八年级上学期 期末模拟数学试题(1)
- 格式:doc
- 大小:1.19 MB
- 文档页数:27
八年级期末学业质量检测数学试题第Ⅰ卷(选择题共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,是无理数的是( )A .B .C .D .02.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.满足下列条件中的,不是直角三角形的是( )A . ,,B .C .D . 4.下列计算正确的是( )A .B .C .D . 5.已知一次函数的图象过二、三、四象限,则下列结论正确的是( )A .B .C .D . 6.已知二元一次方程组,则的值为( )A .2B .6C .D . 7.若点和关于轴对称,则的值为( )A .B .1C .D . 8.如图,在中,和的平分线交于点,连接,若cm ,cm ,的面积为,则的面积为()3.142πABC △21a =22b =23c =A B C ∠-∠=∠::3:4:5A B C ∠∠∠=::7:24:25a b c===2=32÷=y kx b =+0,0k b >>0,0k b ><0,0k b <>0,0k b <<3531x y x y +=⎧⎨+=⎩x y -2-6-()11,2P a -()23,1P b -x ()2024a b +20243-2024320245ABC △BAC ∠ABC ∠O OC 6AB =10BC =ABO △218cm BOC △A .B .C .D . 9.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图所示的图案,已知,则点的坐标为()A .B .C .D .10.一次函数,,点是与轴围成的三角形内一点(含边界),令,的最大值为,则的值为()A .B .1C .D .2第Ⅱ卷(非选择题共110分)二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.9的算式平方根是______.12.甲、乙两名同学投掷实心球,每人投10次,平均成绩都为米,方差分别为,,则成绩笔记哦啊稳定的是______(填“甲”或“乙”).13.如图,直线与交点的横坐标为1,则关于的二元一次方程组的解为______.218cm 220cm 227cm 230cm ()3,9A -B ()10,6-()10,7-()9,6-()9,5-1:24l y x =-+()2:0l y kx k k =->(),M a b 12,l l x S a b =+S 52k 12329.520.2S =甲20.03S =乙3y x =-+y mx n =+x y 、3y x y mx n=-+⎧⎨=+⎩14.如图,在中,,,线段的垂直平分线分别交于点,连接.若,则的长为______.第14题15.如图,在一个长方形草地上放着一根长方体木块,其中m ,m ,该木块较长的边和场地宽平行,横截面是边长为2m 的正方形,若点处有一只蚂蚁,它从点出发,爬过木块到达点处去吃面包碎,则它需要走的最短路程是______m .第15题16.如图,等腰,,,点为边上一点,,点为边上一点,连接,将绕点逆时针旋转得到,连接,则的最小值为______.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分8分)计算:(1.(2.18.(本小题满分6分)解二元一次方程组19.(本小题满分6分)已知:如图,,.求证:.Rt ABC △90C ∠=︒30A ∠=︒AB ,AC AB ,D E BD 4CD =AD 6AB =5AD =AD A A C Rt ABC △90B ∠=︒6AB =D AB 2BD =E AC DE DE D 90︒DF ,AF BF AF BF ++236x y x y -=⎧⎨+=⎩90A D ∠=∠=︒AC BD =OB OC =20.(本小题满分6分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将向左平移4个单位长度,再向下平移1个单位长度得到.画出平移后得到的;(2)将绕着点顺时针旋转,旋转后得到的,则点的坐标为______;点的坐标为______.21.(本小题满分8分)毛泽东主席曾亲笔题词号召全国人民“向雷锋同志学习”,“雷锋精神”激励着一代又一代中国人.今年3月5号,某校团委组织全校学生开展“学习雷锋精神,爱心捐款活动”,活动结束后对本次后动的捐款抽取了样本进行了统计,制作了下面的统计表,根据统计表回答下面的问题:图1图2(1)本次共抽取了______名学生的捐款;(2)补全条形统计图;(3)本次抽取样本学生捐款的众数是______元,中位数是______元;(4)求本次抽取样本学生捐款的平均金额.22.(本小题满分8分)某教育科技公司销售两种多媒体,这两种多媒体的进价与售价如表所示:AB进价(万元/套)3ABC △ABC △111A B C △111A B C △ABC △A 90 22AB C △2B 2C ,A B 2.4售价(万元/套)(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该公司计划购进两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进种多媒体套,当把购进的两种多媒体全部售出,求为何值时,能获得最大利润,最大利润是多少万元?23.(本小题满分10分)现有两种品牌的共享电动车,收费(元)与骑行时间(min )之间的函数关系如图所示,品牌收费为,品牌收费为.(1)直接写出品牌收费方式对应的函数关系式为______;(2)求品牌在当时间段内,与之间的函数关系式;(3)当时,求出两种收费相差元时的值.24.(本小题满分10分)如图1,对角线互相垂直的四边形叫做垂美四边形.数学兴趣小组的同学们在老师的带领下开展了对垂美四边形的研究.图1(1)【概念理解】如图2,在四边形中,,,则四边形______(填“是”或“不是”)垂美四边形.图23.3 2.8,A B ,A B ,A B A m ()1020m ≤≤m ,A B y x A 1y B 2y A B 10x >y x 10x >0.5x ABCD AB AD =CB CD =ABCD(2)【性质探究】如图1,四边形的对角线交于点,.小莹利用勾股定理的知识探索出四边形的四条边具有以下数量关系:.请判断小莹的结论是否正确,并说明理由.(3)【问题解决】如图3,分别以的直角边和斜边为边向外作等腰直角三角形和等腰直角三角形,使得,,,连接,已知,,请直接写出的值.图325.(本小题满分12分)如图,一次函数分别与坐标轴交于两点,分别与坐标轴交于两点,,两直线交于点;(1)求的值及点坐标;(2)点在直线上,连接,若,求出点坐标;(3)点在坐标轴上,点在直线上,若线段被直线垂直平分,请直接写出点坐标.(备用图)26.(本小题满分12分)数学课上,老师提出一个问题:如图1,已知等腰直角,,等腰直角,,连接,是中点,连接,,请探究线段,之间的关系.小明通过思考,将此探究题分解出如下问题,逐步探究并应用.请帮助他完成:(1)如图1,延长至,使得,连接,线段与线段的数量关系为______,位置关系为______;ABCD AC BD 、O AC BD ⊥ABCD 2222AB CD AD BC +=+Rt ABC △AC AB ACE ABD 90BAD CAE ∠=∠=︒AB AD =AC AE =,,CD BE DE 3BC =4AC =DE 4y x =-+,A B ,C D ()2,0C -E k E P CD OE POE BOE S S =△△P M N CD MN AB N ABC △AB AC =CDE △DC DE =BE F BE AF DF AF DF AF A 'AF A F '=A E 'AB A E '(2)如图2,延长交延长线于点,连接,.小明的思路是先证明,进而得出与的关系,再继续探究.请判断线段,之间的关系,并根据小明的思路,写出完整的证明过程.(3)方法运用:如图3,等边与等边,点在外部.,,连接,点为中点,连接,,若,请直接写出的值.图1图2图3八年级数学期末阶段性测试答案一、选择题1—5CBCBD6—10ACDBD二、填空题11.312.乙13.14.815.16.三、解答题17.(8分)(1.解:原式.(2.18.(6分)解二元一次方程组.解:,①+②,得,解得,把代入②,得,故原方程组的解为.19.证明:∵,,,∴ED BA GAD A D 'ACD A ED '≌△△AD A D 'AF DF ABC △DEC △,D E ABC △4AB =DE =BD F BD AF BE 3AF =BE 12x y =⎧⎨=⎩+44=-=+3241=+=+-=236x y x y -=⎧⎨+=⎩236x y x y -=⎧⎨+=⎩①②39x =3x =3x =3y =33x y =⎧⎨=⎩90A D ∠=∠=︒AC BD =BC BC =()Rt Rt HL BAC CDB ≌△△∴.∴(等角对等边).20.解:(1)如图所示,即为所求.(2)点的坐标为;点的坐标为.21.解:(1)50(2)(人)或(人)补全图形如下:图1(3)众数是10元;中位数是15元;(4)元,答:本次抽取样本学生捐款的平均金额16元.22.解:(1)设购进种多媒体套,种多媒体套,由题意可得:,解得,答:购进种多媒体20套,种多媒体30套;(2)设利润为元,由题意可得:,∴随的增大而减小,ACB DBC ∠=∠OB OC =111A B C △2B ()4,2-2C ()1,3-5041610812----=5024%12⨯=()145161012151008301650⨯+⨯+⨯+⨯+⨯=A a B b 503 2.4132a b a b +=⎧⎨+=⎩2030a b =⎧⎨=⎩A B W ()()()3.33 2.8 2.4500.120W m m m =-+-⨯-=-+W m∵,∴当时,取得最大值,此时,答:购进种多媒体10套时,能获得最大利润,最大利润是19万元.23.解:(1);(2)品牌在当时间段内,设与之间的函数关系式为,∵点,在该函数图象上,∴,解得,即品牌在当时间段内,与之间的函数关系式是;(3)当时,,解得:;当时,,解得:;由上可得,在15分钟或25分钟时,两种收费相差元.24.(1)是(2)正确∵,∴,由勾股定理得:,,∴;(3)25.(1)将代入,,,,(2)方法一:过点作交于,∴.点即为所求;∵,∴.∵,∴,代入,1020m ≤≤10m =W 19W =A 10.2y x =B 10x >y x 2y ax b =+()10,3()20,4103204a b a b +=⎧⎨+=⎩0.12a b =⎧⎨=⎩B 10x >y x 20.12y x =+210.5y y -=0.120.20.5x x +-=15x =120.5y y -=()0.20.120.5x x -+=25x =0.5AC BD ⊥90AOB BOC COD AOD ∠=∠=∠=∠=︒222222AB CD AO BO CO DO +=+++222222AD BC AO DO BO CO +=+++2222AB CD AD BC +=+DE =()2,0C -1y kx =+021k =-+12k =4112y x y x =-+⎧⎪⎨=+⎪⎩()2,2E B BP OE ∥CD P POE BOE S S =△△P ()2,2E :OE y x =BM OE ∥:BP y x b =+()0,4B∴.联立,∴同理∵为中点,∴.作交于,∴,.方法二:∵,∴若点在左侧,,令,∴,,,∴∴,∴.同理,若点在右侧,,(3)25.(1),(2),证明:∵,∴由四边形内角和为,∴由(1),∴,∴由(1),,∴.∴,∵是中点,∴∵,,∴.:4BP y x =+4112y x y x =+⎧⎪⎨=+⎪⎩()6,2P --E AB AOE BOE S S =△△AP OE '∥CD P ':4BP y x '=-()10,6P '112y x =+()0,1D P OE POE POD DOE BOE S S S S =+=△△△△1,12P m m ⎛⎫+ ⎪⎝⎭1EOD S =△12DOPS m=-△4BOE S =△1142m -=6m =-()6,2P --P OE P OE P OD DOE BOE S S S S ''=-=△△△△()10,6P '()16,4N ()24,3N AB A E '=AB A E '∥AF DF =AF DF⊥90BAC CDE ∠=∠=︒90GAC CDG ∠=∠=︒ABCD 360︒180ACD AGD ∠+∠=︒AB A E '∥180A ED AGD '∠+∠=︒A ED ACD '∠=∠A E AB AC '==CD DE =ACD A ED '≌△△AD A D '=ADC A DE '∠=∠F AA 'DF AF⊥90CDE ∠=︒90ADA CDE A DE ADC ''∠=∠-∠+∠=︒DF AF =11(3)思路:如图构造(1)中的基本图形:以为底边构造顶角为的等腰.则与是共底角顶点的两个等腰三角形,且底角互余.依据(1)(2)可得结论,且.CD 120︒GCD △ABC △GCD △C AF GF⊥AF =。
