.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y =(m +4)(m +1)m =m +4m +5≥2m ·4m +5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).故填[9,+∞).(2)若a >b >0,则代数式a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5解:∵b (a -b )≤⎝ ⎛⎭⎪⎫b +(a -b )22=a 24,∴a 2+1b (a -b )≥a 2+1a 24=a 2+4a 2≥4,当且仅当b=a -b 且a 2=4a 2,即a =2,b =22时等号成立.故选C.小结:基本不等式的应用在于“定和求积,定积求和”,必要时可以通过变形(拆补)、配凑,常数代换、构造“和”或者“积”,使之为定值.(1)已知t >0,则函数f (t )=t 2-4t +1t的最小值为________.解:∵t >0,∴f (t )=t 2-4t +1t =t +1t -4≥-2,当且仅当t =1时,f (t )min =-2,故填-2.(2)已知x >0,y >0,且2x +8y -xy =0,求: (Ⅰ)xy 的最小值; (Ⅱ)x +y 的最小值.解:(Ⅰ)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立.(Ⅱ)解法一:由2x +8y -xy =0,得x =8yy -2,∵x >0,∴y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y =1, 则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18,当且仅当y =6,x =12时等号成立.类型二 利用基本不等式求参数范围已知a >0,b >0,若不等式m 3a +b-3a -1b ≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3解:∵a >0,b >0,∴由m 3a +b -3a -1b ≤0恒成立得m ≤⎝ ⎛⎭⎪⎫3a +1b (3a +b )=10+3b a +3a b 恒成立.∵3b a +3ab ≥23b a ·3a b =6,当且仅当a =b 时等号成立,故10+3b a +3a b ≥16,∴m ≤16,即m 的最大值为16.故选B.小结:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式的等价命题:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min ;(3)a >f (x )有解⇔a >f (x )min ;(4)a <f (x )有解⇔a <f (x )max .已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.若关于x 的不等式mf (x )≤e-x+m -1在(0,+∞)上恒成立,则实数m 的取值范围为________.解:由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令t =e x (x >0),则t >1,且m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.∵t -1+1t -1+1≥2(t -1)·1t -1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.故填⎝ ⎛⎦⎥⎤-∞,-13.类型三 利用基本不等式解决实际问题某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.解:(1)作GH ⊥EF ,垂足为H. ∵DN =x ,∴NH =40-x ,NA =60-x ,∵NH HG =NAAM ,∴40-x 10=60-x AM ,∴AM =600-10x 40-x.S 五边形MBCDN =S 矩形ABCD -S △AMN =40×60-12·AM ·AN =2 400-5(60-x )240-x .∵N 与F 重合时,AM =AF =30适合条件,∴x∈(0,30].(2)y =2 400-5(60-x )240-x =2 400-5[(40-x )+40040-x +40],当且仅当40-x =40040-x ,即x =20∈(0,30]时,y 取得最大值2 000, ∴当DN =20 m 时,得到的市民健身广场面积最大,最大面积为 2 000 m 2.小结:建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A 孔流入,经沉淀后从B 孔排出,设箱体的长度为a m ,高度为b m ,已知排出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问a ,b 各为多少m 时,经沉淀后排出的水中该杂质的质量分数最小(A ,B 孔面积忽略不计).解法一:设y 为排出的水中杂质的质量分数,根据题意可知:y =kab ,其中k 是比例系数且k >0.依题意要使y 最小,只需ab 最大.由题设得:4b +2ab +2a ≤60(a >0,b >0),即a +2b ≤30-ab (a >0,b >0).∵a +2b ≥22ab , ∴22·ab +ab ≤30,得0<ab ≤32.当且仅当a =2b 时取“=”号,ab 最大值为18,此时得a =6,b =3. 故当a =6 m ,b =3 m 时经沉淀后排出的水中杂质最少. 解法二:同解法一得b ≤30-a a +2,代入y =kab 求解.[归纳小结]1.要熟悉基本不等式的变式和推广,这对提高解题能力是有帮助的,常见的基本不等式的变式和推广有:①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤ 14(a +b )2;④⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c 3≥3abc ;⑧abc ≤a 3+b 3+c 33等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正,二定,三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b 型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点. [课后作业]1.