八年级数学基础题
- 格式:doc
- 大小:136.22 KB
- 文档页数:4
《一次函数》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.C.(﹣2,﹣6)D.(﹣3,﹣9)2.(5分)对任意非零数m,直线y=mx+2﹣5m,都经过一定点,则定点坐标为()A.(0,2)B.(1,2)C.(5,2)D.(2,﹣2)3.(5分)一次函数的图象过定点A(0,2),且函数值y随自变量x的增大而减小,则函数图象经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限4.(5分)下列函数(1)y=πx,(2)y=2﹣1﹣3x,(3)y=2﹣3x2,(4)y=﹣x+2,(5)y=,是一次函数有()个.A.4个B.3个C.2个D.1个5.(5分)下列函数:(1)y=2x﹣1;(2)y=﹣;(3)y=;(4)y=2﹣1﹣x;(5)y=x2中,一次函数有()个.A.1B.2C.3D.4二、填空题(本大题共5小题,共25.0分)6.(5分)下列函数中,是一次函数的是,是正比例函数的是.(填序号)(1)y=﹣;(2)y=﹣;(3)y=3﹣5x;(4)y=﹣5x2;(5)y=6x﹣;(6)y=x(x﹣4)﹣x2;(7)y=x﹣6.7.(5分)已知一次函数的图象经过点P(﹣3,0),且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为.8.(5分)如图,直线y=x+4与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是.9.(5分)若直线y=x﹣b与坐标轴围成面积是8,则b=.10.(5分)已知函数y=x+m﹣2018(m常数)是正比例函数,则m=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知y﹣3与x成正比例,且x=6,y=15.(1)求y与x之间的函数解析式;(2)当x=9时,求y的值;(3)当y=2时,求x的值;12.(10分)已知2y+1与3x﹣3成正比例,且x=10时,y=4.求y与x之间的函数关系式.13.(10分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.14.(10分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的关系式;(2)P为x轴上一点,若△ACP的面积是△BOC面积的2倍,求点P的坐标.15.(10分)已知y﹣4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x=时,求函数y的值;(3)结合图象和函数的增减性,求当y<﹣2时自变量x的取值范围.《一次函数》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.C.(﹣2,﹣6)D.(﹣3,﹣9)【分析】利用一次函数图象上点的坐标特征来验证四个选项中的点是否在正比例函数图象上,此题得解.【解答】解:A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上,选项A不符合题意;B、当x=时,y=3x=,∴点(,)不在正比例函数y=3x的图象上,选项B符合题意;C、当x=﹣2时,y=3x=﹣6,∴点(﹣2,﹣6)在正比例函数y=3x的图象上,选项C不符合题意;D、当x=﹣3时,y=3x=﹣9,∴点(﹣3,﹣9)在正比例函数y=3x的图象上,选项D不符合题意.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.2.(5分)对任意非零数m,直线y=mx+2﹣5m,都经过一定点,则定点坐标为()A.(0,2)B.(1,2)C.(5,2)D.(2,﹣2)【分析】将一次函数解析式变形为y=m(x﹣5)+2,由m为任意数,可代入x =5找出y的值,此题得解.【解答】解:∵y=mx+2﹣5m=m(x﹣5)+2,∴当x=5时,y=2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.3.(5分)一次函数的图象过定点A(0,2),且函数值y随自变量x的增大而减小,则函数图象经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【分析】根据一次函数的图象过定点A(0,2),可知此函数图象经过第一象限;根据函数值y随自变量x的增大而减小,可知此函数图象经过第二、四象限.【解答】解:∵一次函数的图象过定点A(0,2),∴此函数图象与y轴正半轴相交,图象经过第一象限;又函数值y随自变量x的增大而减小,∴此函数图象从左到右逐渐下降,图象经过第二、四象限;∴此函数图象经过的象限为第一、二、四象限.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,掌握一次函数的性质是解题的关键.4.(5分)下列函数(1)y=πx,(2)y=2﹣1﹣3x,(3)y=2﹣3x2,(4)y=﹣x+2,(5)y=,是一次函数有()个.A.4个B.3个C.2个D.1个【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:(1)y=πx是正比例函数,是特殊的一次函数;(2)y=2﹣1﹣3x=﹣3x,是一次函数;(3)y=2﹣3x2,是二次函数;(4)y=﹣x+2是一次函数,(5)y=是反比例函数,故选:B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,注意正比例函数是特殊的一次函数,一次函数不一定是正比例函数.5.(5分)下列函数:(1)y=2x﹣1;(2)y=﹣;(3)y=;(4)y=2﹣1﹣x;(5)y=x2中,一次函数有()个.A.1B.2C.3D.4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:一次函数有y=2x﹣1;y=2﹣1﹣x;y=﹣;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二、填空题(本大题共5小题,共25.0分)6.(5分)下列函数中,是一次函数的是(1)(3)(5)(6)(7),是正比例函数的是(1)(6).(填序号)(1)y=﹣;(2)y=﹣;(3)y=3﹣5x;(4)y=﹣5x2;(5)y=6x﹣;(6)y=x(x﹣4)﹣x2;(7)y=x﹣6.【分析】根据一次函数与正比例函数的定义解答即可.【解答】解:(1)y=﹣是一次函数,也是正比例函数;(2)y=﹣是反比例函数;(3)y=3﹣5x是一次函数;(4)y=﹣5x2是二次函数;(5)y=6x﹣是一次函数;(6)y=x(x﹣4)﹣x2=﹣4x是正比例函数,也是一次函数;(7)y=x﹣6是一次函数.故答案为:(1)(3)(5)(6)(7);(1)(6)【点评】本题主要考查了正比例函数与一次函数的定义,解题的关键是掌握一次函数与正比例函数的定义及关系:一次函数不一定是正比例函数,正比例函数是特殊的一次函数.7.(5分)已知一次函数的图象经过点P(﹣3,0),且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为y=x+或y=﹣x﹣.