人教版2022-2023学年八年级上学期期末练习试题1学校:___________姓名:___________班级:___________考号:___________一、选择题1.若(a ﹣3)0有意义,则a 的取值范围是( ) A .a >3B .a <3C .a ≠0D .a ≠32.下列图标中是轴对称图形的是( )A .B .C .D .3.计算()233x y 的结果是( ) A .329x y B .629x yC .326x yD .626x y4.分式31x x +-的值为0,则x 的值是( ) A .﹣3B .0C .1D .35.下列说法正确的是( ) A .三角形的角平分线是射线B .过三角形的顶点,且过对边中点的直线是三角形的一条中线C .锐角三角形的三条高交于一点D .三角形的高、中线、角平分线一定在三角形的内部 6.计算(﹣0.25)2019•42020的结果为( )A .4B .﹣4C .14-D .147.如下图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站M ,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).A .B .C .D .8.如图,ABC 中,65B C ∠=∠=︒,BD CE =,BE CF =,若50A ∠=︒,则DEF ∠的度数是( )A .75︒B .70︒C .65︒D .60︒9.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =3,则△BCE 的面积为( )A .16B .15C .14D .1310.如图,点B ,E ,C ,F 共线,A D ∠=∠,AB DE =,添加一个条件,不能..判定ABC DEF ≅△△的是( )A .B DEF ∠=∠B .AC DF =C .AC DF ∥D .BE CF =11.如图,AD ,BE 是△ABC 的高线,AD 与BE 相交于点F .若AD =BD =6,且△ACD 的面积为12,则AF 的长度为( )A .4B .3C .2D .1.512.已知,关于x 的分式方程3344x m mx x++=--有增根,且2226110ma b ma b ++-+=,则a b +的值是( ) A .1B .2C .3D .4二、填空题13.人体中红细胞的直径约为0.000075m ,将0.000075用科学记数法表示为_____________. 14.如图,小强利用全等三角形的知识测量池塘两段M N 、的距离.如果30m OP ON OQ OM PQ ===,,,则池塘两段M N 、的距离为________.15.如图,已知等边ABC 的周长为24,点D 在BC 边上,点E 是AB 边上一点,连接ED ,将BDE △沿着DE 翻折得到DEF ,EF 交AC 于点G ,DF 交AC 于点O ,若OG OD =,则OGF 的周长为 _____.16.已知xy =2,x ﹣y =﹣4,则x 2+xy+y 2=_____.17.若x =3m+2,y =27m﹣8,则用x 的代数式表示y 为_____.18.如图,在ABC 中,BA BC =,D ,E 分别是边BC ,AB 上的点,且3AE BD =.以DE 为边向右作DEF ,使得DE DF =,EDF B ∠=∠,连接CF ,若1BD =,则线段CF 长度的取值范围是________.三、解答题19.将下列各式分解因式: (1)24ab a -; (2)32232a b a b ab -+. 20.计算:(1)2()(2)a b a b a +-+; (2)2211(2)m m m m+--÷. 21.符号a b c d称为二阶行列式,规定它的运算法则为a bc d=ad ﹣bc .请你根据上述法则求等式321111x x x x ++=-1中x 的值.22.如图,在ABC 中,AB BC =,点M 在线段AC 上运动(M 不与A ,C 重合),连接BM ,作BMN C ∠=∠,MN 交线段AB 于N .(1)若CM AN =,求证:BCM MAN ≌△△; (2)若30C ∠=,点M 在运动过程中,存在BMN 是等腰三角形,求此时CBM ∠的度数. 23.如图,在平面直角坐标系xOy 中,网格中小正方形的边长为1,ABC 的顶点都在格点上.(1)画出ABC 关于y 轴的对称图形111A B C △,并写出1A 、1B 、1C 的坐标; (2)在x 轴上找到一点P ,使得BP CP +的值最小(保留作图痕迹); (3)求出ABC 的面积.24.某某公司决定将一批生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等. (1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1535箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,其它装满,求甲、乙两种货车各有多少辆?25.已知,7张如图1的长为a ,宽为b (其中a >b )的小长方形纸片,按图2方式不重叠地放在长方形ABCD 内,长方形ABCD 的长AD=m ,未被覆盖的部分的长方形MNPD 的面积记作S 1,长方形BEFG 的面积记作S 2.(1)用含m ,a ,b 的式子表示S 1和S 2;(2)若S 1-S 2的值与m 的取值无关,求a ,b 满足的数量关系.26.如图1和图2,矩形ABCD 中,E 是AD 的中点,P 是BC 上一点,AF //PD ,FPE DPE ∠=∠.(1)作射线PE 交直线AF 于点G ,如图1. ①求证:AG DP =;②若点F 在AD 下方,2AF =,7PF =,求DP 的长.(2)若点F 在AD 上方,如图2,写出PD ,AF ,PF 的等量关系,并证明你的结论.参考答案:1.【考点】零指数幂有意义的条件【分析】根据零指数幂的底数不等于0,列出不等式,即可求解. 解:∵(a ﹣3)0有意义, ∴a ﹣3≠0, ∴a ≠3, 故选D .【点评】本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键. 2.【考点】轴对称图形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:B .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.【考点】积的乘方和幂的乘方【分析】根据积的乘方和幂的乘方法则计算即可. 解:()236239x y x y =,故选:B .【点评】本题考查了积的乘方和幂的乘方,幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 4.【考点】分式的值为零的条件【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 解:∵分式31x x +-的值为0, ∴x+3=0且x ﹣1≠0, 解得:x =﹣3, 故选:A .【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.5.【考点】三角形的角平分线、中线和高线【分析】根据三角形角平分线,中线,高线的概念,对各选项分析判断利用排除法求解. 解:A. 三角形的角平分线是线段,故本选项不符合题意;B. 过三角形的顶点,且过对边中点的线段是三角形的一条中线,故本选项不符合题意;C. 锐角三角形的三条高交于一点,正确,故此选项符合题意;D. 三角形的内部三角形的中线、角平分线一定在三角形的内部,高线不一定在三角形的内部,故本选项不符合题意. 故选:C .【点评】本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键. 6.【考点】同底数幂的乘法,积的乘方【分析】根据同底数幂的乘法和积的乘方的法则计算即可. 解:()201920200.254⋅-=()9192012040.254⨯⨯- =()20190.2544⨯⨯-=4- 故选B .【点评】本题考查了同底数幂的乘法和积的乘方,解题的关键是掌握运算法则的逆用. 7.【考点】轴对称-最短路径问题【分析】利用轴对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离,从而可得答案.解:如图,作点P 关于直线l 的对称点P',连接QP'交直线l 于M .则,PM MQ P M MQ P Q ''+=+=根据两点之间,线段最短,可知选项D 修建的管道,则所需管道最短. 故选:D .【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别. 8.【考点】全等三角形的判定和性质,三角形内角和定理【分析】根据已知条件证明DBE ≌ECF △,则可得BDE CEF ∠=∠,又因为65B C ∠=∠=︒,所以18065115BDE BED ∠+∠=︒-︒=︒,即可推出115BED CEF ∠+∠=︒,由此即可得出DEF ∠的度数.解:在DBE 和ECF △中, BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴DBE ≌ECF △()SAS , ∴BDE CEF ∠=∠,∵180********BDE BED B ∠+∠=︒-∠=︒-︒=︒, ∴115BED CEF ∠+∠=︒,∴180()18011565DEF BED CEF ∠=︒-∠+∠=︒-︒=︒, 故选C .【点评】本题考查了全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 9.【考点】角平分线的性质【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解. 解:如图,作EH ⊥BC 于点H ,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC , ∴EH=DE=3, ∴111031522BCE S BC EH =⋅=⨯⨯=△. 故选B .【点评】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.【考点】全等三角形的判定【分析】根据全等三角形的判定方法对各选项进行一一判断即可.