八年级数学矩形的性质测试题
- 格式:doc
- 大小:84.00 KB
- 文档页数:6
黑龙江省数学八年级下学期期末复习专题13 矩形的性质与判定姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A . 测量对角线是否相互平分B . 测量两组对边是否分别相等C . 测量对角线是否相等D . 测量其中三个角是否都为直角2. (2分)下列命题中,是真命题的是()A . 两条对角线互相平分的四边形是平行四边形B . 两条对角线相等的四边形是矩形C . 两条对角线互相垂直的四边形是菱形D . 两条对角线互相垂直且相等的四边形是正方形3. (2分) (2017八下·三门期末) 在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=10,b=8,c=6;②a2=3,b2=4,c2=5;③a2=(b+c)(b-c);④∠A=2∠B=2∠C。
其中能判断△ABC是直角三角形的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2020九上·衢州期中) 若刻度尺与⊙O按如图位置摆放,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),⊙O的半径是5cm,则圆心O到刻度尺的距离为()A . 5cmB . 4cmC . 3cm5. (2分) (2019九下·瑞安月考) 如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A . 2B . 2C .D . 26. (2分) (2015八下·浏阳期中) 直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为()A . 16 cmB . 4cmC . 12cmD . 8 cm7. (2分) (2019八下·陆川期中) 下列说法中正确的是()A . 两条对角线互相垂直的四边形是菱形B . 两条对角线互相平分的四边形是平行四边形C . 两条对角线相等的四边形是矩形D . 两条对角线互相垂直且相等的四边形是正方形9. (2分) (2020八上·江阴月考) 如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为36,则BE的长是()A . 4B . 5C . 6二、填空题 (共6题;共6分)11. (1分) (2020八下·麦积期末) 如图,在矩形中,对角线与相交于点,,,则的长为________.12. (1分)如图,平行四边形ABCD中,∠DAB=70°,将平行四边形ABCD变化为一个矩形(图中的虚线部分),在此过程中,分析每条边的运动.AB:________;AD:________;BC:________;CD:________.13. (1分)一个长方形的周长是16cm,长比宽多2cm,那么它的宽是________cm.14. (1分) (2017八下·莒县期中) 如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为________cm.15. (1分)(2020·静安模拟) 如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cotB =,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为________.16. (1分) (2020八下·南京期中) 如图,在Rt△ABC 中,∠ACB=90°,D、E、F 分别是 AB、BC、CA 的中点,若 CD=4cm,则 EF=________cm.三、解答题 (共8题;共65分)17. (5分)(2016·广州) 如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18. (5分)已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.19. (8分) (2020七下·双阳期末) 图①、图②均为5×5的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长为1.线段AB的端点均在格点上,完成下列画图(要求:仅用无刻度的直尺,且保留必要的画图痕迹).(1)在图①中画出一个以AB为对角线的平行四边形,使这个平行四边形的另两个顶点均在格点上,且面积为6.(2)在图②中画出一个以AB为对角线的矩形,使这个矩形的另两个顶点均在格点上,且面积为4.20. (10分) (2017九上·台州月考) 矩形ABCD中,E为BC上一点,DF⊥AE于点F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,AE=10,求DF的长.21. (10分)(2021·张家界模拟) 如图,平行四边形 ABCD 中,AB=8 cm,BC=12 cm,∠B=60°,G 是CD 的中点,E 是边 AD 上的动点,EG 的延长线与 BC 的延长线交于点 F,连接 CE,DF.(1)求证:四边形 CEDF 是平行四边形;(2)①AE=________cm 时,四边形 CEDF 是矩形,请写出判定矩形的依据(一条即可);________②AE=________cm 时,四边形 CEDF 是菱形,请写出判定菱形的依据(一条即可).________22. (10分) (2020八下·栖霞期中) 如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB =13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为________.23. (10分)(2017·盐城模拟) 如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O 于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.24. (7分) (2020八上·萧山期中) 用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线,在直角三角形ABC中,∠C=90°,AC=8.BC=6.图1 图2 备用图(1)如图1,若O为AB的中点,求证:直线OC是△ABC的等腰分割线。
初中数学试卷矩形的性质和判定同步练习1.矩形的对边,对角线且,四个角都是,即是图形又是图形。
2.矩形的面积是60,一边长为5,则它的一条对角线长等于。
3.如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.5. 矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.6.如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
7.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .8.平行四边形没有而矩形具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角相等9.下列叙述错误的是()A.平行四边形的对角线互相平分B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形10.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线是否相等B.用曲尺测量对角线是否互相垂直C.用曲尺测量门框的三个角是否都是直角D.测量两条对角线是否互相平分11.矩形ABCD对角线相交于点O,如果△ABC周长比△AOB周长大10cm,则AD长是()A.5cmB.7.5cmC.10cmD.12.5cm12.下列图形中对称轴有2条的图形是()A.平行四边形B.等边三角形C.矩形D.直角三角形二、解答题:13.如图,已知矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求此矩形的面积.14.平行四边形ABCD,E是CD的中点,△ABE是等边三角形.求证:四边形ABCD是矩形.15.如图,矩形ABCD中,EF⊥EB,EF=EB,ABCD周长为22cm,CE=3cm.求:DE的长.16.如图,矩形ABCD中,DE=AB,CF⊥DE.求证:EF=EB.17.如图,矩形ABCD中,点E、F分别在AB、CD上,BF//DE,若AD=12cm,AB=7cm,且AE:EB=5:2,求阴影部分.18.如图,矩形ABCD中,对角线AC、BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.19.矩形ABCD中,E是CD上一点,且AE=CE,F是AC上一点FH⊥AE于H,FG⊥CD于G.求证:FH+FG=AD.20.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.求证:四边形AFCE是矩形21.平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形.参考答案1.相等;互相平分;相等;直角;轴对称;中心对称;2.12;3.48;4.22或26;5.10,5;6.(2,4),(3,4),(8,4);7.6.5;8.A 9.B 10.C 11.C 12.C 13.163cm 2;14.证明:∵AE =BE (等边△),∠DEA =∠EAB =60º=∠ABE =∠CEB (内错角相等). DE =CE (E 中点);∴△ADE ≌△BCE (两边夹一角相等),∠C =∠D (对应角相等), ∠C +∠D =180º(同旁内角互补),∠C =∠D =90º,同理∠A =∠B =90º;所以 平行四边形ABCD 是矩形.(四个角是直角).15.∵四边形ABCD 是矩形,∴AD=BC ,DC=AB ,∠D=∠C=90°,∵EF ⊥EB ,∴∠FEB=90°,∴∠DEF+∠CEB=90°,∠CEB+∠CBE=90°,∴∠DEF=∠CBE , 在△DEF 和△CBE 中,∠D =∠C ,∠DEF =∠CBE ,EF =EB ,∴△DEF ≌△CBE (AAS ), ∴DE=BC ,DF=CE=3cm ,∵矩形ABCD 的ABCD 周长为22cm ,∴2(BC+DE+EC )=22,∴DE+DE+3=11,∴DE=4.16.∵∠AED=∠FDC ,∠DAE=∠DFC=90°∴∠ADE=∠FCD又∵DE=AB=CD ∴△ADE ≌△FCD ∴DF=AE ∴EF=DE-DF=AB-AE=BE 。
鲁教版2019-2020八年级数学下册6.2矩形的性质与判定自主学习能力达标测试题(附答案)1.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,//CE BD ,//DE AC ,若4AC ,则四边形OCED 的周长为( )A .4B .8C .10D .122.下列说法中,正确的是( )A .对角线互相平分的四边形一定是平行四边形B .对角线相等的四边形一定是矩形C .对角线互相垂直的四边形一定是菱形D .对角线相等的四边形一定是正方形3.如图,Rt △AOB ,∠AOB=90°,BO=2, AO=4.动点Q 从点O 出发,以每秒1个单位长度的速度向B 运动,同时动点M 从A 点出发以每秒2个单位长度的速度向O 运动,设运动的时间为t 秒(0<t <2).过点Q 作OB 的垂线交线段AB 于点N ,则四边形OMNQ 的形状是( )A .平行四边形B .矩形C .菱形D .无法确定4.如图,在一张矩形纸片ABCD 中,AD =4cm ,点E ,F 分别是CD 和AB 的中点.现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH .若HG 的延长线恰好经过点D ,则CD 的长为( )A .2cmB .C .4cmD .5.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2 B.C.D.6.如图,在矩形ABCD中,AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有()A.①②③④⑤B.①②③④C.①③④⑤D.①②③⑤7.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.108.如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n 的面积为()A.B.C.D.不确定9.如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,点E是BC 的中点,连结OE,则OE的长是()A.B.2C.2 D.410.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补11.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长xm,则可列方程.12,则它的斜边上的中线为_______ cm.13.在中,,,且关于的方程有两个相等的实数根,则边上的中线长为.14.直角三角形斜边上的高与中线分别是5cm和7cm,则它的面积是______2cm.15.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_____.16.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是平面内的一个动点,且AD=4,M为BD的中点.设线段CM长度为a,在D点运动过中,a的取值范围是__________.17.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:________,使得△ADF≌△CBE.18.若直角三角形两条直角边的边长分别为15cm和12cm,那么此直角三角形斜边上的中线是_______________cm.19.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′处,∠AE D′=40°,则∠EFB=__°.20.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=______.21.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F 为BD中点。