【分析】设一次函数图象与y轴交于点Q(0,m),利用三角形的面积公式结合一次函数图象与两坐标轴截得的三角形面积为4,可求出m的值,再利用待定系数法即可求出此一次函数的解析式.【解答】解:依照题意画出图形,如图所示.设一次函数图象与y轴交于点Q(0,m),=×|﹣3|×|m|=4,则S△POQ∴m=±.设一次函数的解析式为y=kx+b(k≠0).当m=时,将(﹣3,0),(0,)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x+.当m=﹣时,同理可求出一次函数的解析式为y=﹣x﹣.故答案为:y=x+或y=﹣x﹣.【点评】本题考查了三角形的面积以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.8.(5分)如图,直线y=x+4与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是(﹣3,0),(4﹣8,0).【分析】把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;根据等腰三角形的判定,分两种情况讨论即可求得.【解答】解:当y=0时,x=﹣8,即A(﹣8,0),当x=0时,y=4,即B(0,4),∴OA=8,OB=4在Rt△ABO中,AB==4若AP=AB=4,则OP=AP﹣AO=4﹣8∴点P(4﹣8,0)若AP'=BP',在Rt△BP'O中,BP'2=BO2+P'O2=16+(AO﹣BP')2.∴BP'=AP'=5∴OP'=3∴P'(﹣3,0)综上所述:点P(﹣3,0),(4﹣8,0)故答案为:(﹣3,0),(4﹣8,0)【点评】本题考查了一次函数图象上点的坐标特征,等腰三角形的性质,利用分类思想解决问题是本题的关键.9.(5分)若直线y=x﹣b与坐标轴围成面积是8,则b=±4.【分析】求出直线与两坐标轴的交点坐标,再根据三角形的面积公式计算出b 的值即可.【解答】解:直线y=x﹣b与x轴的交点为:(b,0),与y轴的交点为:(0,﹣b),∴×|﹣b|×|b|=8,解得:b=±4.故答案为:±4.【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求函数的解析式,正确利用点的坐标表示三角形的面积是关键.10.(5分)已知函数y=x+m﹣2018(m常数)是正比例函数,则m=2018.【分析】根据正比例函数的定义,m﹣2018=0,从而求解.【解答】解:根据题意得:m﹣2018=0,解得:m=2018,故答案为:2018.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.三、解答题(本大题共5小题,共50.0分)11.(10分)已知y﹣3与x成正比例,且x=6,y=15.(1)求y与x之间的函数解析式;(2)当x=9时,求y的值;(3)当y=2时,求x的值;【分析】(1)根据y﹣3与x成正比例,利用待定系数法求出解析式即可;(2)把x的值代入解析式求出y的值即可;(3)把y的值代入解析式求出x的值即可.【解答】解:(1)设函数的解析式为y﹣3=kx,∵把x=6,y=15代入解析式中得k=2,∴y﹣3=2x,即y=2x+3;(2)把x=9代入y=2x+3得:y=9×2+3=21;(3)把y=2代入y=2x+3得,2=2x+3,解得:x=﹣.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.12.(10分)已知2y+1与3x﹣3成正比例,且x=10时,y=4.求y与x之间的函数关系式.【分析】可设2y+1=k(3x﹣3),把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型.【解答】解:设2y+1=k(3x﹣3),∵x=10时,y=4,∴2×4+1=k(3×10﹣3),∴k=,∴2y+1=x﹣1,即y=x﹣1,故y与x之间的函数关系式为y=x﹣1.【点评】本题主要考查待定系数法求一次函数解析式,掌握待定系数法的应用步骤是解题的关键.13.(10分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.【分析】(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值即可;(2)根据题意解方程即可得到结论.【解答】解:(1)由题知,解得;(2)由(1)知y=﹣2x+6,当y与x互为相反数时,﹣2x+6=﹣x,解得x=6.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.14.(10分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的关系式;(2)P为x轴上一点,若△ACP的面积是△BOC面积的2倍,求点P的坐标.【分析】(1)利用待定系数法求直线AB的解析式;(2)利用直线AB的解析式确定C点坐标,再计算出S△ACP =2S△BOC=4,设P(t,0),根据三角形面积公式得到•|t+2|×3=4,然后解方程求出即可的P 点坐标.【解答】解:(1)设直线AB的解析式y=kx+b,把点A(1,3),B(0,2)代入解析式得,解得k=1,b=2,∴直线AB的解析式:y=x+2;(2)把y=0代入y=x+2得x+2=0,解得:x=﹣2,则点C的坐标为(﹣2,0),∵S△BOC=2×2×=2,∴S△ACP =2S△BOC=4,设P(t,0),∵•|t+2|×3=4,解得t=或t=﹣,∴P(,0)或(﹣,0).【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(10分)已知y﹣4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x=时,求函数y的值;(3)结合图象和函数的增减性,求当y<﹣2时自变量x的取值范围.【分析】(1)利用正比例函数的定义可设y﹣4=kx,然后把当x=1时,y=2代入求出k即可得到y与x之间的函数关系式,再利用描点法画出一次函数图象;(2)利用一次函数解析式,计算自变量为﹣对应的函数值即可;(3)利用一次函数图象,写出函数值小于﹣2对应的自变量的范围即可.【解答】解:(1)设y﹣4=kx,∵当x=1时,y=2,∴2﹣4=k,解得k=﹣2,∴y﹣4=﹣2k,∴y与x之间的函数关系式为y=﹣2x+4;如图,(2)当x=﹣时,y=﹣2×(﹣)+4=5;(3)当y<﹣2时自变量x的取值范围为x>3.【点评】本题考查了待定系数法求一次函数解析式:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数的图象和性质.。