解:A 、A D ∠=∠,AB DE =,添加B DEF ∠=∠,根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、A D ∠=∠,AB DE =,添加AC DF =,根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. C 、AD ∠=∠,AB DE =,添加AC DF ∥,利用平行线性质可得∠ACB =∠DFE , 根据AAS ,可以推出△ABC ≌△DEF ,本选项符不符合题意.D 、A D ∠=∠,AB DE =,添加BE CF =,可得BC=EF ,但SSA ,不能判定三角形全等,本选项符合题意. 故选:D .【点评】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;AAS ,ASA ,SAS ,SSS ,HL ,应注意SSA 与AAA 都不能判断两个三角形全等. 11.【考点】全等三角形的判定与性质【分析】利用ASA 证明△ACD ≌△BFD ,得DF =DC ,再根据三角形面积可得CD 的长,从而可得答案. ∵AD ,BE 是△ABC 的高线, ∴∠ADB =∠ADC =∠AEB =90°, ∵∠BFD =∠AFE , ∴∠DBF =∠CAD , 在△ACD 和△BFD 中,DBF CAD BD ADBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACD ≌△BFD (ASA ), ∴DF =DC ,∵△ACD 的面积为12, ∴16122CD ⨯⨯=, ∴CD =4, ∴DF =4, ∴AF =AD ﹣DF =2, 故选:C .【点评】本题主要考查了全等三角形的判定与性质,三角形的面积等知识,熟练掌握全等三角形的判定与性质是解题的关键. 12.【考点】分式方程的增根【分析】首先解分式方程,用含有字母m 的式子表示x ,再根据方程有增根求出m 的值,然后将m 的值代入得出关于a ,b 的等式,再配方根据完全平方公式的非负性求出a 和b 的值,即可得出答案. 3344x m mx x++=--, 解得=6x m -. ∵分式方程有增根, ∴x-4=0, 即x=4, ∴6-m=4, 解得m=2.当m=2时,22246110a b a b ++-+=, 即222(1)(3)0a b ++-=, 解得a=-1,b=3. 则a+b=-1+3=2. 故选:B .【点评】本题主要考查了分式方程的增根,根据完全平方公式的非负性求字母的值,求出m 的值是解题的关键.13.【考点】科学记数法【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 解:0.000075=7.5×10-5, 故答案为:7.5×10-5.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14.【考点】全等三角形的应用【分析】根据全等三角形判定定理证明(SAS)PQO NMO ≌,根据全等三角形的性质可结果. 解:∵在PQO 和NMO △中,OP ON POQ NOM OQ OM =⎧⎪∠=∠⎨⎪=⎩, ∴(SAS)PQO NMO ≌, ∴30m MN QP ==, 故答案为:30m .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起. 15.【考点】全等三角形的判定和性质,折叠的性质,等边三角形的性质【分析】由折叠可知,B F C ∠=∠=∠,BD FD =,易证()GOF DOC AAS ≌,所以GF DC =,所以OGF 的周长为OG OF GF OD OF DC BC ++=++=,再由等边三角形的周长为24,可得8BC =,由此可得出结论.解:∵等边ABC 的周长为24, ∴60B C ∠=∠=︒,8AB BC AC ===, ∵BDE △沿着DE 翻折得到FDE , ∴B F ∠=∠,BD FD =, ∴60F C ∠=∠=︒, 在GOF △和DOC △中, F C GOF DOC OG OD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()GOF DOC AAS ≌∴OGF的周长为:++OG OF GF=++OD OF DC=+DF DC=+BD DC=BC=,8∴OGF的周长为8.故答案为:8.【点评】本题主要考查全等三角形的判定和性质,折叠的性质,等边三角形的性质,三角形的周长等相关知识.判定三角形全等是解题关键.16.【考点】代数式求值,完全平方公式【分析】根据完全平方公式的变形公式,直接代入求解即可.解:∵xy=2,x﹣y=﹣4,∴x2+xy+y2=( x﹣y)2+3xy=(﹣4)2+3×2=22,故答案是:22.【点评】本题主要考查代数式求值,掌握完全平方公式的变形公式,是解题的关键17.【考点】幂的乘方【分析】利用等式的性质求得3m=x﹣2,然后再利用把3m用x代换即可得解.解:∵x=3m+2,∴3m=x﹣2,∴y=(x﹣2)3﹣8.故答案为:(x﹣2)3﹣8.【点评】本题主要考查了幂的乘方逆向运用及整体思想,解题的关键是把27m化为(3m)3, 再把3m用x 代换.18.【考点】等腰三角形的定义,三角形的三边关系【分析】根据题意利用线段间的数量关系可得CD-BE=2,再由三角形三边关系进行求解即可得出结果.解:由图可得:CD=BC-BD,∵BC=BA,∴BE=BA-AE,∴BE=BA-3BD=BC-3BD , ∴CD-BE=BC-BD-BC+3BD=2BD=2, ∵CF 在∆CDF 中,∴CD-DE=CD-DF<CF<CD+DF=CD+DE , ∵DE<BD+BE ,∴CD-DE>CD-BE-BD=2-1=1,CD+DE>CD+BD-BE=2+1=3, ∴1<CF<3, 故答案为:1<CF<3.【点评】题目主要考查等腰三角形的定义,三角形的三边关系等,理解题意,找准线段间的数量关系是解题关键. 19.【考点】因式分解【分析】(1)先提公因式,再利用平方差公式进行因式分解; (2)先提公因式,再利用完全平方公式进行因式分解.解:(1)()()()222244ab a a b a b b -=-+-=(2)()()322222322a b a b ab a ab b b a a b a b -+=+=--【点评】本题考查因式分解,有公因式一定要先提公因式.熟练掌握平方差和完全平方公式的结构特点是解题的关键.20.【考点】整式的混合运算,分式的化简求值【分析】(1)先利用完全平方公式与单项式乘以多项式计算整式的乘法,再合并同类项即可; (2)先计算括号内的分式的减法,再把除法转化为乘法运算,约分后可得答案. (1)解:2()(2)a b a b a +-+ 22222a ab b ab a =++-- 2b =.(2)2211(2)m m m m +--÷ 22121m m mm m +-=-()()()2111m m m -=+- 11m m -=+.【点评】本题考查的是整式的混合运算,分式的化简求值,掌握“完全平方公式的含义及分式的混合运算的运算顺序”是解本题的关键. 21.【考点】定义新运算,解分式方程 【分析】先根据题意得出方程321111xx x x ,解这个分式方程即可得解.解:∵3211111x x x x ++=-,∴321111x x x x ,∴32111x x x x x ,∴332211xx x x x x x ,∴3311x x x , 解得2x =,经检验2x =是原方程的解, ∴x 的值为2.【点评】本题考查了新定义和解分式方程,解题的关键是读懂题意,将问题转化为解分式方程. 22.【考点】等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理【分析】(1)ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠,A C BMN ∠=∠=∠,由此可知ANM BMC ∠=∠,且CM AN =,A C ∠=∠,由此即可求解;(2)30C ∠=,BMN 是等腰三角形,分类讨论:第一种情况,MB MN =;第二种情况,NB NM =;第三种情况,BN BM =.根据三角形的内角和定理,等腰三角形的性质即可求解. 解:(1)∵AB BC =,BMN C ∠=∠, ∴A C BMN ∠=∠=∠,∵ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠, ∴ANM BMC ∠=∠, ∵CM AN =,A C ∠=∠, ∴(ASA)BCM MAN ≌△△.(2)第一种情况,如图所示, MB MN =,∵30A C ∠=∠=︒,且30BMN C ∠=∠=︒,∴1803030120ABC ∠=︒-︒-︒=︒,1(18030)752MNB MBN ∠=∠=⨯︒-︒=︒,∴1207545MBC ∠=︒-︒=︒; 第二种情况,如图所示,NB NM =,∴30NMB NBM C ∠=∠=∠=︒,且1803030120ABC ∠=︒-︒-︒=︒, ∴1203090MBC ∠=︒-︒=︒;第三种情况,BN BM =,则30BMN BNM C ∠=∠=∠=︒,此时点M 与点C 重合, 又∵点M 在线段AC 上运动时,M 不与A ,C 重合, ∴不符合题意,综上所述,BMN 是等腰三角形时,CBM ∠的度数为45︒或90︒.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的综合应用,解决问题的关键是运用分类思想进行分类讨论. 23.【考点】作轴对称图形【分析】(1)根据轴对称的性质作图,根据图写出点1A 、1B 、1C 的坐标即可. (2)过点B 作关于x 轴对称的对称点B ',连接B C ',与x 轴交于点P 即可. (3)利用割补法求三角形的面积即可. (1)解:如图,111A B C △即为所要求画三角形.由图可得:()13,4A -,()11,2B -,()15,1C -. (2)解:如图,点P 即为所找的点.(3)解:111434122235222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,答:ABC 的面积为5.【点评】本题考查作轴对称图形,利用轴对称的性质解决最短距离问题,利用网格求图形面积问题,熟练掌握会用轴对称的性质作轴对称图形是解题的关键. 24.【考点】分式方程的应用,一元一次方程的应用【分析】(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜,根据甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等,即可得出关于x 的分式方程,解之经检验后即可求出每辆乙种货车的装载量,再将其代入(x+20)中即可求出每辆甲种货车的装载量;(2)设甲种货车有m 辆,则乙种货车有(16-m )辆,根据“甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,且这批生姜共1535箱”,即可得出关于m 的一元一次方程,解之即可求出甲种货车的数量,再将其代入(16-x )中即可求出乙种货车的数量.解:(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜, 依题意得:100080020x x=+, 解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=80+20=100.答:甲种货车每辆可装100箱生姜,乙种货车每辆可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16-m)辆,依题意得:100m+80(16-m-1)+55=1535,解得:m=14,∴16-m=16-14=2.答:甲种货车有14辆,乙种货车有2辆.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次方程.25.【考点】列代数式,及整式的混合运算【分析】(1)根据图形可得出长方形MNPD的长MD的长MD为m-3b,宽MN为a,即可得出S1的面积,长方形BEFG的长EF为m-a,宽FG为4a,即可得出S2的面积;(2)根据(1)计算S1-S2的值与m的取值无关,即a-4b=0,即可得出答案.