鲁教版2019-2020八年级数学下册6.2矩形的性质与判定自主学习能力达标测试题2(附答案)1.矩形具有而菱形不具有的性质是( )A .对角线相等B .对角线平分一组对角C .对角线互相平分D .对角线互相垂直2.如图,在矩形ABCD 中 ,AB=4,BC=8,点E 为CD 中点,P 、Q 为BC 边上两个动点,且PQ=2,当四边形APQE 周长最小时,BP 的长为( )A .1B .2C .22D .43.Rt △ABC 中,两条直角边分别为6和8,则斜边上的中线长( )A .4B .5C .6D .74.直角三角形两直角边边长分别为6cm 和8cm ,则斜边的中线为( )A .10cmB .3cmC .4cmD .5cm5.如图,矩形ABDC 中,BAD ∠的平分线交BC 于E .若AB 4=,AD 7=,则DEC S (=V )A .6B .7C .8D .11 6.宽与长的比是 51- (约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ,DF ,作∠DFC,的平分线,交AD 的延长线于点H ,作HG ⊥BC ,交I3C 的延长线于点G ,则下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 7.下列说法正确的有( )①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形. A .1个 B .2个 C .3个 D .4个8.四边形ABCD 对角线AC 、BD 交于O ,若AO OD =、BO OC =,则四边形ABCD 是( )A .平行四边形B .等腰梯形C .矩形D .以上都不对 9.如图,把长方形纸片ABCD 折叠,使顶点A 与顶点C 重合在一起,EF 为折痕.若AB=9,BC=3,试求以折痕EF 为边长的正方形面积( )A .11B .10C .9D .1610.在一个直角三角形中,已知两直角边分别为6cm ,8cm ,则下列结论不正确的是( ) A .斜边长为10cmB .周长为25cmC .面积为24cm 2D .斜边上的中线长为5cm11.如图,矩形OBCD 的顶点C 的坐标为(1,3),则线段BD 的长等于________12.如图,在四边形ABCD 中,90BAD BCD ∠=∠=o ,AB AD =,如果23AC cm =,则四边形ABCD 的面积为________2cm .13.在Rt △ABC 中,∠C=90°,∠A=30°,BC=2,则斜边上的中线长为______.14.如图,在梯形ACDB 中,AB ∥CD ,∠C+∠D=90°,AB=2,CD=8,E ,F 分别是AB,CD的中点,则EF=_____.15.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=_____°.16.如图,△ ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ ABD 沿AD 翻折得到△ AED,连CE,则线段CE 的长等于_____17.如图,矩形ABCD申,对角线AC、BD相交于点0,∠AOB=600,AB=5,则AD 的长是().(A)5(B)5(C)5 (D)1018.矩形ABCD中,AB=3,BC=4,则AC=_____,矩形的面积为_____.19.如图,折叠形ABCD的一边AD,点D落在BC边上的点F处,AE是折痕,已知AB=8cm,BC=10cm.则CE=__cm.20.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若CE=4,CF=3,求OC的长.(2)连接AE 、AF ,问当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?请说明理由.21.如图所示,E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,AD 的中点.(1)当四边形ABCD 是矩形时,四边形EFGH 是_________,请说明理由;(2)当四边形ABCD 满足什么条件时,四边形EFGH 为正方形?并说明理由.22.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,点E 、F 在BD 上,BE DF =.(1)求证:AE CF =;(2)若3AB =,120AOD ∠=︒,求BC 的长度.23.如图,在△ABC 中,点O 是A C 边上(端点除外)的一个动点,过点O 作直线MN ∥B C .设MN 交∠B C A 的平分线于点E ,交∠B C A 的外角平分线于点F ,连结AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.24.如图:是长方形纸片ABCD 折叠的情况,纸片的宽度AB=8cm ,长AD=10cm ,AD 沿点A 对折,点D 正好落在BC 上的M 处,AE 是折痕.(1)求CM 的长;(2)求梯形ABCE 的面积.25.已知,如图矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点B与点D重合,折痕为EF.(1)求证:BE=BF;(2)求△ABE的面积;(3)求折痕EF的长.26.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD 边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.参考答案1.A【解析】试题分析:解:菱形的对角线互相平分、垂直、对角线平分一组对角,矩形的对角线互相平分、相等,∴矩形具有而菱形不具有的性质是对角线相等,故选A.考点:1.菱形的性质;2.矩形的性质.2.D【解析】分析:要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.详解:如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交B C于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°.设BP=x,则CQ=BC-BP-PQ=8-x-2=6-x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6-x=2,解得x=4.故选D.点睛:本题考查了矩形的性质,轴对称-最短路线问题的应用,题目具有一定的代表性,正确做出辅助线确定出P和Q点的位置是解答本题的关键.3.B【解析】分析:利用勾股定理求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.详解:两条直角边的边长分别为6和8,根据勾股定理得:斜边2268+,所以,斜边上的中线的长=12×10=5.故选B.点睛:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,是基础题,熟练掌握性质是解题的关键.4.D【解析】分析:由勾股定理求出斜边,再根据直角三角形斜边上中线等于斜边的一半求解.详解:由勾股定理得,斜边为10,因为直角三角形斜边上中线等于斜边的一半,所以斜边上的中线等于5.故选D.点睛:本题考查了勾股定理和直角三角形斜边上的中线的性质,直角三角形中已知两边的长,可用勾股定理求第三边的长.5.A【解析】【分析】由矩形的性质得出∠BAD=∠B=∠C=90°,BC=AD=7,CD=AB=4,证明△ABE是等腰直角三角形,得出BE=AB=4,因此CE=BC-BE=3,12DECS CE CD=⋅V,即可得出结果.【详解】∵四边形ABCD 是矩形,∴90BAD B C ∠=∠=∠=o ,BC =AD =7,CD =AB =4,∵AE 平分∠BAD ,∴45BAE ∠=o ,∴△ABE 是等腰直角三角形,∴BE =AB =4,∴CE =BC −BE =3, ∴1134622DEC S CE CD =⋅=⨯⨯=V ; 故选:A.【点睛】考查了矩形的性质,等腰直角三角形的性质,三角形的面积公式的计算,熟练掌握矩形的性质,证明三角形是等腰直角三角形得出CE 是解题的关键.6.C【解析】设正方形ABCD 的边长为2,则DE =1,在直角三角形DFC 中,DF .∵AH ∥BG ,∴∠AHF =∠HFG .∵FH 平分∠DFC ,∴∠DFH =∠HFG ,∴∠DFH =∠AHF ,∴DF =DH∴EH∴EF EH = , ∴矩形EFGH 为黄金矩形.故选C.7.C【解析】【分析】根据矩形的判定定理判断即可.【详解】两条对角线相等且相互平分的四边形为矩形.①③⑤错.有一个角为直角的平行四边形为矩形.②④⑥正确.故选C.【点睛】本题考查的是矩形的判定定理,解题的关键是掌握:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.8.D【解析】【分析】由四边形ABCD对角线AC、BD交于O,若AO=OD、BO=OC,易得AC=BD,AD∥BC,然后分别从AD=BC与AD≠BC去分析求解,即可求得答案.【详解】∵AO=OD、BO=OC,∴AC=BD,∠OAD=∠ODA=1802AOD︒-∠,∠OBC=∠OCB=1802BOC︒-∠,∵∠AOD=∠BOC,∴∠OAD=∠OCB,∴AD∥BC,①若AD=BC,则四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形;②若AD≠BC,则四边形ABCD是梯形,∵AC=BD,∴四边形ABCD是等腰梯形.故答案选D.【点睛】本题考查了平行四边形的性质和矩形与等腰梯形的判定,解题的关键是熟练的掌握平行四边形的性质和矩形与等腰梯形的判定.9.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.10.B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=12×6×8=24cm2,故选项C不符合题意;∴斜边226810cm,=+=故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.1110.【解析】试题分析:根据勾股定理可得2231+10,根据矩形的性质可得10. 考点:矩形的性质.12.6【解析】【分析】如图,作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【详解】如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°,∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,{BAM DANAMB ANDAB AD∠∠∠∠===,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=3;∴2λ2=12,λ2=6,故答案为:6.