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等4.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 5.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形6.(0分)[ID :10212]如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==,则AB 的长为( )A .3B .4C .43D .57.(0分)[ID :10210]1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1 C .x≠1 D .x≥﹣1且x≠18.(0分)[ID :10207]如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C9.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .10.(0分)[ID :10145]计算4133÷ 的结果为( ). A .32 B .23C .2D .2 11.(0分)[ID :10143]如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米12.(0分)[ID :10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米13.(0分)[ID:10188]如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.414.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.15.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.3二、填空题16.(0分)[ID:10327]如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)17.(0分)[ID :10317]函数y =21x x -中,自变量x 的取值范围是_____. 18.(0分)[ID :10314]一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).22.(0分)[ID :10266]如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10237]如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________25.(0分)[ID:10234]已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.三、解答题26.(0分)[ID:10389]某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?27.(0分)[ID:10354]如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD 于点D,点E为BC的中点,求DE的长.28.(0分)[ID:10338]如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?29.(0分)[ID:10336]如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.30.(0分)[ID:10429]如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.C4.A5.C6.B7.D8.C9.B10.D11.B12.D13.C14.C15.D二、填空题16.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK是矩形四边形17.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分18.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解19.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的22.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC 再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC的中点∴EF是△ABC 的中位线∴BC=2EF=2×3=6∴菱23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】【详解】解:由于直线过点A(02)P(1m)则解得故所求不等式组可化为:mx>(m-2)x+2>mx-20>-2x+2>-2解得:1<x<225.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm【点三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C.【点睛】(a≥0(a≤0).2.D解析:D【解析】【分析】7n 是完全平方数,满足条件的最小正整数n 为7.【详解】∴7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .4.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.5.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.6.B解析:B【解析】【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长.【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.7.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.9.B解析:B【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.10.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.11.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.12.D解析:D【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念13.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.14.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.15.D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.二、填空题16.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.17.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x≠1【解析】【分析】根据分式有意义的条件即可解答.函数y =21x x -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1.【点睛】 本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.18.