若a >1,则a +1a -1的最小值是( )A .2B .aC .3 D.2aa -1解:∵a >1,∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当且仅当a =2时等号成立.故选C.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为( ) A.14 B .4 C.12D .2 解:∵a >0,b >0,∴4=2a +b ≥22ab ,得ab ≤2,∴1ab ≥12,当且仅当a =1,b =2时等号成立.故选C.3.函数f (x )=5-4x +x 22-x在(-∞,2)上的最小值是( )A .0B .1C .2D .3解:当x <2时,2-x >0,因此f (x )=1+(4-4x +x 2)2-x =12-x +(2-x )≥2·12-x·(2-x )=2,当且仅当12-x =2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2解:设甲、乙两地之间的距离为s.∵a <b ,∴v =2s s a +s b=2ab a +b<2ab2ab =ab.又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A.5.已知a >0,b >0,a +b =2,则1a +4b 的最小值是( ) A.72 B .4 C.92D .5解:依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+⎝ ⎛⎭⎪⎫b a +4a b ]≥12⎝⎛⎭⎪⎫5+2b a ·4a b =92, 当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0, 即⎩⎪⎨⎪⎧a =23,b =43时取等号,即1a +4b 的最小值是92.故选C.6.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab 时取等号.故选D.7.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,∴mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2.故填-2.8.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3).且无论m 取何值,两直线垂直.所以无论P 与A ,B 重合与否,均有|PA |2+|PB |2=|AB |2=10(P 在以AB 为直径的圆上).所以|PA |·|PB |≤12(|PA |2+|PB |2)=5.当且仅当|PA |=|PB |=5时,等号成立.故填5.9.(1)已知0<x <43,求x (4-3x )的最大值;(2)点(x ,y )在直线x +2y =3上移动,求2x +4y 的最小值.解:(1)已知0<x <43,∴0<3x <4.∴x (4-3x )=13(3x )(4-3x )≤13⎝⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.∴当x =23时,x (4-3x )取最大值为43.(2)已知点(x ,y )在直线x +2y =3上移动,所以x +2y =3. ∴2x +4y ≥22x ·4y =22x +2y =223=42. 当且仅当⎩⎪⎨⎪⎧2x =4y ,x +2y =3, 即⎩⎪⎨⎪⎧x =32,y =34时“=”成立.∴当⎩⎪⎨⎪⎧x =32,y =34时,2x +4y 取最小值为42.10.已知a>0,b>0,且2a+b=1,求S=2ab-4a2-b 2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥22ab,即ab≤24,ab≤18,∴S=2ab-4a2-b2=2ab-(1-4ab)=2ab+4ab-1≤2-12.当且仅当a=14,b=12时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥22x×3y=26xy,∴26xy≤18,得xy≤272,即S≤272.当且仅当2x=3y时等号成立.由⎩⎪⎨⎪⎧2x=3y,2x+3y=18,解得⎩⎪⎨⎪⎧x=4.5,y=3.故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-32y.∵x>0,∴0<y<6.S=xy=⎝⎛⎭⎪⎫9-32y y=32(6-y)y.∵0<y<6,∴6-y>0.∴S≤32⎣⎢⎡⎦⎥⎤(6-y)+y22=272.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥22x·3y=26xy=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由⎩⎪⎨⎪⎧2x=3y,xy=24,解得⎩⎪⎨⎪⎧x=6,y=4.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=24y.∴l=4x+6y=96y+6y=6⎝⎛⎭⎪⎫16y+y≥6×216y×y=48,当且仅当16y=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.如图所示,已知树顶A离地面212米,树上另一点B离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A,B的视角最大.解:问题转化为求△ABC中∠BCA的取值范围.过点C作CD⊥AB交AB的延长线于点D.设该人距离此树的距离CD=x米,看A,B的视角最大,即∠BCA最大.不妨设∠BCD=α,∠ACD=β,则∠BCA=β-α,且tanα=4x ,tanβ=9x,所以tan(β-α)=9x-4x1+9x×4x=5xx2+36=5 x+36x≤52x×36x=512,当且仅当x=36x,即x=6时取等号,此时∠BCA最大.故填6.不等式检测1.已知集合A ={x |y =x 2-2x -3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x -2≤0,则A ∩B =( )A .[-1,1]B .[-1,2)C .[1,2)D .[-2,-1]解:依题意,集合A ={x |x ≤-1或x ≥3},B ={x |-2≤x <2},A ∩B ={x |-2≤x ≤-1}.故选D.2.不等式x +5()x -12≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解:x +5(x -1)2≥2⇔(x +5)-2(x -1)2(x -1)2≥0⇔-2x 2+5x +3(x -1)2≥0⇔-2x 2+5x +3≥0(x ≠1)⇔2x 2-5x -3≤0(x ≠1)⇔-12≤x ≤3且x ≠1.