【点睛】该题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.13.2【解析】【分析】利用“直角三角形中,30°所对的直角边等于斜边的一半”就可以得到AB的值,再利用直角三角形斜边上的中线等于斜边的一半就可以解决本题.【详解】根据题意画出图形∵∠C=90°,∠A=30°∴ BC=12×AB (在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)∵ BC=2 ∴ AB=4∴斜边上的中线长=12×AB=2 (直角三角形斜边上的中线等于斜边的一半).【点睛】本题考查了含30°角的直角三角形的性质定理,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟记并掌握性质解题.14.3【解析】【分析】延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.【详解】延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=1CD2,同理ME=1AB2,∴EF=MF-ME=4-1=3.【点睛】本题考查了直角三角形斜边中线的性质.15.35.【解析】【详解】∵∠ACB=90°,∠B=55°,∴∠A=35°,∵∠ACB=90°,D是AB的中点,∴DA=DC,∴∠ACD=∠A=35°,故答案为35.【点睛】考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16.7 5【解析】如图,过点A作AH⊥BC于点H,连接BE交AD于点O,∵△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,∴5=,AD=BD=2.5,∴12BC·AH=12AC·AB,即2.5AH=6,∴AH=2.4,由折叠的性质可知,AE=AB,DE=DB=DC,∴AD是BE的垂直平分线,△BCE是直角三角形,∴S△ADB=12AD·OB=12BD·AH,∴OB=AH=2.4,∴BE=4.8,∴CE=2275 4.85-=.故答案为:7 5 .点睛:本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH⊥BC于点H,连接BE交AD于点O,利用面积法求出AH和OB的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.17.B【解析】解:过O点作线段AD的垂线交AD于E点,则AE=ED;如图所示:则所以°;即可得△ABO为等边三角形,所以AO=AB=5,而OE为Rt△DAB的中位线,即可知OE=;AE=,即AD=2AE=18.5 12.【解析】【分析】根据勾股定理求出AC,利用面积公式计算求解.【详解】如图:在Rt△ABC中,AB=3,BC=4,由勾股定理得AC=2222++;=34=5AB BC矩形的面积为AB•BC=3×4=12.故答案为5,12.【点睛】此题较简单,根据勾股定理及矩形的面积公式解答.19.3【解析】分析:首先根据折叠可得AF=AD=BC=10,在Rt△ABF中利用勾股定理计算出BF的长,进而得到FC的长,再设CE=x cm,则DE=EF=(8−x)cm,在Rt△ECF中利用勾股定理列方程求解即可.详解:连接AF,EF,设CE=x cm,DE=EF=(8−x)cm,由折叠得,AF=AD=BC=10cm.在Rt△ABF中,根据勾股定理可得:2222BF AF AB=-=-=cm;1086∴CF=BC-BF=10-6=4cm.在Rt△ECF中,∵CE2+CF2=EF2,∴x2+42=(8-x)2,解可得x=3,故CE=3cm.故答案为:3.点睛:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,掌握翻折以后有哪些线段是对应相等的,有哪些角是对应相等的,熟练运用勾股定理是解答本题的关键.20.(1)2.5: (2)见解析.【解析】【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.【详解】(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==5,∴OC=OE=EF=2.5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点睛】本题考查了矩形的判定、平行线的性质、等腰三角形的判定与性质,掌握这些判定及性质是解答本题的关键.21.(1)菱形,理由见解析;(2)当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH为正方形.理由见解析.【解析】(1)利用三角形中位线定理“三角形的中位线等于第三边的一半”,根据菱形的判定,矩形的性质,求解即可,(2)首先利用菱形的性质得出平行四边形ABCD是菱形,再利用正方形的性质与判定得出即可.解:(1)理由:∵四边形ABCD是矩形,∴AC=BD.由题意,得EF=12AC,EH=12BD,GH=12AC,GF=12BD,∴EF=EH=GH=GF.∴四边形EFGH是菱形.(2)当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH为正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12 AC.同理:EH∥BD,EH=12BD,GF=12BD,GH=12AC.又∵AC=BD,∴EF=EH=GH=GF.∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH.∴四边形EFGH是正方形.点睛:本题主要考查三角形中位线、矩形的性质, 菱形的判定, 正方形的判定.熟练掌握矩形、菱形、正方形的性质及判定是解题的关键.22.(1)详见解析;(2)BC =【解析】【分析】(1)欲证明AE=CF ,只要证明△ADE ≌△CBF 即可; (2)在Rt △ADB 中,求出AD 即可解决问题.【详解】解:(1)∵矩形ABCD∴//AD BC ,AD BC =∴ADB CBD ∠=∠∵BE DF =∴BD BE BD DF -=- 即DE BF =在ADE V 和CBF V∵AD BC ADB CBD DE BF =⎧⎪∠=∠⎨⎪=⎩∴ADE V ≌CBF V∴AE CF =(2)∵矩形ABCD∴AC BD = ∵12AO AC =,12DO BD = ∴AO DO = ∴()()111801*********ADB AOD ∠=︒-∠=︒-︒=︒ ∴在Rt ADE V 中,26BD AB ==AD ==∴BC AD ==【点睛】本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形,理由见解析【解析】试题分析:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.如图,由CE 平分∠BCA可得∠1=∠2,由MN∥BC可得∠1=∠3,所以∠3=∠2,所以EO=CO,同理可证FO=CO,所以EO=FO,结合OA=OC可得四边形AECF是平行四边形,由CF 是∠BCA的外角平分线可得∠4=∠5,不难证明∠2+∠4=90°,所以平行四边形AECF是矩形.试题解析:当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.点睛:掌握矩形的判定定理.24.(1)4cm;(2)55cm2.【解析】试题分析:(1)在Rt△ABM中,AB=8cm,AM=AD=10cm,直接根据勾股定理求解即可;(2)先求出CE的长,然后根据梯形的面积公式求解.试题解析:(1)在Rt △ABM 中,AB=8cm ,AM=AD=10cm ,根据勾股定理得:BM=22AM AB =6cm ; ∴CM=10-6=4cm ;(2)在Rt △MCE 中,ME 2=EC 2+MC 2,即(8-x )2=42+x 2,解得x=3,∴S 四边形ABCE =12×(AB+CE )×BC=12×(8+3)×10=55cm 2. 25.(1)证明见解析;(2)6cm 2.(3)10【解析】【分析】(1)由翻折得出∠BEF=∠DEF ,由AD ∥BC 得出∠BFE=∠DEF ,进一步得出∠BEF=∠BFE 求得结论;(2)设AE=x ,则BE=DE=9-x ,根据勾股定理求得AE ,进一步求△ABE 的面积;(3)作EH ⊥BC 于H ,则易得:EH=AB ,BH=AE ,再用勾股定理求解.【详解】(1)证明:∵将矩形折叠,使点B 与点D 重合,折痕为EF .∴∠BEF=∠DEF ,……………………………………………1’∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BFE=∠DEF ,……………………………………………2’∴∠BEF=∠BFE ,∴BE=BF .……………………………………………3’(2)解:设AE=x ,则BE=DE=9﹣x ,……………………………………………4’ 由勾股定理得:x 2+32=(9﹣x )2,……………………………………………5’ 解得:x=4,……………………………………………6’则S △ABE =AB•AE=6cm 2.……………………………………………7’(3)作EH⊥BC于H,则易得:EH=AB=3,BH=AE=4在Rt△ABE中,AB=3,AE=4∴BE=5,……………………………………………8’∴BF=BE=5∴HF=BF=BH=5-4=1……………………………………………9’在Rt△EHF中,EH=3,HF=1∴22+=3110【点睛】本题考查的是翻折问题,熟练掌握勾股定理和平行的性质是解题的关键.26.(1)见解析;(2)5cm;(3)5.【解析】分析:(1)根据翻折变换的对称性可知AE=AB,在△ADE中,利用勾股定理逆定理证明三角形为直角三角形,再根据有一个角是直角的平行四边形是矩形证明即可;(2)设BF为x,分别表示出EF、EC、FC,然后在△EFC中利用勾股定理列式进行计算即可;(3)在Rt△ABF中,利用勾股定理求解即可.详解:(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)设BF=x,则EF=BF=x,EC=CD-DE=10-6=4cm,FC=BC-BF=8-x,在Rt△EFC中,EC2+FC2=EF2,即42+(8-x)2=x2,解得x=5,故BF=5cm;(3)在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴.点睛:本题主要考查了平行四边形的性质,矩形的判定,勾股定理,以及翻折变换前后的两个图形全等的性质,是综合题,但难度不大.。