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 19.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b >0,a <0;.故答案为:.本题主要考查二次根式的化简方法与运用:当a >0;当a <0;当a=0.20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.22.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】 解:由于直线过点A (0,2),P (1,m ), 则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,25.8cm 【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC 中∠ACB=90°AC=6cmBC=8cmCD⊥AB 则(cm )由得解得CD=48(cm)故答案为48cm 【点解析:8cm【解析】【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.【点睛】本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.三、解答题26.(1)2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩;(2)55元 【解析】【分析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y 与x 之间的函数关系式为y =kx+b (k≠0),将(40,60),(58,24)代入y =kx+b ,得: 40605824k b k b +=⎧⎨+=⎩ ,解得:2140k b =-⎧⎨=⎩, ∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+82.综上所述:y 与x 之间的函数关系式为2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩. (2)设当天的销售价为x 元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x ﹣40)(﹣2x+140)=100×3+150, 解得:x 1=x 2=55;当57<x≤71时,依题意,得:(x ﹣40)(﹣x+82)=100×3+150, 此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.27.【解析】试题分析:延长BD 与AC 相交于点F ,根据等腰三角形的性质可得BD=DF ,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=12CF ,然后求解即可. 试题解析:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵BD ⊥AD ,∴∠ADB =∠ADF ,又∵AD =AD ,∴△ADB ≌△ADF(ASA ).∴AF=AB=6,BD=FD.∵AC=10,∴CF=AC-AF=10-6=4.∵E为BC的中点,∴DE是△BCF的中位线.∴DE=12CF=12×4=2.28.需要爬行的最短距离是152cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:22BD AD+2cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:22BH AH+5,则需要爬行的最短距离是2cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:AB=22BB AB ''+=526cm ,∵152<105<526,∴则需要爬行的最短距离是152cm .考点:平面展开-最短路径问题.29.答案见解析【解析】【分析】首先连接AC 交EF 于点O ,由平行四边形ABCD 的性质,可知OA=OC ,OB=OD ,又因为BE=DF ,可得OE=OF ,即可判定AECF 是平行四边形.【详解】证明:连接AC 交EF 于点O ;∵平行四边形ABCD∴OA=OC ,OB=OD∵BE=DF ,∴OE=OF∴四边形AECF 是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题. 30.(1)证明见解析;(2)3【解析】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.。
八年级下数学期末考试题(基础篇)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式中,是最简二次根式的是()A.B.C.D.2.(3分)函数y=|x|﹣1中的自变量x的取值范围是()A.x≠±1B.x≠1C.x≠﹣1D.x为全体实数3.(3分)直角三角形一直角边长为12,另两边长均为自然数,则其周长为()A.36B.28C.56D.不能确定4.(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣3B.b>1C.b﹣a>0D.5.(3分)今有四个命题:(1)若两个实数的和与积都是奇数,则这两个数都是奇数.(2)若两实数的和与积都是偶数,则者两数都是偶数.(3)若两数的和与积都是有理数,则这两数都是有理数.(4)若两实数的和与积都是无理数,则这两数都是无理数.其中正确命题的个数是()A.0B.1C.2D.36.(3分)如图,AB⊥AC,AD⊥BC,其中AC=4,AB=3,BC=5,AD=,CD=,则B到AD距离为()A.3B.5C.D.7.(3分)一个样本的各数据都减少9,则该组数据的()A.平均数减少9,方差不变B.平均数减少9,方差减少3C.平均数与极差都不变D.平均数减少9,方差减少98.(3分)一次函数y=ax+b,ab<0,且y随x的增大而减小,则其图象可能是()A.B.C.D.9.(3分)如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD只需要满足一个条件,是()A.四边形ABCD是平行四边形B.四边形ABCD是菱形C.对角线AC=BD D.AD=BC10.(3分)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC≠2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.(4分)若式子在实数范围内有意义,则x的取值范围为.12.(4分)下列命题中,其逆命题成立的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.13.(4分)小明的家离学校2000米,他以50米每分钟的速度骑车到学校,则他与学校的距离s(米)和骑车的时间t(分钟)之间的函数关系式为,s是t的函数.14.(4分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是.15.(4分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM于E,若DE=DC=2,AE=2EM,则BM的长为.16.