故选D.3.若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则不等式f (x 2-1)<0的解集为( ) A .(-1,0) B .(-2,0)∪(0,2) C .(0,2) D .(1,2)解:∵f (x )是偶函数,∴f (x )=f (|x |)=|x |-1.∴f (x 2-1)=|x 2-1|-1.解不等式|x 2-1|-1<0,得0<x 2<2,∴x ∈(-2,0)∪(0,2).故选B.4.若一个矩形的对角线长为常数a ,则其面积的最大值为( )A .a 2 B.12a 2 C .a D.12a解:如图,设矩形的长和宽分别为x ,y ,则x 2+y 2=a 2,其面积S =xy ,由基本不等式得S ≤12(x 2+y 2)=12a 2,当且仅当x =y 时取等号,此时为正方形.故选B.5.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B .223 C.33 D.233解:∵x 2+3xy -1=0,∴y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x ≥229=223(当且仅当x =22时等号成立).故选B.6.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3解:由程序框图知,当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,目标函数S =2x +y ∈[0,2],否则,S =1.因此,输出的S的最大值为2.故选C.7.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝ ⎛⎦⎥⎤-∞,-235 解法一:∵x ∈[1,5],∴不等式变形为a >-x +2x ,∵x ∈[1,5]时,y =-x +2x 单调递减,∴y ∈⎣⎢⎡⎦⎥⎤-235,1,∴要使不等式在[1,5]上有解,应有a >-235.解法二:一元二次方程x 2+ax -2=0的两根之积为-2,两根一正一负.对于二次函数y =f (x )=x 2+ax -2,开口向上.与x 轴交点一正一负,y >0,在区间[1,5]上有解,只需y =f (5)>0即可.52+5a -2>0,∴a >-235.故选A.8.已知实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =()A .2B .3C .4D .5解:显然m >2,作出⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m 的可行域,当⎩⎨⎧x =m +13,y =2m -13 时z =x -y 的最小值为-1,解得m =5.故选D.9.若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( )A.14B. 2C.32+ 2 D.32+2 2解:圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b =32+b a +a2b ≥32+2(当且仅当a =22-2,b =2-2时等号成立),故选C. 10.设函数f (x )=3sin πx m ,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解:函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝ ⎛⎭⎪⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝ ⎛⎭⎪⎫k 0+122+3<m 2,即⎝ ⎛⎭⎪⎫k 0+122<m 2-3m 2,因为⎝ ⎛⎭⎪⎫k +122的最小值为14,∴只要m 2-3m 2>14即可,得m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).故选C.11.已知O 是坐标原点,点A (-1,0),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA→+OM →|的取值范围是( ) A .[1,5] B .[2,5] C .[1,2] D .[0,5]解:OA →+OM →=(-1,0)+(x ,y )=(x -1,y ),设z =|OA →+OM →|=(x -1)2+y 2,则z 2的几何意义为M 到定点E (1,0)的距离,由约束条件作出平面区域如图,由图象可知当M 位于点D (0,2)时,z 取得最大值z max =1+4=5,易知最小值z min =1,∴1≤z ≤5,即|OA→+OM →|的取值范围是[1,5].故选A. 12.设M 是△ABC 内一点,且AB →·AC →=23,∠BAC =30°.定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积.若f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,则log 2x +log 2y 的最大值是( )A .-5B .-4C .-3D .-2解:∵AB→·AC →=|AB →||AC →|cos ∠BAC =32|AB →||AC →|=23,∴|AB →||AC →|=4,∴S △ABC =12AB ·AC ·sin ∠BAC =12×4×12=1,∵f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,∴12+x +y =1,∴x +y =12,∵x >0,y >0,∴log 2x +log 2y =log 2(xy )≤log 2⎝⎛⎭⎪⎫x +y 22=log 2⎝ ⎛⎭⎪⎫142=-4.故选B.13.已知集合A ={x ∈R|||x +2<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =__________.解:∵A ={x ∈R|||x +2<3}={x |-5<x <1},又∵A ∩B =(-1,n ),画数轴可知m =-1,n =1.故填-1;1.14.设x ,y 满足约束条件⎩⎨⎧x -y ≤0,x +y -1≥0,x -2y +2≥0,若z =x +3y +m 的最小值为4,则实数m =________.