解:(1)∵MD=AD-AM=m-3b;MN=a,∴S1=MD•MN=(m-3b)•a=ma-3ab,∵EF=EP-FP=m-a,FG=4b,∴S2=EF•FG=(m-a)•4b=4bm-4ab;(2)S1-S2=ma-3ab-4bm+4ab=ab+ma-4bm=ab+m(a-4b),∵S1-S2的值与m的取值关,∴a-4b=0,即a=4b,所以a,b满足的数量关系a=4b.【点评】本题主要考查了列代数式,及整式的混合运算,根据题意列出代数式再根据法则进行计算是解决本题的关键.26.【考点】平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质【分析】(1)①根据平行线的性质得到∠GAE=∠PDE,∠G=∠DPE.根据全等三角形的性质即可得到结论;②等量代换得到∠G=∠FPE.求得GF=PF=7,根据线段的和差即可得到结论;(2)如图2,根据平行线的性质得到∠G=∠DPE,等量代换得到∠G=∠FPG,求得PF=FG,根据全等三角形的性质得到AG=PD,根据线段的和差即可得到结论.解:(1)①证明:∵AF∥PD,∴∠GAE=∠PDE,∠G=∠DPE.∵E是AD的中点,∴AE=DE.∴△AEG≌△DEP(AAS).∴AG=DP;②解:∵∠FPE=∠DPE,∠G=∠DPE,∴∠G=∠FPE.∴GF=PF=7,∵AF=2,∴AG=5.由①知AG=DP,∴DP=5;(2)PD=AF+PF,证明:如图2,∵AF∥PD,∴∠G=∠DPE,∵∠FPE=∠DPE,∴∠G=∠FPG,∴PF=FG,∵∠AEG=∠DEP,AE=DE,∴△AEG≌△DEP(AAS),∴AG=PD,∵AG=AF+FG,∴PD=AF+PF.【点评】本题是四边形的综合题,考查了平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.。
2022-2023学年上学期八年级数学期末模拟测试卷(01)一、选择题(本大题共8小题,每小题2分,共16分。
在每小题所给出的四个选项中,只有一项是正确的)1.下列图形是轴对称图形的是()A.B.C.D.2.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣3,2)3.下列各数是无理数的是()A.0B.πC.D.4.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3D.a=9,b=40,c=416.某一次函数的图象经过点(1,5),且函数值y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+3B.y=3x﹣8C.y=﹣3x+8D.y=﹣2x+57.如图,在△ABC中,AD是∠BAC的平分线,延长AD至E,使AD=DE,连接BE,若AB=4AC,△BDE的面积为12,则△ABC的面积是()A.6B.9C.12D.158.如图,函数y=kx+b的图象与y轴、x轴分别相交于点A(0,2)和点B(4,0),则关于x的不等式kx+b≥2的解集为()A.x≤0B.x≤4C.x≥0D.x≥4二、填空题(本大题共8小题,每小题2分,共16分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.﹣的立方根是.10.用四舍五入法,对0.12964精确到千分位得到的近似数为.11.已知点P在第三象限,且P点的横坐标与纵坐标的积是4,试写出一个符合条件的点:.12.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是尺.15.如图,小明将长方形纸片ABCD对折后展开,折痕为EF,再将点C翻折到EF上的点G处,折痕为BH,则∠GBH=°.16.如图,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,P A=1,PB=3,PC=,那么∠CP A=度.三、解答题(本大题共9小题,共88分。
浙教版2022-2023学年八年级上学期期末数学模拟卷(一)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A.B.C.D.【答案】C【解析】A、B、D中的图形不是轴对称图形,C中的图形是轴对称图形.故答案为:C.2.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【答案】D【解析】当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选D.3.不等式3≥2x-1的解集在数轴上表示正确的为()A.B.C.D.【答案】C【解析】解不等式3≥2x-1得x≤2,在数轴上表示为:故答案为:C.4.点A(3,4)关于x轴对称的点B的坐标为().A.(6,4)B.(-3,5)C.(-3,-4)D.( 3,-4)【答案】D【解析】因为.点A(3,4)关于x轴对称,所以点B的坐标为(3,-4).故D项正确.5.下列关于一次函数y=﹣x+1的说法中,错误的是()A.其图象经过第一、二、四象限B.其图象与x轴的交点坐标为(﹣1,0)C.当x>0时,y<1D.y随x的增大而减小【答案】B【解析】一次函数y=﹣x+1A、k=-1<0,图象必过第二,四象限;b=1>0,图象必过第一,二象限,∴直线y=﹣x+1 经过第一,二,四象限,故A不符合题意;B、当y=0时-x+1=0解之:x=1∴其图象与x轴的交点坐标为(1,0),故B符合题意;C、∵x=1-y当x>0时1-y>0解之:y <1,故C 不符合题意;D 、当k <0时,y 随x 的增大而减小,故D 不符合题意; 故答案为:B.6.下图是一张直角三角形的纸片,两直角边AC=6cm ,BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则DE 的长为( )A .4cmB .5cmC .154cmD .254cm【答案】C【解析】在Rt△ABC 中,AB=√AC 2+BC 2=√62+82=10 由折叠可知:BD=AD ,AE=12AB=5∴CD=8-AD在Rt△ADC 中,AC 2+CD 2=AD 2,即62+(8-AD )2=AD 2 解得 AD=254同理可得 DE=154.故答案为:C7.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y (单位m )与他所用的时间t (单位min )之间的函数关系如图所示,下列说法正确有( )个.①小涛家离报亭的距离是1200m ;②小涛从家去报亭的平均速度是60m/min ;③小涛在报亭看报用了15min ;④从家到报亭行走的速度比报亭返回家的速度快;⑤小涛从家出发到返回到家的过程中的平均速度是48m/min.A .1B .2C .3D .4 【答案】D【解析】由纵坐标看出小涛家离报亭的距离是1200m ,所以①符合题意由纵坐标看出小涛家离报亭的距离是1200m ,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是1200÷15=80(m/min),故②不符合题意设小涛从报亭回家时,y 与t 的函数关系式为y=kt+b ,并由图象可知,经过两点(35,900),(50,0)则由题意可得, {900=35k +b 0=50k +b解得 {k =−60b =3000∴小涛返回时的解析式为y=-60x+3000 当y=1200时,-60t+3000=1200,解得t=30由横坐标看出返回时的时间是50-30=20min , 返回时的速度是1200÷30=40(m/min)∴小涛在报亭看报用了30-15=15min ,③符合题意∴从家到报亭行走的速度比报亭返回家的速度快80>40,④符合题意∴小涛从家出发到返回到家的过程中的平均速度是: 1200×250=48 m/min ,⑤符合题意.故答案为:D.8.如图,在△ABC 中,△ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( )A .2B .2.6C .3D .4 【答案】D【解析】 ∵△ACB=90°, 得AB =√122+52=13 , AM+BN=AM+BM+MN=AB+MN ,即AC+BC=AB+MN,MN=AC+BC -AB=12+5-13=49.如图,在平面直角坐标系中,△OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将△OABC 分割成面积相等的两部分,则直线l 的函数解析式是( )A .y=x+1B .y=13x+1C .y=3x -3D .y=x -1【答案】D【解析】设D (1,0),∵线l 经过点D (1,0),且将△OABC 分割成面积相等的两部分, ∴OD=BE=1,∵顶点B 的坐标为(6,4). ∴E (5,4)设直线l 的函数解析式是y=kx+b , ∵图象过D (1,0),E (5,4),∴{k +b =05k +b =4, 解得:{k =1b =−1,∴直线l 的函数解析式是y=x -1.故选D .10.如图,锐角△ABC 中,BC >AB >AC ,求作一点P ,使得△BPC 与△A 互补,甲、乙两人作法分别如下:甲:以B 为圆心,AB 长为半径画弧交AC 于P 点,则P 即为所求.乙:作BC 的垂直平分线和△BAC 的平分线,两线交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列叙述正确的是( ) A .两人皆正确 B .甲正确,乙错误 C .甲错误,乙正确 D .两人皆错误【答案】A【解析】甲:如图1,∵AB =BP ,∴△BAP =△APB , ∵△BPC+△APB =180° ∴△BPC+△BAP =180°, ∴甲正确;乙:如图2,过P 作PG△AB 于G ,作PH△AC 于H ,∵AP 平分△BAC , ∴PG =PH ,∵PD 是BC 的垂直平分线, ∴PB =PC ,∴Rt△BPG△Rt△CPH (HL ), ∴△BPG =△CPH , ∴△BPC =△GPH ,∵△AGP =△AHP =90°, ∴△BAC+△GPH =180°, ∴△BAC+△BPC =180°, ∴乙正确; 故答案为:A 。