(4分)长方形ABCD如图折叠,使点D落在BC边上的点F处,已知AB=8cm,BC =10cm,则EF=.三.解答题(共10小题,满分96分)17.(8分)计算:(1);(2)(3﹣)(3)+(2﹣);(3)(﹣2)2++6;(4)(1﹣π)0+||﹣+()﹣1.18.(8分)已知=2,求式子的值.19.(9分)经过全市市民的共同努力,2017年深圳市实现全国文明城市“五连冠”,在创建全国文明城市期间,我市某中学义工队利用周末休息时间参加社会公益活动,学校对全体义工队成员参加公益活动的时间(单位:天)进行了调查统计.根据调查结果绘制了如图所示的两幅不完整的统计图,根据信息回答下列问题:(1)学校义工队共有名成员;(2)补全条形统计图;(3)义工队成员参加公益活动时间的众数是天,中位数是天;(4)义工队成员参加公益活动时间总计达到天;20.(9分)公路旁有一块山地正在开发,现有C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围250米内不得进入,在进行爆破时,公路AB段是否需要暂时封锁?请通过计算进行说明.21.(10分)在平面直角坐标系xOy中,直线l1:y=3x与直线l2:y=kx+b交于点A(a,3),点B(2,4)在直线l2上.(1)求a的值;(2)求直线l2的解析式;(3)直接写出关于x的不等式3x<kx+b的解集.22.(10分)利用所示图来证明勾股定理.证明:23.(10分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间(单位:分钟)之间的关系如图.(1)求y与x的函数关系;(2)每分钟进水、出水各多少升?(3)若12分钟以后只出水不进水,求多少时间将水放完?并求此时解析式;在图中把函数图象补完整.24.(10分)已知一次函数y=kx+b的图象经过点(﹣2,4)且与直线y=3x平行,求这个一次函数的解析式.25.(10分)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AC=24,BD=10.求证:▱ABCD是菱形.26.(12分)如图,在Rt△ABC中,∠ABC=90°,cos A=,AB=4,过点C作CD∥AB,且CD=2,连接BD,求BD的长.。
八年级上册数学基础训练卷子1. 题目类型:选择题题目:计算下列算式的值:()。
1)3 × 5 ÷ 2 + 9 - 4 = ___。
A. 18B. 20C. 22D. 242)(8 + 6) × 3 ÷ 2 - 5 = ___。
A. 13B. 17C. 19D. 213)4 × 7 + 5 ÷ 2 - 6 = ___。
A. 8B. 16C. 20D. 242. 题目类型:填空题题目:根据图形的特点填空。
1)正方形的四条边的边长相等,每个角都是___度。
2)三角形的内角之和是___度。
3)长方形的相对边长相等,相对角度是___度。
3. 题目类型:解答题题目:解方程。
1)求x满足方程4x - 2 = 10。
2)若2y + 5 = 15,求y的值。
3)解方程3(x + 2) - 5 = 16。
4)根据方程2x + 3 = 25,求x的解。
4. 题目类型:解答题题目:计算面积和体积。
1)长方形的长为5cm,宽为3cm,计算其面积和周长。
2)一个正方体的边长为6cm,求其体积和表面积。
3)一个圆的半径为7cm,求其面积和周长。
5. 题目类型:应用题题目:小明去购物,他买了一件衣服原价100元,打了8折,小明付了多少钱?解答过程:首先计算打折后的价格,即100元 × 0.8 = 80元。
所以小明付了80元。
6. 题目类型:应用题题目:某商店原价卖出了一个商品,售价为80元,商家为了促销打了9折,打完折后商家的利润率是60%。
商家的成本价是多少?解答过程:首先计算商品打折后的售价,即80元 × 0.9 = 72元。
然后设商家的成本价为x,根据利润率计算公式:(售价-成本价) / 成本价 = 利润率,代入已知数据得 (72 - x) / x = 0.6。
解方程得 x = 120元,所以商家的成本价是120元。
7. 题目类型:简答题题目:什么是等差数列和等比数列?解答:等差数列是指数列中相邻两项之间的差值相等的数列。
八年级上册数学基础训练卷子全文共四篇示例,供读者参考第一篇示例:八年级上册数学基础训练卷子一、选择题1. 下列哪个数与3/5等值?A. 0.6B. 1.2C. 2.5D. 0.35. 已知a=3,b=5,则a+b的平方等于多少?A. 4B. 16C. 25D. 64二、填空题1. 36的平方根是_______。
2. 90的一半是_______。
3. 0.25用分数表示为_________。
4. 12%用小数表示为_________。
5. 已知a=3,b=4,则a的平方加b的平方等于_______。
三、计算题四、应用题1. 一条长为5米的绳子,剪成了3段,第一段长2.3米,第二段长1.1米,问第三段长多少米?2. 一辆自行车由A到B共走了15公里,第一小时速度为10km/h,第二小时为15km/h,请问A到B的距离是多少公里?3. 一个玻璃罐装满了水果罐头,已知这个罐头的质量为1500克,玻璃罐的质量为300克,问罐头的质量占了总重量的百分之多少?4. 成本为1500元的商品打6.5折后售价是多少?5. 甲乙两地相距120公里,两辆车同时出发,甲车每小时行驶30公里,乙车每小时行驶40公里,问几个小时后两车相遇?以上就是八年级上册数学基础训练卷子的内容,希望同学们能认真完成,加油!第二篇示例:【八年级上册数学基础训练卷子】一、选择题1. 下列哪一组数中,只有一个是质数。
A. 13、17、21、29B. 3、5、7、11C. 2、4、6、8D. 19、23、25、272. 下列哪个数能整除24?A. 5B. 6C. 8D. 93. 若3a - 2 = 10,那么a 的值是多少?A. 2B. 4C. 6D. 84. 一个长方形的长为12厘米,宽为8厘米,它的周长是多少?A. 28厘米B. 32厘米C. 36厘米D. 40厘米二、填空题1. 48 ÷ 6 = ______2. 7 x 4 = ______3. 0.3 x 5 = ______4. 19 - 8 = ______5. 15 + 6 = ______三、解答题1. 某商店原价出售一本书是25元,现在打8折出售,打折后的价格是多少?2. 一条绳子长10米,需要剪成3段,其中一段为4米,一段为2米,剩下的一段是多长?3. 某地区去年的降雨量为560毫升,今年比去年增加了30%,今年的降雨量是多少?4. 甲乙两人分别向同一方向同时前进,甲的速度是每小时4千米,乙的速度是每小时6千米。
八年级数学题100道带答案1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=325494x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530(45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350(52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45(59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=706485x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=829540x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