§18.2.1.1矩形的性质一、知识导航1.矩形的定义:有一个角是直角的平行四边形叫做矩形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一个角是直角,二者缺一不可;(2)矩形一定是平行四边形,但平行四边形不一定是矩形2.矩形的性质类别性质符号语言图形角四个角都是直角 四边形ABCD 是矩形ABC BCD CDA ∴∠=∠=∠90DAB =∠=︒对角线对角线相等四边形ABCD 是矩形AC BD ∴=对称性矩形是轴对称图形,具有两条对称轴(对边中点所连成的直线)二、重难点突破重点1利用矩形的性质求线段长度例1.如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5AB cm =,则矩形对角线BD 的长为()A .3cmB .4cmC .5cmD .6cm【答案】C 【分析】根据矩形的性质得到OA=OB=OD ,结合120AOD ∠=︒得到30ADO DAO ∠=∠=︒,进一步得到BD=2AB .【详解】因为四边形ABCD 为矩形,所以AC BD =,90BAD ∠=︒12OA OC AC ==,12OB OD BD ==,所以OA OD =,所以ADO DAO ∠=∠,因为120AOD ∠=︒所以1801801203022AOD ADO DAO ︒-∠︒-︒∠=∠==︒因为90BAD ∠=︒,所以12AB BD =,故22 2.55BD AB cm ==⨯=.故选C .【点睛】本题考查了矩形的性质和含30°的直角三角形的边角关系,本题也可用等边三角形的性质和矩形的性质进行求解.变式1-1如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,连接EF ,若6AB cm =,8BC cm =,则EF 的长是()A .2.2cmB .2.3cmC .2.4cmD .2.5cm【答案】D 【分析】由勾股定理求出BD 的长,根据矩形的性质求出OD 的长,最后根据三角形中位线定理得出EF 的长即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC=BD ,OA=OC=OD=OB ,∵6AB cm =,8BC cm =,∴AC 10cm==∴BD =10cm ,∴152OD BD cm ==,∵点E ,F 分别是AO ,AD 的中点,∴115 2.522EF OD cm ==⨯=.重点点拨:在矩形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度故选:D .【点睛】本题考查矩形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识.变式1-2如图,在矩形ABCD 中,AB =4,BC =6,过对角线交点O 作EF ⊥AC 交AD 于点E ,交BC 于点F ,则DE 的长是()A .1B .125C .2D .53【答案】D 【分析】连接CE ,由矩形的性质得出∠ADC =90°,CD =AB =4,AD =BC =6,OA =OC ,由线段垂直平分线的性质得出AE =CE ,设DE =x ,则CE =AE =6−x ,在Rt △CDE 中,由勾股定理得出方程,解方程即可.【详解】连接CE ,如图所示:∵四边形ABCD 是矩形,∴∠ADC =90°,CD =AB =4,AD =BC =6,OA =OC ,∵EF ⊥AC ,∴AE =CE ,设DE =x ,则CE =AE =6﹣x ,在Rt △CDE 中,由勾股定理得:x 2+42=(6﹣x )2,解得:x =53,即DE =53;故选:D .【点睛】本题考查矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.重点2利用矩形的性质求角度例2.如图,四边形ABCD是矩形,连接BD,60∠=o,延长BC到E使CE=BD,连接ABDAE,则AEB∠的度数为()A.15 B.20 C.30 D.60【答案】A【分析】如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.【详解】如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.变式2-1将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°【答案】B【分析】根据矩形得出AD∥BC,根据平行线的性质得出∠1+∠BFE=180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1+∠BFE=180°,∵∠1=125°,∴∠BFE =55°,∵在△EGF 中,∠EGF =90°,∠FEG =30°,∴∠EFG =180°﹣∠EGF ﹣∠FEG =60°,∴∠BFG =∠BFE+∠EFG =55°+60°=115°,故选:B .【点睛】本题考查了平行线的性质,矩形的性质,三角形的内角和定理等知识点,能灵活运用知识点进行推理是解此题的关键.变式2-2如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.【答案】35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD 的度数,再根据DE ⊥AC 即可得到∠CDE 的度数.【详解】∵∠AOD =110°,∴∠ODC+∠OCD=110°,∵四边形ABCD 是矩形,∴OC=OD ,∴∠ODC=∠OCD=55°,又∵DE ⊥AC ,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.重点3利用矩形与折叠的性质进行计算例3.如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点1D 、1C 的位置,1ED 的重点点拨:矩形的每条对角线都将矩形分成两个直角三角形,因此利用矩形的性质求线段的长度,可以转化为在直角三角形中求线段的长度,利用勾股定理等来解答.延长线交BC 于点G ,若64EFG ∠=︒,则EGB ∠等于()A .128︒B .130︒C .132︒D .136︒【答案】A 【分析】由矩形得到AD //BC ,∠DEF =∠EFG ,再由与折叠的性质得到∠DEF =∠GEF =∠EFG ,用三角形的外角性质求出答案即可.【详解】解:∵四边形ABCD 是矩形,∴AD //BC ,∵矩形纸片ABCD 沿EF 折叠,∴∠DEF =∠GEF ,又∵AD //BC ,∴∠DEF =∠EFG ,∴∠DEF =∠GEF =∠EFG =64︒,∵EGB ∠是△EFG 的外角,∴EGB ∠=∠GEF +∠EFG =128︒故选:A .【点睛】本题考查了矩形的性质与折叠的性质,关键在于折叠得出角相等,再由平行得到内错角相等,由三角形外角的性质求解.变式3-1将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是()A .60°B .50°C .75°D .55°【答案】D【分析】首先根据折叠的性质得出∠DEA=∠D′EA=55°,然后由余角的性质得出∠DEA=∠EAD′=35°,进而得出∠D′AB=20°,最后即可得出∠EAB.【详解】根据折叠的性质,∠CED'=70°,得∠DEA=∠D′EA=18070552︒-︒=︒∵∠ADE=∠AD′E=90°∴∠DAE=∠EAD′=90°-55°=35°∴∠D′AB=90°-∠DAE-∠EAD′=90°-35°-35°=20°∴∠EAB=∠EAD′+∠D′AB=35°+20°=55°故答案为D.【点睛】此题主要考查折叠的性质以及余角的性质,熟练掌握,即可解题.变式3-2如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.125【答案】B【分析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=18 5.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴=,∵1122AB BE AE BH⋅=⋅,∴1134522BH ⨯⨯=⨯⨯,∴BH=125,则BF=245,∵FE=BE=EC,∴∠BFC=90°,∴=18 5.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.变式3-3如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【答案】D【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF==4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解重点4直角三角形斜边上的中线的性质的运用例4.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD的中点.若AB=8,则EF=_____.【答案】2【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】在Rt △ABC 中,∵AD=BD=4,∴CD=12AB=4,∵AF=DF ,AE=EC ,∴EF=12CD=2,故答案为2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.变式4-1如图,在△ABC 中,AB =AC ,BC =6,点F 是BC 的中点,点D 是AB 的中点,连接AF 和DF ,若△DBF 的周长是11,则AB =_____.【答案】8【分析】根据直角三角形斜边上的中线等于斜边的一半可得DE=DF=12AB ,EF=12BC ,然后代入数据计算即可得解.重点点拨:通过图形的折叠分别找出折叠部分与原图形之间线段和角的关系,将条件集中在一个直角三角形中,再利用勾股定理求解.【详解】解:∵AF ⊥BC ,BE ⊥AC ,D 是AB 的中点,∴DE=DF=12AB ,∵AB=AC ,AF ⊥BC ,∴点F 是BC 的中点,∴BF=FC=3,∵BE ⊥AC ,∴EF=12BC=3,∴△DEF 的周长=DE+DF+EF=AB+3=11,∴AB=8,故答案为8.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.变式4-2如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为_____.【答案】3【分析】根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,∴12AO BC =,12DO BC =,∴DO =AO =3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.重点5利用矩形的性质进行证明例5.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .(1)求证.DF AB =重点点拨:含两直角的四边形中,若出现一条对角线将该四边形分割成两个直角三角形的情形,且已知斜边上的中点,一半可作斜边上的中线(2)若30FDC ∠=︒,且4AB =,求AD .【分析】(1)利用“AAS”证△ADF ≌△EAB 即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF ,根据DF=AB 可得答案.【详解】(1)证明:在矩形ABCD 中,∵AD ∥BC ,∴∠AEB=∠DAF ,又∵DF ⊥AE ,∴∠DFA=90°,∴∠DFA=∠B ,又∵AD=EA ,∴△ADF ≌△EAB ,∴DF=AB .(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF ,∵DF=AB ,∴AD=2AB=8.【点睛】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.变式5-1已知:如图,在矩形ABCD 中,点E 在边AB 上,点F 在边BC 上,且BE =CF ,EF ⊥DF ,求证:BF =CD .【分析】由四边形ABCD 为矩形,得到四个角为直角,再由EF 与FD 垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA 得到三角形BEF 与三角形CFD 全等,利用全等三角形对应边相等即可得证.【详解】证明:∵四边形ABCD 是矩形∴∠B =∠C =90°∵EF ⊥DF∴∠EFD =90°∴∠EFB +∠CFD =90°∵∠EFB +∠BEF =90°∴∠BEF =∠CFD在△BEF 和△CFD 中,BEF CFD BE CF B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BEF ≌△CFD (ASA )∴BF =CD .【点睛】考点:(1)矩形的性质;(2)全等三角形的判定与性质三、提升训练1.下列说法正确的是()A .矩形的对角线互相垂直且平分B .矩形的邻边一定相等C .对角线相等的四边形是矩形D .有三个角为直角的四边形为矩形【答案】D【分析】根据矩形的性质可知:A 、B 两个选项错误;根据对角线互相平分且相等的四边形是矩形这个判定知,C 选项错误;三个角为直角,则第四个也为直角,根据有四个角是直角的四边形是矩形判定得,故D 选项正确.【详解】A :矩形的对角线的性质是:矩形的对角线互相平分且相等,故此说法错误;B :矩形的邻边不一定相等,但对边一定相等,故此说法错误;C :对角线互相平分且相等的四边形是矩形,由此判定知,此说法错误;重点点拨:矩形的对边平行且相等,对角线相等且互相平分,这些性质都可以用来证明线段相等或线段的倍分问题.D :当有三个角是直角时,根据四边形内角和定理,第四个角也是直角,从而判定是矩形,此说法正确.故选:D【点睛】本题考查了矩形的判定和性质,必须准确而熟练地掌握矩形的判定和性质.2.如图,E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折叠,使点B 恰好落在ED 上的点F 处,若BE =1,BC =3,则CD 的长为()A .6B .5C .4D .3【答案】B 【分析】先根据翻折变换的性质得出EF =BE =1,BC =CF =AD =3,可证得△AED ≌△FDC 进而求得CD 的长.