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .2.把322m n m n mn ++分解因式正确的是( )A .()22mn m m +B .()221mn m m ++C .()221m n m ++D .()21mn m + 3.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 4.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .65.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是( )A .B .C .D .6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1 B .2 C .3 D .47.下列各组数是勾股数的是( )A .6,7,8B .1,2,3C .3,4,5D .5,5,98.现有如图所示的卡片若干张,其中A 类、B 类为正方形卡片,C 类为长方形卡片,若用此三类卡片拼成一个长为2+a b ,宽为+a b 的大长方形,则需要C 类卡片张数为( )A .1B .2C .3D .49.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是( ) 学科数学 语文 英语 考试成绩91 94 88A .88B .90C .91D .92 10.如图,AE 垂直于∠ABC 的平分线交于点D ,交BC 于点E ,CE=13BC ,若△ABC 的面积为2,则△CDE 的面积为( )A .13B .16C .18D .110二、填空题(每小题3分,共24分)11.如图,在Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BE 平分ABC ∠交AC 于E ,交AD 于F ,//FG BC ,//FH AC ,下列结论:①AE AF =;②AF FH =;③AG CE =;④AB FG BC +=,其中正确的结论有____________. (填序号)12.如图①,在矩形ABCD 中,动点P 从A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 面积为y ,如果y 与x 的函数图象如图②所示,则矩形ABCD 的面积为__.13.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E .若BD +AC =3a ,则AC =_________.(用含a 的式子表示)14.若3a -+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_________.15.如图,∠MAN 是一个钢架结构,已知∠MAN =15°,在角内部构造钢条BC ,CD ,DE ,……且满足AB =BC =CD =DE =……则这样的钢条最多可以构造________根.16.某个数的平方根分别是a +3和2a +15,则这个数为________.17.如图,已知方格纸中是4个相同的正方形,则123∠+∠+∠=____度.18.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.三、解答题(共66分)19.(10分)请你观察下列等式,再回答问题. 2211111111121112+++-+==; 2211111111232216+++-+==; 2211111111.3433112++=+-=+ (1)根据上面三个等式提供的信息,请猜想2211145++的结果,并进行验证; (2)请按照上面各等式反映的规律,试写出用n(n 为正整数)表示的等式,并加以验证.20.(6分)在△ABC 中,CD ⊥AB 于点D ,DA=DC=4,DB=1,AF ⊥BC 于点F ,交DC 于点E .(1)求线段AE 的长;(1)若点G 是AC 的中点,点M 是线段CD 上一动点,连结GM ,过点G 作GN ⊥GM 交直线AB 于点N ,记△CGM 的面积为S 1,△AGN 的面积为S 1.在点M 的运动过程中,试探究:S 1与S 1的数量关系21.(6分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出P 的坐标.22.(8分)如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF . (1)求证:AD 平分∠BAC .(2)写出AB +AC 与AE 之间的等量关系,并说明理由.23.(8分)我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案:方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成. 根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.24.(8分)如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.25.(10分)陈史李农场2012年某特产种植园面积为y 亩,总产量为m 吨,由于工业发展和技术进步,2013年时终止面积减少了10%,平均每亩产量增加了20%,故当年特产的总产量增加了20吨.(1)求2013年这种特产的总产量;(2)该农场2012年有职工a 人.2013年时,由于多种原因较少了30人,故这种特产的人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩.求2012年的职工人数a 与种植面积y .26.(10分)解方程:33122x x x-+=--.参考答案一、选择题(每小题3分,共30分)1、B【解析】通过几个特殊点就大致知道图像了,P 点在AD 段时面积为零,在DC 段先升,在CB 段因为底和高不变所以面积不变,在BA 段下降,故选B2、D【分析】先提取公因式mn ,再对余下的多项式利用完全平方公式继续分解.【详解】322m n m n mn ++=()221mn m m ++=()21mn m +.故选:D .【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.3、B【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式 =27()a b a b ++ =7a b+.所以答案选B. 【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.4、B【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===, ∴ABC 是直角三角形,且∠A =90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD , ∴B 、E 、C 三点共线,AD=ED ,CA=CE ,∴BE=BC -CE =15-1=3,∴BDE 的周长=BD+DE+BE=BD+AD +3=AB +3=9+3=1.故选:B .【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.5、D【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x =4y 代入即可得.【详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+ =33x y y- ∵3x -4y =0,原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7、C【分析】直接根据勾股数的概念进行排除选项即可.【详解】A 、2226+7=858≠,故不符合题意;B 、2221+2=53≠,故不符合题意;C 、2223+4=25=5,故符合题意;D 、2225+5=509≠,故不符合题意;故选C .【点睛】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.8、C【分析】拼成的大长方形的面积是(a+2b )(a+b )=a 2+3ab+2b 2,即需要一个边长为a 的正方形,2个边长为b 的正方形和3个C 类卡片的面积是3ab .【详解】(a+2b)(a+b)=a 2+3ab+2b 2.则需要C 类卡片张数为3张.故选C.【点睛】此题考查多项式乘多项式,解题关键在于掌握运算法则.9、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:()919488391++÷=(分),故小华的三科考试成绩平均分式91分;故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.【解析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【详解】解:如图∵BD平分∠ABC,∴∠ABD=∠EBD.∵AE⊥BD,∴∠ADB=∠EDB.在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,∴△ADB≌△EBD,∴AD=ED.∵CE=13BC,△ABC的面积为2,∴△AEC的面积为23.又∵AD=ED,∴△CDE的面积=12△AEC的面积=13故选A.【点睛】本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键.二、填空题(每小题3分,共24分)11、①②③④【分析】只要证明∠AFE=∠AEF,四边形FGCH是平行四边形,△FBA≌△FBH即可解决问题.【详解】∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°∴∠BFD=∠AEB∴∠AFE=∠AEB∴AF=AE,故①正确∵FG∥BC,FH∥AC∴四边形FGCH是平行四边形∴FH=CG,FG=CH,∠FHD=∠C∵∠BAD+∠DAC=90°,∠DAC+∠C=90°∴∠BAF=∠BHF∵BF=BF,∠FBA=∠FBH∴△FBA≌△FBH(AAS)∴FA=FH,AB=BH,故②正确∵AF=AE,FH=CG∴AE=CG∴AG=CE,故③正确∵BC=BH+HC,BH=BA,CH=FG∴BC=AB+FG,故④正确故答案为:①②③④【点睛】本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.12、1【分析】根据图象②得出AB、BC的长度,再求出面积即可.【详解】解:从图象②和已知可知:AB=4,BC=10-4=6,所以矩形ABCD的面积是4×6=1,故答案为1.【点睛】本题考查了矩形的性质和函数图象,能根据图形得出正确信息是解此题的关键.13、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.∵AB的垂直平分线交BC于D,交AB于E,∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,又∠C=90°,∴AC=12AD=12BD=12(3a-AC),∴AC=a.故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.14、(-3,-2).3a (b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.15、1【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,然后根据三角形的内角和定理求解即可.【详解】解:解:∵添加的钢管长度都与CD相等,∠MAN=11°,∴∠DBC=∠BDC=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是11°,第二个是30°,第三个是41°,第四个是60°,第五个是71°,第六个是90°就不存在了.所以一共有1个.故答案为1.【点睛】本题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.16、1【解析】∵某个数的平方根分别是a+3和2a+15,∴a+3+2a+15=0,∴a=-6,∴(a+3)2=(-6+3)2=1,故答案为:1.17、135【解析】如图,由已知条件易证△ABC ≌△BED 及△BDF 是等腰直角三角形, ∴∠1=∠EBD,∠2=45°,∵∠3+∠EBD=90°,∴∠1+∠2+∠3=135°.18、﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n 值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n =﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx (k≠0),是解题关键.三、解答题(共66分)19、(122111114520++=,验证见解析;(222111111(1)1n n n n ++=+-++,验证见解析.【解析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.