《多边形的内角和》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°2.(5分)正六边形的每个内角度数为()A.90°B.108°C.120°D.150°3.(5分)一个多边形的内角和是720°,这个多边形的边数是()A.6B.7C.8D.94.(5分)若一个多边形的内角和比外角和的2倍少180°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.(5分)一个三角形,剪去一个角后所得的多边形内角和的度数是()A.180°B.360°C.540°D.180°或360°二、填空题(本大题共5小题,共25.0分)6.(5分)各角都相等的十五边形的每个内角的度数是度.7.(5分)一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是.8.(5分)一个多边形的内角和是1800°,这个多边形是边形.9.(5分)如图,∠A+∠B+∠C+∠D+∠E=.10.(5分)正六边形的每个内角的大小为.三、解答题(本大题共5小题,共50.0分)11.(10分)一个n边形的内角和比四边形的外角和大540°,求n.12.(10分)一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.13.(10分)如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.14.(10分)在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.15.(10分)一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.《多边形的内角和》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.【解答】解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.【点评】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.2.(5分)正六边形的每个内角度数为()A.90°B.108°C.120°D.150°【分析】利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.故选:C.【点评】本题需仔细分析题意,利用多边形的内角和公式即可解决问题.3.(5分)一个多边形的内角和是720°,这个多边形的边数是()A.6B.7C.8D.9【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个多边形为六边形.故选:A.【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.4.(5分)若一个多边形的内角和比外角和的2倍少180°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】多边形的外角和是360°,内角和是(n﹣2)•180°,依此列方程可求多边形的边数.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180=2×360﹣180,解得n=5;故选:C.【点评】本题考查考查多边形的内角与外角,关键是根据多边形的内角和与外角和定理解答.5.(5分)一个三角形,剪去一个角后所得的多边形内角和的度数是()A.180°B.360°C.540°D.180°或360°【分析】剪去一个角,不变,增加1,两种情况讨论求出所得多边形的内角和,即可得解.【解答】解:剪去一个角,若边数不变,则内角和=(3﹣2)•180°=180°,若边数增加1,则内角和=(4﹣2)•180°=360°,所以,所得多边形内角和的度数可能是180°,360°.故选:D.【点评】本题考查了多边形的内角与外角,要注意剪去一个角有三种情况是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)各角都相等的十五边形的每个内角的度数是156度.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵十五边形的内角和=(15﹣2)•180°=2340°,又∵十五边形的每个内角都相等,∴每个内角的度数=2340°÷15=156°.故答案为:156.【点评】本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.7.(5分)一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是135°.【分析】首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多720°,由此列出方程解出边数,进一步可求出它每一个内角的度数.【解答】解:设这个多边形边数为n,则(n﹣2)•180=360+720,解得:n=8,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.故答案为:135°.【点评】本题主要考查多边形的内角和定理,解题的关键是根据题意列出方程从而解决问题.8.(5分)一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.9.(5分)如图,∠A+∠B+∠C+∠D+∠E=180°.【分析】利用三角形的外角的性质将五个角转化为三角形的三个角的和即可.【解答】解:利用三角形的外角的性质得:∠1=∠D+∠E,∠2=∠A+∠B,所以∠A+∠B+∠C+∠D+∠E=∠2+∠C+∠1=180°,故答案为:180°.【点评】本题考查了多边形的内角与外角及三角形的内角和与外角和的知识,解题的关键是能够正确的将几个角转化为三个角,难度不大.10.(5分)正六边形的每个内角的大小为120°.【分析】利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.故答案为:120°.【点评】本题考查了多边形的内角与外角,解题时需仔细分析题意,利用多边形的内角和公式即可解决问题.三、解答题(本大题共5小题,共50.0分)11.(10分)一个n边形的内角和比四边形的外角和大540°,求n.【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【解答】解:设多边形的边数为n,可得(n﹣2)•180°=360°+540°,解得n=7.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.12.(10分)一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°,用2750除以180,商就是n﹣2,余数就是加上的那个外角的度数,进而可以算出这个多边形的边数.