【详解】解:由题意得:E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折叠,使点B 恰好落在ED 上的点F 处,可得BE =EF =1,CF =BC =3,∠EFC =∠B =90︒,ABCD 为矩形,可得∠AED =∠CDF ,在△AED 与△FDC 中,AD =CF ,∠A =∠DFC =90︒,∠AED =∠CDF ,∴△AED ≌△FDC ,ED =CD ,设CD 的长为x ,在Rt △EAD 中,有222ED AE AD =+,即222(1)3x x =-+,解得x =5,故选:B .【点睛】本题主要考查矩形的性质和翻折变换后的性质,灵活证三角形全等是解题的关键.3.如图,在矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD 交BC 于E ,若∠EAO =15°,则∠BOE 的度数为().A .85°B .80°C .75°D .70°【答案】C【分析】由矩形的性质得出OA =OB ,再由角平分线得出△ABE 是等腰直角三角形,得出AB =BE ,证明△AOB 是等边三角形,得出∠ABO =60°,OB =AB ,得出OB =BE ,由三角形内角和定理和等腰三角形的性质即可得出结果.【详解】∵四边形ABCD 是矩形,∴∠BAD =∠ABC =90°,OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB ,∵AE 平分∠BAD ,∴∠BAE =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠EAO =15°,∴∠BAO =45°+15°=60°,∴△AOB 是等边三角形,∴∠ABO =60°,OB =AB ,∴∠OBE =90﹣60°=30°,OB =BE ,∴∠BOE =12(180°﹣30°)=75°.故选:C .【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、等边三角形的判定与性质、三角形内角和定理;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.4.如图,将矩形纸条ABCD 折叠,折痕为EF ,折叠后点C ,D 分别落在点C ',D '处,D E '与BF 交于点G .已知30BGD '∠=︒,则α∠的度数是()A .30°B .45°C .74°D .75°【答案】D 【分析】依据平行线的性质,即可得到AEG ∠的度数,再根据折叠的性质,即可得出α∠的度数.【详解】∵矩形纸条ABCD 中,//AD BC ,∴30AEG BGD '∠=∠=︒,∴18030150DEG ∠=︒-︒=︒,由折叠可得,111507522DEG α∠=∠=⨯︒=︒,故选:D .【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为__.【答案】16.【分析】根据中位线的性质求出BO 长度,再依据矩形的性质2AC BD BO ==进行求解问题.【详解】M 、N 分别为BC 、OC 的中点,2248BO MN ∴==⨯=,四边形ABCD 是矩形,216AC BD BO === ,故答案为16.【点睛】本题考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.6.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若5AB =,12AD =,则四边形ABOM 的周长为_______.【答案】20【分析】先由5AB =,12AD =得到13AC =,然后结合矩形的性质得到 6.5OB =,再结合点O 和点M 分别是AC 和AD 的中点得到OM 和AM 的长,最后得到四边形ABOM 的周长.【详解】5AB = ,5CD ∴=,12AD =∵,90D ∠=︒,13AC ∴=,点O 和点M 分别是AC 和AD 的中点,6.5OB ∴=,162AM AD ==,OM 是ACD ∆的中位线,1 2.52OM CD ∴==,5 6.5 2.5620ABOM C AB BO OM MA ∴=+++=+++=四边形.故答案为:20.【点睛】本题考查了矩形的性质、三角形的中位线定理,解题的关键是熟知矩形的性质.7.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC ,若∠ADF =25°,则∠BEC =________.【答案】115°【分析】由∠ADF 求出∠CDF ,再由等腰三角形的性质得出∠DFC ,从而求出∠BCE ,最后用等腰三角形的性质即可.【详解】解:∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,BE =CE .∵∠ADF =25°,∴∠CDF =∠ADC ﹣∠ADF =90°﹣25°=65°.∵DF =DC ,∴∠DFC =∠DCA =(180°-∠CDF )÷2=(180°-65°)÷2=1152,∴∠BCE =∠BCD ﹣∠DCA =90°﹣1152 =652.∵BE =CE ,∴∠BEC =180°﹣2∠BCE =180°﹣65°=115°.故答案为:115°【点睛】本题是矩形的性质,主要考查了矩形的性质,等腰三角形的性质和判定,解答本题的关键是求出∠DFC .是一道中考常考的简单题.8.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED=2∠CED ,点G 是DF 的中点,若BE=2,DF=8,则AB 的长为______.【答案】3【分析】先证明∠ADE=∠DEC ,设∠CED=x ,则∠AED=2x ,∠ADE=x ,证明∠AED=∠AGE=2x ,则AE=AG=4,由勾股定理计算AB 的长即可【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠BAD=90°,∴∠ADE=∠DEC ,设∠CED=x ,则∠AED=2x ,∠ADE=x ,在Rt △FAD 中,G 是DF 的中点,DF=8,∴AG=DG=4,∴∠GAD=∠ADE=x ,∴∠AGE=∠GAD+∠ADE=2x ,∴∠AGE=∠AED=2x ,∴AE=AG=4,由勾股定理得:2222AE BE 42-=-3故答案为:3【点睛】本题考查了矩形的性质,还考查了等腰三角形、直角三角形斜边中线的性质,设未知数,分别表示相关的角,根据等角对等边证明边相等,从而可以利用勾股定理计算边的长度.9.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE ,如果∠ADB =38°,则∠E 等于_____度.【答案】19【分析】由矩形性质可得∠E=∠DAE 、BD=AC=CE ,知∠E=∠CAE ,而∠ADB=∠CAD=38°,可得∠E 度数.【详解】解:如图,记矩形的对角线的交点为O ,∵四边形ABCD 是矩形,∴AD ∥BE ,AC=BD ,,OA OD OB OC ===∴∠E=∠DAE ,∠ADB=∠CAD=38°,又∵BD=CE ,∴CE=CA ,∴∠E=∠CAE ,∵∠CAD=∠CAE+∠DAE ,∴∠E+∠E=38°,即∠E=19°.故答案为:19.【点睛】本题主要考查矩形性质,等腰三角形的性质,平行线的性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.10.如图,在矩形ABCD 中,AB=8,AD=3,动点P 满足PAB S ∆=13ABCDS 矩形,则PA+PB 的最小值为_____.【答案】【分析】首先由PAB S ∆=13ABCDS 矩形,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.【详解】解:设△ABP 中AB 边上的高是h ,∵PAB S ∆=13ABCD S 矩形,∴1123AB h AB AD = ,∴223233h AD ===,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.在Rt △ABE 中,∵AB=8,AE=2+2=4,∴222284805AB AE ++即PA+PB 的最小值为5故答案为:45【点睛】本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.根据面积关系得出动点P 所在的位置是解题的关键.11.如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=2.运动过程中点D 到点O 的最大距离是______.【答案】22【分析】取AB 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、D 、E 三点共线时,点D 到点O 的距离最大,再根据勾股定理列式求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解.【详解】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=4,BC=2,∴OE=AE=12AB=2,22AD AE +22222+,∴OD 的最大值为:22,故答案为22【点睛】本题考查了直角三角形斜边中线的性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O 、E 、D 三点共线时,点D 到点O 的距离最大是解题的关键.12.如图,在矩形ABCD 中,AB=6,AD=8,P ,E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长;(2)求证:PC ⊥CF .【分析】(1)先求出AC ,再分三种情况讨论计算即可得出结论;(2)连接PF ,DE ,记PF 与DE 的交点为O ,连接OC ,根据矩形的性质解答即可.【详解】(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,22AD DC +=10;要使△PCD 是等腰三角形,有如下三种情况:①当CP=CD 时,CP=6,∴AP=AC-CP=4;②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=AC 2,即AP=5;③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12AD·DC=12AC·DQ ,∴DQ=AD·DC 24AC 5=,∴2218DC DQ 5-=,∴PC=2CQ =365,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC ,四边形ABCD 是矩形,1BCD 90,OE OD,OC ED 2∠∴=︒=∴=在矩形PEFD 中,PF DE =,∴1OC PF 2=,1OP OF PF 2== ,OC OP OF ∴==,OCF OFC ∠∠∴=,OCP OPC∠∠=又OPC OFC PCF 180∠∠∠++=︒ ,2OCP 2OCF 180∠∠∴+=︒,PCF 90∠∴=︒∴PC ⊥CF .【点睛】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,解题关键是分三种情况讨论计算.。