【详解】(1)22111111114544120+++-+==,验证略. (2)()2211111111n n n n ++=+-++.验证如下: ()()2222222111211111112?n 11111111111111n n n n n n n n n n n n nn n n n n ++⎛⎫⎛⎫⎛⎫++=+-+=-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭++++⎛⎫=-=-=+- ⎪+++⎝⎭【点睛】本题考查了算术平方根,解题的关键是掌握算是平方根的概念.20、(1)25;(1)S 1+S 1=4,见解析 【分析】(1)先证明△ADE ≌△CDB ,得到DE=DB=1,在Rt △ADE 中,利用勾股定理求出AE .(1)过点G 作CD ,DA 的垂直线,垂足分别为P ,Q ,证明△MGP ≌△NGQ ,所以S 1+S 1=S △AGQ +S △CGP = S △ACD -S 四边形GQDP ,即可求解.【详解】(1)在△ABC 中,CD ⊥AB ,AF ⊥BC∴∠ADC=∠AFB=90°∵∠AED=∠CEF∴∠EAD=∠BCD在△ADE 和△CDB 中ADE CDB EAD BCD DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CDB∴DE=DB=1∴22222425ED AD +=+=(1)在△ABC中,CD⊥AB,DA=DC=4,点G是AC的中点过点G作CD,DA的垂直线,垂足分别为P,Q.则,GP=GQ=12DA=1∠PGQ=90°=∠GQN=∠GPM∵GN⊥GM∴∠MGN=90°∴∠MGP=∠NGQ∴△MGP≌△NGQS1+S1=S△AGQ+S△CGP= S△ACD-S四边形GQDP =1144224 22AD CD QN PD⨯⨯-⨯=⨯⨯-⨯=故答案为:4【点睛】本题考查了全等三角形的判定和性质,勾股定理解直角三角形,利用三角形中位线性质求线段长度.21、(1)详见解析;(2)图详见解析,P(0,74).【分析】(1)根据轴对称的性质进行作图,即可得到△ABC关于y轴的对称图形△A1B1C1;(2)连接A1C交y轴于P,连接AP,则点P即为所求,再根据C(3,4),A1(-1,1),求得直线A1C解析式为y=34x+74,最后令x=0,求得y的值,即可得到P的坐标.【详解】(1)如图所示,△A1B1C1即为所求;(2)连接A 1C 交y 轴于P ,连接AP ,则点P 即为所求.根据轴对称的性质可得,A 1P =AP ,∵A 1P +CP =A 1C (最短),∴AP +PC +AC 最短,即△PAC 的周长最小,∵C (3,4),A 1(﹣1,1),∴直线A 1C 解析式为y =34x +74, ∴当x =0时,y =74, ∴P (0,74). 【点睛】 本题主要考查了运用轴对称变换进行作图,以及待定系数法求一次函数解析式的运用,解决问题的关键是掌握轴对称的性质.解题时注意:两点之间,线段最短.22、(1)详见解析;(2)AB +AC =2AE ,理由详见解析.【分析】(1)根据相“HL ”定理得出△BDE ≌△CDF ,故可得出DE =DF ,所以AD 平分∠BAC ;(2)由(1)中△BDE ≌△CDE 可知BE =CF ,AD 平分∠BAC ,故可得出△AED ≌△AFD ,所以AE =AF ,故AB +AC =AE ﹣BE +AF +CF =AE +AE =2AE .【详解】证明:(1)∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠DFC =90°,∴△BDE 与△CDE 均为直角三角形,∵在Rt △BDE 与Rt △CDF 中,,,BD CD BE CF =⎧⎨=⎩∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC ;(2)AB +AC =2AE .理由:∵BE =CF ,AD 平分∠BAC ,∴∠EAD =∠CAD ,∵∠E =∠AFD =90°,∴∠ADE =∠ADF ,在△AED 与△AFD 中,,,,EAD CAD AD AD ADE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AED ≌△AFD ,∴AE =AF ,∴AB +AC =AE ﹣BE +AF +CF =AE +AE =2AE .【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.23、方案三最节省工程费用,理由见解析.【分析】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程,可求x 的值,然后分别算出三种方案的价格进行比较即可.【详解】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程415x x x +=+或1144()155x x x x -++=++ 解得:20x经检验20x 是方程的根∴工程如期完成需20天,甲工程队单独完成需20天,乙工程队单独完成需25天, 在工期不耽误的情况下,可选择方案一或方案三若选择方案一,需工程款22040⨯=万元若选择方案三,需工程款24 1.52038⨯+⨯=万元故选择方案(3).【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.24、(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.25、 (1) 2013年的总产量270吨;(2)农场2012年有职工570人,种植面积为5700亩.【分析】(1)根据平均每亩产量增加了20%,故当年特产的总产量增加了20吨,列出方程()()20120%110%m m y y ++=-,解方程求出m 的值;(2)根据人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩,列出方程组()()270250114%30110%1302a a y y a a ⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②,解方程组求出结果. 【详解】(1)根据题意得:()()20120%110%m m y y ++=-解得,m=250.∴m +20=270答:2013年的总产量270吨.(2)根据题意得:() ()270250114%30110%1302a ay ya a⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②解①得a=570.检验:当a=570时,a(a-30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人;将a=570代入②式得,()110%15405702y y-=-,解得,y =5700.答:2012年的种植面积为5700亩.考点:分式方程的应用26、1x=.【解析】解分式方程去分母转化成一元一次方程,分式方程一定要检验。
2018-2019学年纳溪区白节镇初级中学八年级(上)期末数学模拟试卷(一)一、选择题(本大题共12小题,共36分)1. 下列四个标志中,是轴对称图形的是A. B. C. D.2. 下列运算中,正确的是A. B. C. D.3. 若分式 无意义,则 A. B. C. D. 或4. 如果三条线段之比是: :2:3; :3:5; :4:6; :4:5,其中能构成三角形的有A. 1个B. 2个C. 3个D. 4个5. 点 关于y 轴的对称点的坐标是A. B.C. D. 6. 一个多边形的外角和等于它的内角和的倍,这个多边形是A. 三角形B. 四边形C. 五边形D. 六边形7. 如图, , ,判定 ≌ 的依据是A. SSSB. SASC. ASAD. HL8. 阅读下列各式从左到右的变形你认为其中变形正确的有 A. 3个 B. 2个 C. 1个 D. 0个9. 如图, , , ,则A. B. C. D.10.在中,为直角,,于D,若,则AB的长度是A. 8B. 6C. 4D. 210.如图,已知,,BE与CF交于点D,则对于下列结论:≌ ; ≌ ; ≌ ;在的平分线上其中正确的是A. B. C. D.11.如图,已知,,,,若,则的度数为A. 度B. 度C. 度D. 度二、填空题(本大题共4小题,共12.0分)12.因式分解:______.13.已知等腰三角形的两条边长为1cm和3cm,则这个三角形的周长为______14.若是完全平方式,则k的值是______.15.如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个矩形不重叠无缝隙,则矩形的面积为______.三、计算题(本大题共1小题,共6.0分)16.解方程:.四、解答题(本大题共7小题,共56.0分)17.计算:18.化简:18.已知,如图,,E是AB的中点,,求证:.19.在实数范围内将下列各式分解因式:;.20.先化简,再求值:,其中.21.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行已知高铁行使速度是原来火车速度的倍,求高铁的行驶速度.22.在直角中,,,AD,CE分别是和的平分线,AD,CE相交于点F.求的度数;判断FE与FD之间的数量关系,并证明你的结论.答案和解析【答案】1. A2. D3. C4. B5. D6. D7. B8. D9. D10. A11. D12. C13.14. 7cm15.16.17. 解:两边同时乘以得,,,.检验:当时,,故是原分式方程的解.18. 解:.19. 解:原式.20. 证明:,,,,,,又是AB的中点,,在和中,,≌ ..21. 解:原式;原式,22. 解:原式,当时,原式.23. 解:设原来火车的速度是x千米时,根据题意得:,解得:,经检验,是原方程的根且符合题意.故.答:高铁的行驶速度是.24. 解:中,,,、CE分别是、的平分线,,;与FD之间的数量关系为;证明:在AC上截取,连接FG,是的平分线,又为公共边在和中,≌,,,又为公共边,在和中,≌ ,.【解析】1. 解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 解:A、,此选项错误;B、,此选项错误;C、,此选项错误;D、,此选项正确;故选:D.根据幂的运算法则逐一计算即可判断.本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的运算法则.3. 解:分式无意义,,则.故选:C.直接利用分式无意义则分母为零进而得出答案.此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.4. 解:,能组成三角形;,不能组成三角形;,不能够组成三角形;,能够组成三角形.故选:B.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系判断能否组成三角形的简便方法,即只需看其中较小两个数的和是否大于第三个数.5. 解:点关于y轴对称,对称点的横坐标为2,纵坐标为3,对称点的坐标是,故选:D.根据关于y轴对称的点的特点解答即可.考查关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.6. 解:设它的边数是n,根据题意得,,解得.故选:D.根据多边形的内角和公式与外角和定理列出方程,然后求解即可.本题主要考查了多边形的内角与外角,熟记内角和公式与任意多边形的外角和都是,与边数无关是解题的关键.7. 解:,,在与中,,≌ .故选:B.根据平行线的性质得,再加上公共边,则可利用“SAS”判断 ≌ .本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8. 