解:画出可行域如图所示,设z ′=x +3y ,当平行直线系z ′=x +3y 过点C ⎝ ⎛⎭⎪⎫12,12时取最小值,有z ′min =12+3×12=2,此时,目标函数z =x +3y +m 取最小值,有z min =z ′min +m =2+m =4,m =2.故填2.15.从等腰直角三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为________.解:设两个正方形边长分别为a ,b (a ≤b ), 则由题可得2a +2b =2,即a +b =1,S =a 2+b 2≥2×⎝⎛⎭⎪⎫a +b 22=12,当且仅当a =b =12时取等号.故填12. 16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.解:(1)F =76 000v +20×6.05v+18≤76 00022+18=1 900,当且仅当v =11时等号成立.(2)F =76 000v +20×5v +18≤76 00020+18=2 000,当且仅当v =10时等号成立,2 000-1 900=100.故填(1)1 900;(2)100.17.已知不等式kx 2-x +4k <0(k ≠0).(1)若不等式的解集为{x |x <-4或x >-1},求实数k 的值; (2)若不等式的解集为∅,求实数k 的取值范围.解:(1)因为不等式的解集为{x |x <-4或x >-1},所以-1和-4是方程kx 2-x +4k =0的两个实根,由韦达定理得x 1+x 2=1k ,解得k =-15.(2)不等式的解集为∅,则kx 2-x +4k ≥0恒成立,所以k >0且Δ=1-16k 2≤0,解得k ≥14.18.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0,则提价多的方案是哪一种?解:设原价为a ,则提价后的价格为方案甲:(1+p %)(1+q %)a ,方案乙:⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∵1+p %·1+q %≤1+p %2+1+q %2=1+p +q2%(当且仅当p =q 时取等号),∵p >q >0,∴1+p %·1+q %<1+p +q2%,即(1+p %)(1+q %)a <⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∴提价多的方案是方案乙.答:提价多的方案是方案乙.19.(1)解不等式4x -1≤x -1;(2)求函数y =2x +91-2x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,12的最小值. 解:(1)4x -1≤x -1⇔4-(x -1)2x -1≤0⇔(x -3)(x +1)x -1≥0⇔⎩⎪⎨⎪⎧(x +1)(x -1)(x -3)≥0,x ≠1⇔ x ≥3或-1≤x <1. ∴此不等式的解集为{x |x ≥3或-1≤x <1}.(2)∵x ∈⎝ ⎛⎭⎪⎫0,12,∴2x >0,1-2x >0,∴y =42x +91-2x =⎝ ⎛⎭⎪⎫42x +91-2x [2x +(1-2x )]=13+9×2x 1-2x +4×(1-2x )2x ≥25,当且仅当x =15时,等号成立,即函数的最小值为25.20.已知x ,y 满足约束条件⎩⎨⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,求a 2+b 2的最小值.解法一:不等式组表示的平面区域如图所示,由于-ab <0,所以目标函数在点A (2,1)处取得最小值,故2a +b =25,两端平方得4a 2+b 2+4ab =20,又4ab =2×a ×2b ≤a 2+4b 2,所以20≤4a 2+b 2+a 2+4b 2=5(a 2+b 2),所以a 2+b 2≥4,当且仅当a =2b ,即a =45,b =25时等号成立.解法二:同解法一得2a +b =25.把2a +b =25看作平面直角坐标系aOb 中的直线,则a 2+b 2的几何意义是直线上的点与坐标原点距离的平方,显然a 2+b 2的最小值是坐标原点到直线2a +b =25距离的平方,即⎝⎛⎭⎪⎫|-25|52=4. 21.某工厂生产甲、乙两种产品.已知生产甲种产品1 t 需耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t ,B 种矿石4 t ,煤9 t .每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t ,B 种矿石不超过200 t ,煤不超过360 t .甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t ,y t ,利润总额为z 元,那么⎩⎪⎨⎪⎧10x +4y ≤300,5x +4y ≤200,4x +9y ≤360,x ≥0,y ≥0;z =600x +1 000y.作出以上不等式组所表示的平面区域(如图),即可行域. 作直线l :600x +1 000y =0,即直线l :3x +5y =0, 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大.此时z =600x +1 000y 取最大值.解方程组⎩⎪⎨⎪⎧5x +4y =200,4x +9y =360,得M 的坐标为x =36029≈12.4,y =1 00029≈34.4.故应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.22.已知函数f (x )=x 3+2bx 2+cx +1的两个极值点为x 1和x 2,x 1∈[-2,-1],x 2∈[1,2],求f (-1)的取值范围.解:f ′(x )=3x 2+4bx +c , 由题可得⎩⎪⎨⎪⎧f ′(-2)=12-8b +c ≥0,f ′(-1)=3-4b +c ≤0,f ′(1)=3+4b +c ≤0,f ′(2)=12+8b +c ≥0.在平面直角坐标系bOc 中作图,图中阴影部分所示为可行域,易知f (-1)=2b -c 在点(0,-3)取得最小值3,在点(0,-12)取得最大值12.∴3≤f (-1)≤12.故f (-1)的取值范围为[3,12].。