【解答】解:2750÷180=15…50,则边数n=18,这个内角的度数是:180°﹣50°=130°.故这个内角的大小是130°,多边形的边数是18.【点评】本题考查多边形内角和公式的灵活运用;关键是找到相应度数的等量关系.13.(10分)如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度.14.(10分)在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数.15.(10分)一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.【分析】设这个正多边的外角为x,则内角为5x﹣60,根据内角和外角互补可得x+5x﹣60=180,解可得x的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n﹣2)×180°计算内角和即可.【解答】解:设这个正多边的外角为x,则内角为5x﹣60°,由题意得:x+5x﹣60=180,解得:x=40,360°÷40°=9.(9﹣2)×180°=1260°答:这个正多边形的边数是9,内角和是1260°.【点评】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.。
人教版数学八年级基础练习题(含答案)一、填空题。
1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x+x=3,则421x x x ++=______. 二、选择题。
12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变 14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+--16.下列分式一定有意义的是( )A .21x x +B .22x x+ C .22x x -- D .23x x + 17.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4B .4804804x x -+=20C .48048020x x -+=4D .4804804x x--=20 三、计算题。
2024年八年级上册数学第三单元基础练习题(含答案)试题部分一、选择题:1. 在下列实数中,无理数是()A. 0.333…B. √9C. √2D. 1.752. 下列各数中,2的平方根是()A. ±2B. ±4C. ±1D. ±33. 如果一个数的平方是16,那么这个数是()A. 4B. 4C. ±4D. 84. 下列哪个算式是二次根式?()A. √(x+1)B. √(x^21)C. √(x^3)D. √(x^2+x)5. 已知a=3,b=2,则√(a^2+b^2)的值是()A. 1B. 2C. 5D. 46. 下列各数中,是有理数的是()A. πB. √3C. √9D. √17. 下列哪个算式是同类二次根式?()A. √5和√7B. √18和√8C. √20和√45D. √27和√368. 如果a^2=36,那么a的值可以是()A. 6B. 6C. ±6D. 09. 下列哪个算式是正确的?()A. √(a^2)=aB. √(a^2)=|a|C. √(a^2)=±aD. √(a^2)=a^210. 已知一个正方形的面积是25,那么它的边长是()A. 5B. 10C. 15D. 20二、判断题:1. 任何实数的平方都是正数。
()2. 无理数是无限不循环小数。
()3. √(a^2)=a对于任何实数a都成立。
()4. 二次根式的被开方数可以是负数。
()5. 0的平方根是0。
()6. 两个同类二次根式相加,结果还是同类二次根式。
()7. √(a^2+b^2)一定大于a和b中的较大数。
()8. π是无理数。
()9. 任何正数都有两个平方根,且它们互为相反数。
()10. 如果一个数的平方是负数,那么这个数是无理数。
()三、计算题:1. 计算:√(121 + 81)2. 计算:√(49) √(25)3. 计算:2√(36) + 3√(64)4. 计算:√(225) ÷ √(25)5. 计算:√(400) 2√(100)6. 计算:3√(8) + 4√(27)7. 计算:√(144) × √(81)8. 计算:√(9) + √(16)9. 计算:2√(121) √(49)10. 计算:√(64) ÷ 2√(16)11. 计算:(3√2)^212. 计算:√(200) √(50)13. 计算:√(0.04) + √(0.09)14. 计算:2√(0.36) √(0.25)15. 计算:√(1/4) + √(1/9)16. 计算:√(4/9) ÷ √(16/81)17. 计算:√(100/49) √(25/9)18. 计算:3√(8/27) + 2√(1/16)19. 计算:√(1/100) × √(1/25)20. 计算:√(3/4) + √(5/6)四、应用题:1. 一个正方形的面积是81平方厘米,求它的边长。
八年级数学下1.2直角三角形基础练习A组; 一、选择题:1.下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,同位角互补C.等腰三角形的两个底角相等 D.直角三角形中两锐角互补2.若三角形三边长之比为1∶2,则这个三角形中的最大角的度数是()A.60°B.90° C.120° D.150°3.在△ABC中,若∠A∶∠B∶∠C=3∶1∶2,则其各角所对边长之比等于()A1∶2 B.1∶2.1 2 D.2∶14.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互补C.相等或互补 D、相等或互余5.具备下列条件的两个三角形可以判定它们全等的是()A.一边和这边上的高对应相等 B.两边和第三边上的高对应相等C.两边和其中一边的对角对应相等 D.两个直角三角形中的斜边对应相等二、填空题6.在等腰三角形中,腰长是a,一腰上的高与另一腰的夹角是30°,则此等腰三角形的底边上的高是.7.已知△ABC中,边长a,b,c满足a2=13b2=14c2,那么∠B= .8.如下图1-46所示,一艘海轮位于灯塔P的东北方向,距离灯塔海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为海里(结果保留根号).三、解答题9.如图1-47所示,把矩形ABC D沿对角线B D折叠,点C落在点F处,若AB=12 c m,BC=16 c m.(1)求A E的长;(2)求重合部分的面积.10.如上图1-48所示,把矩形纸片ABC D沿EF折叠,使点B落在边A D上的点B′处,点A落在点A′处。