2021-2022学年鲁教版八年级数学下册《6-2矩形的性质与判定》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.一个矩形的两条对角线的一个夹角为60°,对角线长为16cm,则这个矩形较短边的长为()A.2cm B.4cm C.8cm D.16cm2.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为()A.10B.5C.2.5D.2.253.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=60°,AB=3,则OC等于()A.3B.3.5C.4D.54.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为()A.16B.20C.29D.345.如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于点O,OE⊥AC交AD于点E,则AE的长为()A.B.C.D.66.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC7.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC8.下列命题是真命题的是()A.有一个角是直角的四边形是矩形B.一组对边平行且相等的四边形是矩形C.对角线互相平分且相等的四边形是矩形D.对角线互相垂直平分的四边形是矩形9.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB=CD且∠A=∠B10.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③S△AOB=S△BOC;④S△AOE=S△COE,其中正确的有()A.①②③B.①②④C.①③④D.②③④二.填空题(共8小题,满分40分)11.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.12.如图,在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD,请你添加一个条件,使四边形ABCD为矩形,你添加的条件是(填一个即可).13.如图,矩形ABCD的两条对角线AC,BD交于点O,∠AOB=60°,AB=3,则矩形的周长为.14.如图,在四边形ABCD中,∠BAD=∠ADC=90°,且AD∥BC,AC的长为16,则DO的长为.15.如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,则矩形对角线BD的长为cm.16.如图,在矩形ABCD中,对角线AC,BD交于点O,过点D作DE⊥AC,垂足为点E,∠ADE:∠CDE=2:1,则∠AOD=.17.如图,矩形ABCD中,AC、BD相交于点O,过点A作BD的垂线,垂足为E.已知∠EAD=3∠BAE,且AC=8,则AE的长为.18.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为.三.解答题(共6小题,满分40分)19.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,求线段EF的最小值.20.如图,四边形ABCD是平行四边形,延长BC至点E,使BC=CE,连接AE、DE、AC.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.21.如图,在▱ABCD中,过点D作DF⊥BC于点F,点E在边AD上,AE=CF,连结BE、CE.(1)求证:四边形BFDE是矩形.(2)若DE=AB,∠ABC=130°,求∠DEC的度数.22.如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E、F分别是BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)当AE长度为时,四边形AECF是矩形,说明四边形AECF是矩形的理由.23.如图所示,在矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE、AF.(1)求证:四边形AECF是菱形;(2)求菱形AECF的周长.24.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求△ABE的周长.参考答案一.选择题(共10小题,满分40分)1.解:如图,∵四边形ABCD是矩形,∴AC=BD=16cm,AO=AC=8cm,BO=BD=8cm,∴OA=OB,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=OB=8cm.故选:C.2.解:∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=BD,∴DO=BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=DO=2.5,故选:C.3.解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=3,∴OA=OC=3;故选:A.4.解:∵AB=5,∴CD=5,∵AD=12,∠D=90°,∴AC=13,∵点O和点M分别是AC和AD的中点,∴OB=6.5,AM=AD=6,OM是△ACD的中位线,∴OM=CD=2.5,∴C四边形ABOM=AB+BO+OM+MA=5+6.5+2.5+6=20.故选:B.5.解:如图,连接CE,∵矩形ABCD中,AB=6,BC=8,∴AD=BC=8,CD=AB=6,OA=OC,∵OE⊥AC,∴OE垂直平分AC,∴AE=CE,设AE=CE=x,则DE=8﹣x,在Rt△CDE中,CD2+DE2=CE2,即62+(8﹣x)2=x2,解得x=,即AE的长为.故选:B.6.解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.7.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.8.解:A、有一个角是直角的平行四边形是矩形,故原命题错误,是假命题,不符合题意;B、一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,不符合题意;C、对角线互相平分且相等的四边形是矩形,正确,是真命题,符合题意;D、对角线互相垂直平分的四边形是菱形,故原命题错误,是假命题,不符合题意,故选:C.9.解:A、∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,AB=CD,故选项C符合题意;D、∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴AB⊥AD,AB⊥BC,AB的长为AD、BC间的距离,又∵AB=CD,∴CD⊥AD,∴∠ADC=90°,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.10.解:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=∠ABC=∠ADC=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∴∠ACD=90°﹣∠DAC=90°﹣30°=60°,∵OD=OC,∴△ODC是等边三角形,故①正确;∵AD∥BC,∴∠ACB=∠DAC=30°,∵∠ABC=90°,∴AC=2AB,而AC>BC,∴2AB>BC,故②错误;∵OA=OC,∴S△AOB=S△BOC、S△AOE=S△COE,故③、④正确;故选:C.二.填空题(共8小题,满分40分)11.解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.12.解:添加条件:OA=OB,理由如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵OA=OB,∴OA=OC=OB=OD,∴OA+OC=OB+OD,即AC=BD,∴平行四边形ABCD是矩形,故答案为:OA=OB(答案不唯一).13.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周长是AB+BC+CD+AD=6+6.故答案为:6+6.14.解:∵∠BAD=∠ADC=90°,AD∥BC,∴∠DAB+∠ABC=∠ADC+∠BCD=180°,∴∠ABC=∠BCD=90°,∴∠BAD=∠ADC=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC=2OD=16,∴OD=8,故答案为:8.15.解:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,BO=DO=BD,∠BAD=90°,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,∠ADB=30°,∴AC=BD=2AB=5(cm).故答案为:5.16.解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴OD=OC,∵∠ADE:∠CDE=2:1,∴∠CDE=×90°=30°,∵DE⊥AC,∴∠DCE=90°﹣∠CDE=90°﹣30°=60°,∵OD=OC,∴∠ODC=∠OCD=60°,∴∠AOD=∠ODC+∠OCD=120°,故答案为:120°.17.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OB=AC=×8=4,∵∠EAD=3∠BAE,∴∠BAE+3∠BAE=90°,∴∠BAE=22.5°,∠DAE=67.5°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣22.5°=67.5°,∴∠OAB=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△OAE为等腰直角三角形,∴AE=2,故答案为:2.18.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.三.解答题(共6小题,满分40分)19.解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×12×5=×13•CD,解得:CD=,∴EF=.故答案为:.20.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,又∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,又∵四边形ACED是平行四边形,∴平行四边形ACED是矩形.21.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴ED∥BF.∵ED=AD﹣AE,BF=BC﹣CF,AE=CF,∴ED=BF.∴四边形BFDE是平行四边形.∵DF⊥BC,∴∠DFB=90°.∴四边形BFDE是矩形.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,∠ADC=∠ABC=130°,∵DE=AB,∴DE=CD,∴.22.(1)证明:∵四边形ABCD是平行四边形,∴AF∥EC,AD=BC,∵DF=BE,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形;(2)解:由(1)得:四边形AECF是平行四边形,当∠AEC=90°时,四边形AECF是矩形,则AE⊥BC,∵AB=6,BC=10,AC⊥AB,∴AC===8,∵AB×AC=BC×AE,即,∴AE=4.8.故答案为:4.8.23.证明:(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA);∴OE=OF,又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,22+(3﹣x)2=x2,解得x=.∴AF=,∴菱形AECF的周长为.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得:BE==10,在Rt△ADE中,由勾股定理得:AE==8,∴△ABE的周长=AB+BE+AE=24+8.。