高中数学必修5基本不等式知识点总结一.算术平均数与几何平均数1.算术平均数设a 、b 是两个正数,则2a b +称为正数a 、b 的算术平均数 2.几何平均数a 、b 的几何平均数二基本不等式1.基本不等式: 若0a >,0b >,则a b +≥,即2a b +≥ 2.基本不等式适用的条件一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s若xy p =(积为定值),则当x y =时,和x y +取得最小值三相等:必须有等号成立的条件注:当题目中没有明显的定值时,要会凑定值3.常用的基本不等式(1)()222,a b ab a b R +≥∈ (2)()22,2a b ab a b R +≤∈ (3)()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭(4)()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭. 三.跟踪训练1.下列各函数中,最小值为2的是 ( )A .1y x x =+B .1sin sin y x x =+,(0,)2x π∈C .2y = D .1y x =+- 2.当02x π<<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。
A. 1 B. 2 C. 4 D.3.x >0,当x 取什么值,x +1x的值最小?最小值是多少?4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折?5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少?6.设0,0x y >>且21x y +=,求11x y+的最小值是多少?7.设矩形ABCD(AB>AD)的周长是24,把∆ABC沿AC向∆ADC折叠,AB折过去后交CD与点P,设AB=x ,求∆ADP的面积最大值及相应x 的值。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
基本不等式典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1•=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x-1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+•+x x -1=1.当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1. 变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1•=2,当且仅当t=t1,即t=1时,等号成立.∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y 9=1,求x+y 的最小值.思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y 9=1,∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x >0,y >0,∴y x x y 9+≥2y x x y 9•=6. 当且仅当yx x y 9=,即y=3x 时,取等号. 又x 1+y 9=1,∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-•-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y 9=1,得y+9x=xy,∴(x-1)(y-9)=9. ∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y 9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy 6≤1,∴xy ≥6.∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y 9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4. 又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a例3求f(x)=3+lgx+xlg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数. 解:∵0<x <1,∴lgx <0,x lg 4<0.∴-x lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+x lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x451-]+3 ≤-2xx 451)45(-•-+3=-2+3=1. 当且仅当5-4x=x 451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(xx 238223-+-)+23,再求最值. 解:y=21(2x-3)+328-x +23=-(xx 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥x x 2382232-•-=4,当且仅当xx 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-.例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy. 方法一:由于2x+3y≥2y x 32⨯=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6.S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32•=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.方法二:由xy=24,得x=y 24.∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x200+80×200. =800(x+x324)+16 000≥800×2x x 324•+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度.导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可. 探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n8. ∵n+n8≥2248=⨯n n , 当且仅当n=n 8,即n=22时取等号. 但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。