(1)求证B′E=B F;(2)设A E=a,AB=b,B F=c,试猜想a,b,c之间的一种关系,并给出证明.11.已知等腰三角形ABC中,AB=AC=103c m,底边BC=163c m,求底边上的高A D的长.B组:一、填空题1.直角三角形两直角边长分别为6和 8,则斜边上的高为_________.2.Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,若∠A=60°,AB=4 cm,则CD=_________.3.一个三角形三个内角之比为1∶1∶2,则这个三角形的三边比为_________.4.在Rt△ABC中,∠C=90°,∠A=30°,则a∶b∶c=_________.5.若△ABC中,a=b=5,c=52,则△ABC为_________三角形.6.高为h的等边三角形的边长为_________.7.对角线长为m的正方形的边长为_________.8.如右图,Rt△ABC和Rt△DEF,∠C=∠F =90°(1)若∠A=∠D,BC=EF,则Rt△ABC ≌Rt△DEF的依据是__________.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是__________.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(5)若AC=DF,CB=F E,则Rt△ABC≌Rt△DEF的依据是__________.9.已知:如下图1,AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△_____≌△______(HL).10.已知:如下图2,BE ,CF 为△ABC 的高,且BE =CF ,BE ,CF 交于点H ,若BC =10,FC =8,则EC =_____.二、选择题11.在Rt △ABC 中,∠ACB =90°,AC =CB ,CD 是斜边AB 的中线,若AB =22,则点D 到BC 的距离 为( ) A.1B.2C.2D.2212.如上图3,在△ABC 中,AD ⊥BC 于D ,BD =5,DC =1,AC =5,那么AB 的长度是( ) A.9 B.3C.1D.213.下列条件不可以判定两个直角三角形全等的是( ) A.两条直角边对应相等B.有两条边对应相等C.一条边和一锐角对应相等D.一条边和一个角对应相等14.以下各组数为边的三角形中,不是直角三角形的是( )A.3+1,3-1,22 B.4,7.5,8.5 C.7,24,25D.3.5,4.5,5.515.如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE =∠DE C=60°,AB =3,CE =4,则AD 等于( ) A.4 8 B.24C.10D.1216.等边三角形的高为2,则它的面积是( ) A.2B.4C.334D.43三、解答与证明17.已知:如图,△ABC 中,CD ⊥AB 于D ,AC =4,BC =3,DB =59.(1)求DC 的长;(2)求AD 的长;(3)求AB 的长;(4)求证:△ABC 是直角三角形.9题图10题图12题图15题图18.如下图,已知∠ABC =∠AD C=90°,E 是AC 上一点,AB =AD , 求证:EB=ED .19.折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠AD 边与对角线BD 重合,得折痕DG , 如图所示,若AB =2,BC =1,求AG 的长.C 组:基础训练:1、填空题:(1)如图1,已知AB ⊥AC ,AC ⊥CD ,垂足分别是A ,C ,AD=BC 。
八年级数学基础题
1.实数2-,0.3,
7
π-,4中,无理数的个数是 A 、2 B 、3
C 、4
D 、5
2.在平面直角坐标系中,点P (-2,3)位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限
3.如果座位表上“5列2行”记作(5,2),那么(3,5)表示 A 、3列5行 B 、5列3行 C 、4列3行 D 、3列4行 4.当my mx <时,y x <成立,则m 的取值为 A .0=m B .0≠m C .0>m D .0<m
5.下列说法: ①无限小数都是无理数;②无理数是无限不循环的小数; ③无理数包括正无理数、0、负无理数;④无理数都可以用数轴上的点来表示.其中正确的说法的个数是 A.1 B.2 C.3 D.4 6.下列调查方式中,适合采用全面调查方式的是
A .了解一批节能灯的使用寿命
B .了解全国中学生的视力和用眼卫生情况
C .检测某城市的空气质量
D .企业招聘,对应聘人员进行面试
7.若21x y =⎧⎨=⎩
是关于x ,y 的方程ax-y =5的解,则a 的值是
A 、1
B 、2
C 、3
D 、4
8.若a >b ,则下列不等式一定成立的是 A 、
b a <1 B 、b
a
>1 C 、a ->b - D 、a b ->0 9. 下列命题中,不正确的是
A 、邻补角互补
B 、内错角相等
C 、对顶角相等
D 、垂线段最短 10. 如图1,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、A
E 、ED 、EC 中,相互平行的线段有 组
D . 1组
二、填空题(3′×5=15′):
11.已知53=+y x ,当2-=x 时,y 的值是 .
12.关于x 的某个不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 . 13.已知2
80x -=;则x =
14.已知点P 在第四象限,到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为 15.经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%.画扇形图时,“公交车”对应扇形的圆心角度数是
三、解答题(5′×5=25′):
16.将下列各数填入相应的集合内。
-7,0.32, 1
3
,0
π,0.1010010001… ①有理数集合{ … } ②无理数集合{ … } ③负实数集合{ … } 17.计算:()
-23-22
32-+
18.解不等式组:⎪⎩⎪
⎨⎧->-++≤+x x x x 213
5
21132
19.已知单位长度为1的方格中,⊿ABC 的位置如图所示.
(1)请在图中建立平面直角坐标系,使点C 的坐标为(-4,-3);
(2)在(1)的条件下,将⊿ABC 向上平移2个单位长度再向右平移3个单位长度得
⊿A ′B ′C ′,并写出点B 的对应点B ′的坐标.
A
C B
-1 0 1
20.如图4,AB ∥CD ,∠DAB=37°,∠ACD=125°,求∠CAD 的度数.
四、解答题(8′×5=40′):
21. 解方程组 ⎪⎩
⎪
⎨⎧=-+=+-=++1232436
c b a c b a c b a
22. 为了解某中学全校学生对排球、乒乓球、篮球、羽毛球、足球五项体育运动的喜
爱情况,从中随机调查了若干名学生,并将调查结果绘制成统计表和统计图(不完整).请根据图中提供的信息,解答下列问题: (1)补全统计表和统计图.
(2
B
23.证明:如图,已知∠B+∠BCD=180°,∠B=∠D. 求证:∠E=∠D FE.
24.甲运输公司决定分别运给A市苹果10t,B市苹果8t,但现在仅有12t苹果,还需从乙运输公司调运6t,经协商,从甲运输公司运1t苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1t苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?
25.某房地产开发商花了3500万元购买了一块地用于建造居民保障房,已知住宅楼每
平方米的造价约为2000元,那么建楼面积必须超过多少平方米,才能将建楼成本控制在每平方米5000元以下?。