矩形的性质和判定(人教版)(基础)一、单选题(共10道,每道10分)1.下列说法,错误的是( )A.矩形的对边互相平行B.矩形的对角相等C.矩形的对角线相等D.矩形的对角线平分一组对角答案:D解题思路:概念辨析,考查矩形的性质,从边、角、对角线依次分析.矩形的边:对边平行且都相等,A对;矩形的角:四个角都是90°(对角相等、邻角互补),B对;矩形的对角线:互相平分且相等,C对.故选D.试题难度:三颗星知识点:略2.矩形具有而平行四边形不具有的性质是( )A.对角线互相平分B.邻角互补C.对角线相等D.对角相等答案:C解题思路:概念辨析,考查平行四边形和矩形的性质,需要对比矩形和平行四边形的性质,矩形具有而平行四边形不具有的性质:从边、角、对角线依次分析:矩形的边:和平行四边形一致;矩形的角:四个角都是90°;矩形的对角线:互相平分且相等,C对.故选C.试题难度:三颗星知识点:略3.如图,矩形ABCD的对角线AC=8,∠AOD=120°,则AB的长为( )A. B.2C. D.4答案:D解题思路:在矩形ABCD中,AC=BD,,,∴OA=OB=.∵AC=8,∴OA=OB=4.∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=4,故选D.试题难度:三颗星知识点:略4.如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )A. B.5C. D.3答案:A解题思路:如图,在矩形ABCD中,AC=BD,,,∴OD=OC,∴∠ODC=∠OCD.在矩形ABCD中,∠EDC:∠EDA=1:3,设∠EDC=α,则∠EDA=3α,∵∠ADC=90°,∴4α=90°,α=22.5°.由题意得,∠ADE+∠CDE=90°,∠CDE+∠DCO=90°,∴∠DCO=∠EDA=3α=67.5°,∴∠DOE=180°-∠ODC-∠OCD=180°-2×67.5°=45°.在Rt△DOE中,,∴,故选A.试题难度:三颗星知识点:略5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,AF=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.7答案:A解题思路:如图,易证△AEF≌△DCE(AAS),∴AE=DC,AF=DE.设AE=x,则DC=x,∵AF=2,矩形周长为16,∴2(AD+DC)=16,即2(x+2+x)=16,解得x=3,故选A.试题难度:三颗星知识点:略6.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:①以点C为圆心,AB长为半径画弧;②以点A为圆心,BC长为半径画弧;③两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对答案:A解题思路:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD是矩形.所以乙的作业正确.故选A试题难度:三颗星知识点:略7.如图,以△ABC的三边为边在BC同侧分别作三个正三角形,即△ABD,△BCE,△ACF.则当∠BAC等于____时,四边形ADEF为矩形( )A.∠BAC=90°B.∠BAC=120°C.∠BAC=135°D.∠BAC=150°答案:D解题思路:由题意,可证△DBE≌△ABC,△FEC≌△ABC,可得DE=AC=AF,EF=AB=AD.故四边形ADEF为平行四边形.若四边形ADEF为矩形,则∠DAF=90°.又因为∠BAD=∠CAF=60°,故∠BAC=150°.故选D试题难度:三颗星知识点:略8.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=BC=3DE=6,则四边形DEFG的周长为( )A.6B.9C.11D.12答案:C解题思路:∵E,F,G分别是BC,AC,AB的中点,∴GF,EF都是△ABC的中位线,∴∵AB=BC=3DE=6,∴GF=3,EF=3,DE=2,∵AD⊥BC,∴∴四边形DEFG的周长为11.故选C试题难度:三颗星知识点:略9.如图,在△ABC中,BE,CF分别为边AC,AB上的高,D为BC的中点,DM⊥EF于点M.若BC=10,DM=3,则EF的长为( )A.6B.9C.7D.8答案:D解题思路:故选D试题难度:三颗星知识点:略10.如图,在等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于D.若BF=2,则AD的长为( )A. B.1C.1.5D.2答案:B解题思路:如图,延长CD交BA的延长线于点E.∵BF平分∠ABC,CD⊥BD易得,△CBE为等腰三角形∴点D是CE的中点在等腰Rt△ABC中,∠BAC=90°,AB=AC ∴∠CAE=90°∴∠DCF+∠E=90°∵CD⊥BD∴∠DCF+∠CFD=90°∴∠E=∠CFD∵∠CFD=∠BFA∴∠E=∠BFA∴△ABF≌△ACE(AAS)∴BF=CE∴∵BF=2∴CE=2∴AD=1故选B试题难度:三颗星知识点:略。
初中数学试卷第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G 点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S △ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
人教版初中数学八年级下册18.2.2矩形的判定同步练习夯实基础篇一、单选题:1.下列给出的判定中不能判定一个四边形是矩形的是()A .有三个角是直角B .对角线互相平分且相等C .对角线互相垂直且相等D .一组对边平行且相等,一个角是直角【答案】C【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【详解】解:A 、有三个角是直角的四边形是矩形,该选项说法正确,不合题意;B 、对角线互相平分且相等的四边形是矩形,该选项说法正确,不合题意;C 、对角线互相平分且相等的四边形是矩形,该选项原说法错误,符合题意;D 、一组对边平行且相等,一个角是直角的四边形是矩形,该选项说法正确,不合题意;故选:C .【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.如图,四边形ABCD 是平行四边形,添加下列条件,能判定这个四边形是矩形的是()A .=BAD ABCB .AB BDC .AC BD D .=A B BC【答案】A【分析】由矩形的判定和平行四边形的性质分别对各个选项进行判断即可;【详解】解:A 、∵四边形ABCD 是平行四边形,+=180°ABC BAC ,=ABC BAC ∵,==90°ABC BAC ,平行四边形ABCD 是矩形,故选项A 符合题意;B 、∵四边形ABCD 是平行四边形,AB BD ,++=180°BAD ABD DBC ,90ABD ,90°BAD ,选项B 不能判定这个平行四边形为矩形,故选项B 不符合题意;C 、∵四边形ABCD 是平行四边形,AC BD ,平行四边形ABCD 是菱形,故选项C 不符合题意;D 、∵四边形ABCD 是平行四边形,=A B BC ,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:A .【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识,熟练掌握矩形的判定是解题的关键.3.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC 交AD 于E ,若4,8AB BC ,则AE 的长为()A .3B .4C .5D .【答案】C 【分析】根据矩形ABCD ,得到AD =BC =8,∠ADC =90°,OA =OC ,从而得证△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,利用勾股定理计算即可.【详解】如图,连接EC ,∵矩形ABCD ,OE AC ,4,8AB BC ,∴AD =BC =8,AB =CD =4,∠ADC =90°,OA =OC ,∵OE AC ,∴∠AOE =∠COE =90°,∵OE=OE ,∴△AOE ≌△COE ,AE =CE ,设AE =x ,则EC =x ,DE =8-x ,在Rt △DEC 中,222CE DE CD ,∴222(8)4x x ,∴x =5,∴AE =5,故选C.【点睛】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理,熟练掌握矩形的性质,三角形全等,勾股定理是解题的关键.4.如图,平行四边形ABCD的对角线AC,BD相交于点O, AOB是等边三角形,OE BD交BC于点E,CD=2,则CE的长为()DA.1B C.235.如图,在四边形ABCD 中,对角线AC BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若8AC ,6BD ,则四边形EFGH 的面积为()A .48B .24C .32D .12∴EF ∥GH ,FG ∥HE 且EF ⊥FG .四边形EFGH 是矩形.∴四边形EFGH 的面积=EF •EH =3×4=12,即四边形EFGH 的面积是12.故选:D .【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的性质,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AD ,BD ,BC ,CA 的中点,若四边形EFGH 是矩形,则四边形ABCD 需满足的条件是()A .AB DCB .AC BD C .AC BD D .AB DC∵//EF AB ,//HE CD ,∴AB CD ,故选:A .【点睛】本题考查矩形的判定定理,三角形中位线的定义和性质,关键是利用三角形中位线定理证明四边形EFGH 是平行四边形,再利用 FE HE 推出AB CD .7.如图,在直角三角形ABC 中,90ACB ,3AC ,4BC ,点M 是边AB 上一点(不与点A ,B 重合),作ME AC 于点E ,MF BC 于点F ,则EF 的最小值是()A .2B .2.4C .2.5D .2.6【答案】B 【分析】根据题意可证四边形ECFM 是矩形,得EF =CM ,再由垂线段最短得CM 最短进而可得EF 最短,最后进行计算即可.【详解】连接CM ,∵ME AC ,MF BC ,∴ MEC = MFC =90°,当CM AB ,1122ABC S AC BC AB CM △,∴113422CM AB , ABC 中,二、填空题:8.如图,平行四边形ABCD中,对角线AC,BD相交于点O,欲使四边形ABCD变成矩形,则还需添加______.(写出一个合适的条件即可)【答案】AC=BD(答案不唯一)【分析】根据矩形的判定条件求解即可.【详解】解:添加条件AC=BD,利用如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC=BD,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点睛】本题主要考查了矩形的判定,熟知矩形的判定条件是解题的关键.9.一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯两次,就能得到矩形踏板.理由是______.【答案】三个角都是直角的四边形是矩形(或:“有一个角是直角的平行四边形是矩形”)【分析】使用矩形的判定定理,有三个角是直角的四边形是矩形【详解】因为木板的对边平行,在进行两次锯开时都是沿着垂直于对边的方向,所以会出现4个直角,有三个角是直角的四边形是矩形.故答案是三个角是直角的四边形是矩形.【点睛】本题考查矩形的判定,需要熟记矩形的判定定理并灵活运用.10.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,AC 与BD 应满足的的条件是___________.,,,E F G H ∵分别为,,CD AD AB 1,2EF AC GH EF GH AC 四边形EFGH 为平行四边形,要使平行四边形EFGH 为矩形,则AC BD,.故答案为:AC BD【点睛】本题考查了三角形中位线定理、平行四边形的判定、矩形的判定,熟练掌握三角形中位线定理是解题关键.AB CD,PM、PN、QM、QN分别为角平分线,则四边形PMQN是__________.11.如图,//∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.12.如图,矩形ABCD中,BE⊥AC于点E,若∠ACB=23°,则∠DBE=_______度.【答案】44【分析】由矩形的性质可知∠OBC=∠ACB=23°,则可求得∠AOB度数,由直角三角形的性质可得∠DBE的度数.【详解】解:∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD,∴OB=OC,∴∠ACB=∠OBC=23°,∵∠AOB=∠ACB+∠OBC=46°,且BE⊥AC,∴∠DBE=44°.故答案为:44【点睛】本题主要考查矩形的性质,等腰三角形的性质,利用矩形的对角线相等且平分求得∠OBC的度数是解题的关键.13.如图,在面积为36的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,则DP的长是_____【答案】6【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=36,易得DP=6.【详解】如图,作DE⊥BC,交BC延长线于E,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中APD CED ADP CDE AD DC===,∴△ADP ≌△CDE ,∴DP =DE ,S △ADP =S △CDE ,∴四边形BEDP 为正方形,S 四边形ABCD =S 正方形BEDP ,∴DP 2=36,∴DP =6.故答案为6.