解:分子分母乘以不同的数,故错误;只改变分子分母中部分项的符号,故错误;先通分,再加减,故错误;分子分母乘以不同的数,故错误;故选:D.根据分式的分子分母都乘以或除以同一个不为零数,分式的值不变,可得答案;根据分式、分子、分母改变其中两项的符号,结果不变,可得答案;根据分式的加法,可得答案;根据分式的分子分母都乘以或除以同一个不为零数,分式的值不变,可得答案.本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零数,分式的值不变;注意分式、分子、分母改变其中两项的符号,结果不变.9. 解:,,,,.故选:D.根据三角形的一个外角等于与它不相邻的两个内角的和求出的度数,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10. 解:在中,为直角,,于D,,,,,,,,,故选:A.根据题意和直角三角形中角所对的直角边是斜边的一半,由可以求得BC的长,从而可以求得AB 的长.本题考查含30度角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.11. 解:,,在与中,≌ ,如图,连接AD;在与中,,≌ ;;,,;在与中,,≌ ,;在与中,,≌ ,;综上所述,均正确,故选:D.如图,证明 ≌ ,得到;证明 ≌ ;证明 ≌ ,得到;即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.12. 解:在中,,,,,是的外角,;同理可得,,,.故选:C.根据三角形外角的性质及等腰三角形的性质分别求出,及的度数,找出规律即可得出的度数.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出,及的度数,找出规律是解答此题的关键.13. 解:.可以写成,符合平方差公式的特点,利用平方差公式分解即可.本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.14. 解:当1cm为底时,其它两边都为3cm;1cm、3cm、3cm可以构成三角形,周长为7cm;当1cm为腰时,其它两边为1cm和3cm;,所以不能构成三角形,此种情况不成立;所以等腰三角形的周长是7cm.故答案为:7cm因为边为1cm和3cm,没说是底边还是腰,所以有两种情况,需要分类讨论.本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15. 解:是一个多项式的完全平方,,.故答案为:.这里首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可.此题考查完全平方公式问题,关键要根据完全平方公式的结构特征进行分析,两数和的平方加上或减去它们乘积的2倍,就构成完全平方式,在任意给出其中两项的时候,未知的第三项均可求出,要注意积的2倍符号,有正负两种情形,不可漏解.16. 解:矩形的面积为:.故答案为:,利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.17. 观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了解分式方程解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18. 直接利用多项式乘以多项式运算法则计算得出答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.19. 先算括号内的减法,把除法变成乘法,最后算乘法即可.本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.20. 利用SAS证明 ≌ ,即可得到.本题考查了等腰三角形的性质、全等三角形的性质定理与判定定理,解决本题的关键是正确寻找全等三角形解决问题.21. 先提取公因式3a,然后由完全平方公式进行因式分解;先提取公因式x,然后由平方差公式进行因式分解.本题考查了实数范围内分解因式因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.22. 先算括号内的减法,把除法变成乘法,求出结果,最后代入求出即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23. 根据题意,设原来火车的速度是x千米时,进而利用从甲站到乙站的运行时间缩短了11小时,得出等式求出即可.此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.24. 根据三角形内角和定理和角平分线的定义计算求解;在AC上截取,则;根据ASA证明 ≌ ,得,故判断.此题考查三角形内角和、全等三角形的判定和性质,角平分线问题,关键是根据全等三角形的判定与性质解答.。
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(一)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列四个图形中,不是轴对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形的意义可知:A、B、D都是轴对称图形,而C不是轴对称图形;故答案为:C.2.如果a>b,那么下列不等式中正确的是()A.a−2>b+2B.a8<b8C.ac<bc D.−a+3<−b+3【答案】D【解析】∵a>b,又∵不等式两边乘(或除以)同一个负数,不等号的方向改变,∴﹣a<﹣b.又知不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以正确的是−a+3<−b+3.故答案为:D.3.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等【答案】D【解析】A.两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B.一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C.有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D.有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故答案为:D.4A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【答案】C【解析】∵在这个变化中,自变量是温度,因变量是声速,∴选项A符合题意;∵根据数据表,可得温度越高,声速越快,∴选项B符合题意;∵342×5=1710(m),∴当气温为20∘C时,声音5s可以传播1710m,∴选项C不符合题意;∵324−318=6(m/s),330−324=6(m/s),336−330=6(m/s),342−336=6(m/s),∴当温度每升高10∘C,声速增加6m/s,∴选项D符合题意.故答案为:C.5.在平面直角坐标系中,已知点A (﹣2,a )和点B (b ,﹣3)关于y 轴对称,则ab 的值( ) A .﹣1 B .1 C .6 D .﹣6 【答案】D【解析】∵点A (-2,a )和点B (b ,-3)关于y 轴对称,∴a=-3,b=2,∴ab=-3×2=-6. 故答案为:D.6.如图,函数y =2x 和y =ax +4的图象相交于点A(32,3),则不等式2x <ax +4的解集为( )A .x <32B .x <3C .x >32D .x >3【答案】A【解析】根据函数图象得,当x <32时,2x <ax +4.故答案为:A.7.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A .480°B .500oC .540oD .600o【答案】C【解析】如图,由四边形的内角和得,∠2+∠3+∠5+∠8=360°,∠6+∠7+∠9+∠10=360°, ∴∠2+∠3+∠5+∠8+∠6+∠7+∠9+∠10=720°, ∵∠8+∠9=180°,∠10=∠1+∠4,∴∠1+∠2+∠3+∠5+∠8+∠6+∠7=720°−180°=540°. 故答案为:C. 8.如图,在等腰 △OAB 中, ∠OAB =90° ,点 A 在 x 轴正半轴上,点 B 在第一象限,以 AB 为斜边向右侧作等腰 Rt △ABC ,则直线 OC 的函数表达式为( )A .y =12xB .y =13xC .y =14xD .y =15x【答案】B【解析】设 OA =a ,∵△OAB 是等腰三角形,且 ∠OAB =90°∴AB =OA =a在等腰 Rt △ABC 中, AC =BC,∠BAC =45° ,由勾股定理得 AC =√22a作 CD ⊥x 轴交于点D ,则 ∠CAD =180°−∠OAB −∠CAB =45°∴ΔACD 是等腰直角三角形∴AD =CD由勾股定理得 CD 2+AD 2=AC 2 ,即 2CD 2=AC 2=(√22a)2=12a 2 ,∴CD =AD =12a ∴OD =OA +AD =32a∴C(32a,12a)设直线 OC 的函数表达式为 y =kx ,将点C 坐标代入得 12a =k ·32a解得 k =13所以直线 OC 的函数表达式为 y =13x故答案为:B9.如图, Rt △AED 中,∠AED =90∘,AB =AC =AD ,EC =3,BE =11,则ED 的值为( )A .√33B .√34C .√35D .√37−1【答案】A【解析】如图:过A 作AF ⊥BC 垂足为F∵EC =3,BE =11∴BC =BE +EC =11+3=14 ∵AB =AC ,∴BF =CF =12BC =7∴EF =FC −EC =7−3=4在Rt △ADE 中,由勾股定理得,DE 2=AD 2−AE 2, 在Rt △AEF 中,由勾股定理得,AE 2=AF 2+EF 2 又∵AB =AD ,∴DE 2=AB 2−(AF 2+EF 2)在Rt △ABF 中,由勾股定理得:AB 2=AF 2+BF 2∴DE 2=AF 2+BF 2−(AF 2+EF 2)=BF 2−EF 2=72−42=33故答案为:A.10.如图,在△ABC中,AC=BC,AD平分∠BAC交BC于点E,过点D作DM⊥AB于点M,连接CD,下列结论正确的是()A.若∠ACB=90°,则AC+CE=ABB.若AB+AC=2AM,则∠ACD+∠ABC=180°C.若DE=DB,则∠ACB=90°D.过点C作CH⊥AD于点H,则DA−DB=2DH【答案】A【解析】A、如图1中,作EF⊥AB于F.∵∠ACB=90°,AC=CB,∴∠ABC=45°,∵EF⊥AB,∴∠FEB=∠EBF=45°,∴EF=BF,∵∠EAC=∠EAF,∠ACE=∠AFE,AE=AE,∴ΔAEC≅ΔAEF(AAS),∴AC=AF,EC=EF,∴AC+CE=AF+EF=AF+BF=AB,故A符合题意;B、如图2中,作DG⊥AC于G.同理可知ΔADG≅ΔADM(AAS),∴AM=AG,DG=DM,∵AC+AB=AG−CG+AM+BM=2AM,∴CG=BM,∵∠DGC=∠DMB=90°,∴ΔDGC≅ΔDMB(SAS),∴∠DCG=∠DBM,∵∠DCG+∠ACD=180°,∴∠ACD+∠ABD=180°,故B不符合题意.∴点D 在线段BE 的垂直平分线上,当∠ACB ≠90°时,也能找到这样的点D . 故C 不符合题意;D 、如图3中,在HA 上取一点N ,使得HN =DH ,欲证明DA −DB =2DH ,只要证明AN =BD ,只要证明ΔACN ≅ΔBCD 即可.由于缺少条件无法证明ΔACN ≅ΔBCD ,故D 不符合题意, 故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在直角坐标系中,点P (﹣2,3)向右平移3个单位长度后的坐标为 . 