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形和矩形的性质.本题的关键的作辅助线构造两个全等的三角形.三、解答题:14.如图,在ABC 中,AB AC ,AD 平分BAC 交BC 于点D ,分别过点A 、D 作AE BC ∥、DE AB ∥,AE 与DE 相交于点E ,连接CE .(1)求证:AE BD ;(2)求证:四边形ADCE 是矩形.【答案】(1)见解析(2)见解析【分析】(1)根据AE BC ∥、DE AB ∥证明四边形ABDE 为平行四边形,即可得出答案;(2)由等腰三角形的性质得出BD CD ,AD BC ,得出AE CD ,90ADC ,先证出四边形ADCE 是平行四边形.再证明四边形ADCE 是矩形即可.【详解】(1)证明:∵AE BC ∥、DE AB ∥,∴四边形ABDE 是平行四边形,∴AE BD ;(2)证明:∵AB AC ,AD 平分BAC ,∴BD CD ,AD BC ,∵AE BD ,∴AE CD ,∵AE CD ∥,∴四边形ADCE 是平行四边形,∵AD BC ,∴90ADC∴四边形ADCE 是矩形.【点睛】本题主要考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质,由等腰三角形的性质得出BD CD ,AD BC ,是解决问题的关键.15.如图,四边形ABCD 是平行四边形,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形.(2)若AF 是DAB 的平分线.若6CF ,8BF ,求DC 的长.DAF DFA ,10AD FD ,10616DC DF FC .【点睛】本题考查了平行四边形的性质,矩形的性质和判定,角平分线的定义,等角对等边,能综合运用定理进行推理是解此题的关键.16.如图,在四边形ABCD 中,AD BC ,90ABC BCD .对角线,AC BD 交于点,O DE 平分ADC 交BC 于点E ,连接OE .(1)求证:四边形ABCD 是矩形;(2)若2CD ,DBC =30 ,求△BED 的面积.17.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,AE BD 于点E ,DF AC 于点F ,且AE DF .(1)求证:四边形ABCD 是矩形.(2)若:4:5BAE EAD ,求EAO 的度数.∴904050OBA OAB ,∴504010EAO OAB BAE .【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.能力提升篇一、单选题:1.如图,点P 是Rt ABC 中斜边(AC 不与A ,C 重合)上一动点,分别作PM AB 于点M ,作PN BC 于点N ,点O 是MN 的中点,若9AB ,12BC ,当点P 在AC 上运动时,则BO 的最小值是()A .3B .3.6C .3.75D .4【点睛】本题主要考查矩形的判定与性质,垂线段最短,勾股定理及面积法等知识,熟练掌握矩形的判定与性质是解题的关键.2.如图,在Rt ABC △中,90A ,M 为BC 的中点,H 为AB 上一点,过点C 作CG AB ∥,交HM 的延长线于点G ,若10AC ,8AB ,则四边形ACGH 周长的最小值是()A .28B .26C .22D .18【答案】A 【分析】通过证明BMH CMG △≌△可得BH CG ,可得四边形ACGH 的周长即为AB AC GH ,进而可确定当MH AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得H G 的长,进而可求解.【详解】解:CG AB ∥∵,B MCG ,M ∵是BC 的中点,BM CM ,在BMH V 和CMG V 中,B MCG BM CM BMH CMG,()BMH CMG ASA △≌△,HM GM ,BH CG ,10AC ∵,8AB ,四边形ACGH 的周长18AC CG AH GH AB AC GH GH ,当GH 最小时,即MH AB 时四边形ACGH 的周长有最小值,90A ∵,MH AB ,GH AC ∥,四边形ACGH 为矩形,10GH ,四边形ACGH 的周长最小值为181028 ,故选:A .【点睛】本题主要考查轴对称 最短路径问题,全等三角形的判定与性质,确定GH 的值是解题的关键.3.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD 交BC 于点E ,15CAE .连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB ;④150 AOE ;⑤AOE COE S S ,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题:4.如图,在平行四边形ABCD 中,90A ,10AD ,=8AB ,点P 在边AD 上,且BP BC ,点M 在线段BP 上,点N 在线段BC 的延长线上,且=PM CN ,连接MN 交CP 于点F ,过点M 作ME CP 于E ,则=EF ___________.,根据等角对等边可得5.如图,在矩形ABCD 中,4AB cm ,12AD cm ,点P 从点A 向点D 以每秒1cm 的速度运动,Q 以每秒4cm 的速度从点C 出发,在B 、C 两点之间做往返运动,两点同时出发,点P 到达点D 为止(同时点Q 也停止),这段时间内,当运动时间为______时,P 、Q 、C 、D 四点组成矩形.【答案】2.4s 或4s 或7.2s【分析】根据已知可知:点Q 将由,C B C B C 根据矩形的性质得到AD ∥BC ,设过了t 秒,当AP=BQ 时,P 、Q 、C 、D 四点组成矩形,在点Q 由C B 的过程中,则PA=t ,BQ=12-4t ,求得t=2.4(s ),在点Q 由B C 的过程中,t=4(t-3),求得t=4(s ),在点Q 再由C B 中,t=12-4(t-6),求得t=7.2(s ),在点Q 再由B C 的过程中,t=4(t-9),t=13(s ),故此舍去,从而得到结论.【详解】解:根据已知可知:点Q 由,C B C B C在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,,则四边形APQB是矩形,则以P、Q、C、D四点为顶点组成矩形.若AP BQ设过了t秒,则PA=t,BQ=12-4t,∴t=12-4t,∴t=2.4(s),的过程中,在点Q由B C设过了t秒,则PA=t,BQ=4(t-3),t=4(t-3),解得:t=4(s),在点Q再由C B过程中,设过了t秒,则PA=t,BQ=12-4(t-6),t=12-4(t-6),解得:t=7.2(s),的过程中,在点Q再由B C设过了t秒,则PA=t,BQ=4(t-9),t=4(t-9),解得:t=13(s)>12(s),故此舍去.故答案为:2.4s或4s或7.2s;【点睛】本题考查了矩形的性质与判定,此题属于动点型题目.解题时要注意数形结合与方程思想的应用.三、解答题:6.如图,在平行四边形ABCD 中,过点D 作DE AB 于点E ,点F 在边CD 上,CF AE ,连接AF BF ,.(1)求证:四边形BFDE 是矩形.(2)已知60DAB AF ,是DAB 的平分线,若6AD ,则□ABCD 的面积为______.7.如图,在Rt ABC 中,90,5,3ACB AB BC ,D 是AC 的中点,CE AB ∥,动点P 以每秒1个单位长度的速度从点B 出发向点A 移动,连接PD 并延长交CE 于点F ,设点P 移动的时间为t 秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当4PF 时,求t的值.【点睛】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.。
16.2.1 矩形的性质
◆随堂检测
1、矩形是轴对称图形,它有______条对称轴.
2、在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO的周长为________.
3、如图1,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为().
A.98
B.196
C.280
D.284
(1) (2) (3) 4、如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.
5、如图3,在矩形ABCD中,M是BC的中点,且MA⊥MD.•若矩形ABCD•的周长为48cm,•则矩形ABCD的面积为
_______cm2.
6、如图,在矩形ABCD中,已知AB=8cm,BC=10cm,
折叠矩形的一边AD,使点D落在BC边的F处,折痕为AE,求CE 的长.
◆典例分析
如图,在矩形ABCD中,对角线AC、BD
交于点O,DE平分∠ADC交BC于E,∠
BDE=15°,求∠COD与∠COE的度数.
分析:要求∠COD与∠COE的度数,根据
矩形的性质及已知条件可知△COD是等
(180°-边三角形,△CED是等腰直角三角形,故CE=CO,则∠COE=1
2
∠OCE) .
解:在矩形ABCD中,∵DE平分∠ADC,
∴∠ADE=∠CDE=45°, ∴∠ODC=∠CDE+∠BDE=45°+15°=60°, 又CD=CD,∴△COD为等边三角形,∴∠COD=60°,在Rt△ECD中,∠EDC=45°,
∴CE=CD=CO又∠OCE=90°-60°=30°,∴∠COE=1
(180°-∠OCE)=75
2
°.
◆课下作业
●拓展提高
1、矩形的两条对角线的夹角为60°,一条对角线与短边的和为12,则对角线长为,短边长为.
2、在矩形ABCD中,AC与BD相交于点O,作AE⊥BD,垂足为E.ED=3EB,则∠AOB得度数为()
A.30°
B.45°
C.60°
D.90°
3、矩形中,对角线把矩形的一个直角分成1︰2两部分,则矩形对角线所夹的锐角为
A.30°
B.45°
C.60°
D.不确定
4、如图所示,矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积为( )
A.8
B.6
C.4
D.5
5、如图,在矩形ABCD中,AB=4cm,BC=10cm,AE平分∠BAD,DF平分∠ADC,则四边形AEFD的面积为()
A.28 2
cm D.20 cm B.26 2
cm C.24 2
2
cm
6、在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线交点,且∠CAE=15°.
(1)△AOB为等边三角形,说明理
由;
(2)求∠AOE的度数.
●体验中考
1、(2018年山东济南)如图,矩形ABCD中,35
,.过对角线
==
AB BC
交点O作OE AC
⊥交AD于E,则AE的长是()
A.1.6 B.2.5 C.3 D.3.4
2、(2018年湖北仙桃)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=3,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为().
A.3
B.2
C.3
D.3
2
参考答案:
◆随堂检测
1、2 矩形的对角线有2条.
2、16cm 矩形的对角线互相平分.
3、C. 可设小矩形的长为x,宽为y,则2(x+y+2x)=68,又2x=5y,联立得x=10,y=4,
所以小矩形的面积为40,故大矩形的面积为40×7=280.
4、a(m-b)
5、108
6、解:由题可知,设CE=x,则DE=8-x,所以EF=8-x,因为AD=10,AB=8,
所以BF=6,所以FC=10-6=4,根据勾股定理得,x=3.
◆课下作业
●拓展提高
1、8,4 矩形的对角线性质.
2、C. 通过ED=3EB,AE⊥BD,可得△ABO为等边三角形,可得∠AOB=60°.
3、C. 同上.
4、A. 因为E、F是AC的三等分点,根据同底等高面积相等可得△BEF
的面积为△ABC的三分之一.
5、C. 因为AB=4cm,AE平分∠BAD,DF平分∠ADC,所以四边形AEFD
的面积为矩形的面积减去边长为4的正方形的面积.
6、证明:(1)∵AE平分∠BAD,∴∠BAE=45°,又∵∠CAE=15°,∴∠BAC=60°,
又∵AO=BO,∴△AOB为等边三角形.
(2)∵△AOB为等边三角形,∴BO=AB,又∵AB=BE,∴BO=BE,∴∠BOE=∠BEO,
又∵∠OBE=90°-60°=30°, ∴∠BOE=∠BEO=75°,
∴∠AOE=∠AOB+∠BOE=135°.
●体验中考
1、D. 矩形的性质和勾股定理可得.
2、C. 矩形的性质.。