【答案】(1,3)【解析】平移后点P 的横坐标为﹣2+3=1,纵坐标不变为3; ∴点P (﹣2,3)向右平移3个单位长度后的坐标为(1,3). 故答案为:(1,3).12.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是 .【答案】ASA【解析】由图得:遮挡住的三角形中露出两个角及其夹边. 则能画出与此直角三角形全等的三角形,其全等的依据是ASA. 故答案为:ASA.13.满足不等式2(2x −4)>−3x +6的最小整数是 . 【答案】3【解析】不等式去括号得:4x −8>−3x +6, 移项得:4x+3x >6+8, 合并得:7x >14,把x 系数化为1得:x >2, 则不等式的最小整数为3. 故答案为: 3. 14.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m = ,n = . 【答案】-1;-52【解析】将点(1,-2)代入y =12x +n 得-2=12×1+n 解得n=-52将点(1,-2)代入y =mx -1得 -2=m×1-1 解得m=-1故答案为:-1;-52.15.如图,△ABC 中,AB =AC ,点D 为BC 的中点,∠BAD =24°,AD =AE ,∠EDC = 度.【答案】12【解析】∵AB =AC ,点D 为BC 的中点,∠BAD =24°, ∴∠CAD =∠BAD =24°,AD ⊥BC , ∵AD =AE ,∴∠ADE =∠AED =12×(180°−24°)=78°, ∴∠EDC =90°−∠ADE =12°, 故答案为:12. 16.如图,已知点A(2,2),点B 在y 轴的负半轴上,点C 在x 轴正半轴上,AB ⊥AC ,且AB =AC.则OC −OB 的值为 .【答案】4【解析】如图,过点A 作AD ⊥y 轴于D , AE ⊥x 轴于E , ∴AD =AE =2 , ∠ADO =∠AEO =90° , ∵∠DOE =90° ,∴∠ADO =∠AEO =∠DOE =90° , ∴ 四边形ADOE 为正方形,∴OD =OE =2 , ∠DAE =90° , ∵AB ⊥AC , ∴∠BAC =90° , ∴∠DAB =∠EAC , ∵AB =AC ,∴△ADB ≌△AEC (SAS ) , ∴BD =CE ,∴OC −OB =OE +CE −OB =OE +BD −OB =OE +OB +OD −OB =OE +OD =4 , 故答案为:4.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列不等式(组),并把解集在数轴上表示出来. (1)2+x 4≥2x−13;(2){2x −4<012(x +8)−2>0.【答案】(1)解:2+x 4≥2x−13去分母:3(2+x)≥4(2x −1),去括号得:6+3x ≥8x −4,3x −8x ≥−4−6 −5x ≥−10解得x ≤2在数轴上表示,如图,(2)解:{2x −4<0①12(x +8)−2>0② 解不等式①得:x <2 解不等式②得:x >−4 在数轴上表示,如图,∴不等式组的解集为:−4<x <218.如图,在△ABC 中,已知其周长为26㎝.(1)在△ABC 中,用直尺和圆规作边AB 的垂直平分线分别交AB 、AC 于点D ,E (不写作法,但须保留作图痕迹).(2)连接EB ,若AD 为4㎝,求△BCE 的周长. 【答案】(1)解:如图所示:D ,E 即为所求;(2)解:∵DE 垂直平分AB , ∴AD=BD=4cm ,AE=BE ,∴△BCE 的周长为:EC+BE+BC=AC+BC=26-AB=26-8=18(cm ).19.如图,在ΔABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于 G ,CD =AE .(1)求证:CG =EG ;(2)已知BD =6,CD =5, 求ΔCDG 面积. 【答案】(1)证明:连接DE ,如图所示,∵AD ⊥BC , ∴∠ADC =90°,∵CE 是AB 边上的中线, ∴点E 是AB 中点, ∴DE =AE =BE , ∵CD =AE , ∴DE =CD , ∵DG ⊥CE , ∴CG =EG .(2)解:∵CE 是AB 边上的中线, ∴AE =BE ,∵BD =6,CD =5∴AB =10,∴AD =√102−62=8,∴S ΔABC =12×11×8=44,S ΔABD =12×6×8=24, ∵CE 是AB 边上的中线,∴S ΔBEC =12S ΔABC =22, ∵DE 是AB 边上的中线,∴S ΔBDE =12S ΔABD =12,∴S ΔEDC =S ΔBEC −S ΔEDB =22−12=10, 又∵CG =EG ,∴S ΔCDG =12S ΔEDC =5. 故ΔCDG 面积为5.20.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D 、E ,CE 交AB 于点F .(1)求证:BE =CD .(2)若∠ECA =75°,求证:DE =12AB .【答案】(1)证明:∵∠ACB =90°,AD ⊥CE ,BE ⊥CE , ∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°, ∴∠BCE =∠CAD ,在△ADC 和△CEB 中,{∠ADC =∠CEB∠CAD =∠BCE AC =BC,∴△ADC ≌△CEB (AAS ), ∴BE =CD ;(2)证明:∵∠ECA =75°,∴∠CAD =90°-75°=15°=∠BCE ,∵∠ACB =90°,AC =BC , ∴∠CBA =∠CAB =45°, ∴∠BFE =60°,∠DAF =30°,∴∠FBE =30°,DF =12AF ,∴EF =12BF ,∴DE =DF +EF =12(AF +BF )=12AB .21.已知点P(3a −15,2−a).(1)若点P 位于第四象限,它到x 轴的距离是4 , 试求出a 的值: (2)若点P 位于第三象限且横、纵坐标都是整数, 试求点P 的坐标. 【答案】(1)解:∵点P 位于第四象限,它到x 轴的距离是4 , ∴2−a =−4, 解得:a =6(2)解:∵点P 位于第三象限且横、纵坐标都是整数, ∴{3a −15<02−a <0,解得:2<a <5,∴a =3时,点P 的坐标为(−6,−1), 当a =4时,点P 的坐标为(−3,−2),综上,点P 的坐标为(−6,−1)或(−3,−2). 22.在一次课外兴趣活动中,有一半学生学数学. 四分之一学生学音乐, 七分之一学生学英语, 还有部分人在操场上踢球, 若参加这次课外兴趣活动共有学生m 人. (1)请用含m 的代数式表示在操场上踢球的人数.(2)若还剩下不到6名学生在操场上踢球,试问参加这次课外兴趣活动共有学生多少人? 【答案】(1)解:因为有一半学生学数学. 四分之一学生学音乐, 七分之一学生学英语,所以操场上踢球的人数为:m −12m −14m −17m =328m (人).(2)解:根据(1)得操场上踢球的人数为328m ,因为剩下不到6名学生在操场上踢球, 所以328m <6,解得m <56因为m 是2、4、7公倍数, 所以m =28,故这次课外兴趣活动共有28名学生.23.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x 时,所需费用为y 元,且y 与x 的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y 关于x 的函数表达式; (2)求出入园多少次时,两者花费一样?费用是多少? (3)洋洋爸准备了240元,请问选择哪种划算? 【答案】(1)解:设y 甲=k 1x根据题意得4k 1=80,解得k 1=20, ∴y 甲=20x ;设y 乙=k 2x +80,根据题意得:12k 2+80=200, 解得k 2=10,∴y 乙=10x +80; (2)解:解方程组{y =20x y =10x +80, 解得:{x =8y =160,∴E 点坐标(8,160);即出入园8次时,两者花费一样,费用为160元, (3)解:洋洋爸准备了240元,根据图象和(2)的结论可知:当y >160时,乙消费卡更合适.24.如图,在平面直角坐标系中,函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C(−2,m).(1)求m 和b 的值;(2)函数y =13x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 方向,以每秒2个单位长度匀速运动到点A (到A 停止运动).设点E 的运动时间为t 秒. ①当△ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使△ACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由. 【答案】(1)解:∵点C(−2,m)在直线y =−x +2上, ∴m =−(−2)+2=4, ∴点C(−2,4),∵函数y =13x +b 的图象过点C(−2,4),∴4=13×(−2)+b ,解得b =143,即m 的值是4,b 的值是143;(2)解:①∵函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B , ∴点A(2,0),点B(0,2),∵函数y =13x +143的图象与x 轴交于点D ,∴点D 的坐标为(−14,0), ∴AD =16,∵△ACE 的面积为12, ∴(16−2t)×42=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5;②存在,当t =4或t =6时,△ACE 是直角三角形,理由如下: 第一种情况:当∠CEA =90°时, ∵AC =4√2,∠CAE =45°, ∴AE =4,∵AE =16−2t , 即4=16−2t , 解得,t =6;第二种情况:当∠ACE=90°时,AC⊥CE,∵点A(2,0),点B(0,2),点C(−2,4),点D(−14,0),∴OA=OB,AC=4√2,∴∠BAO=45°,∴∠CAE=45°,∴∠CEA=45°,∴CA=CE=4√2,∴AE=8,∵AE=16−2t,即8=16−2t,解得:t=4;综上所述,当t=4或t=6时,△ACE是直角三角形。
A .3.如果,那么下列各式中正确的是(A .50︒m n ≤11m n -≥-A .155B .1587.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长可以列方程组( )A .9.如图,直线A .1B .2431y ax =A.414.若方程组为.3 3x -⎧⎨⎩16.如图,已知接交于点三、解答题(本大题共10个小题,共20.如图,在和边上的中线,且21.用5张大小完全相同的长方形纸片在平面直角坐标系中摆成如图图案,为,求点的坐标.BD AC ABC A B C ''CD ()1,7-B22.用尺规作平行线的方法:已知:直线及直线求作:经过点P 的直线尺规作图步骤:如图,①过点P 作直线为半径画弧,交直线(1)(填写合适的选项)可判定,从而可得到A .“” B .“” C .“” D .“”(2)在上述作图步骤中用到的判定的依据是________________(3)如图3,在中,,小明通过刚才的方法,作出了是底边的平行线,那么是外角23.为丰富校园课余生活,增强班级凝聚力,展现学子积极向上的精神风貌,我市某中学准AB AB CD AB HP PMN HEF △△≌SSS SAS ASA AAS CD AB ∥ABC AB AC =ABC BC AD ABC EAC ∠b.甲乙两人投篮命中数的平均数,众数甲乙平均数(个)7.6众数(个)8根据以上信息,回答下列问题:m n(1)求直线l 的解析式;(2)如图,过线段的中点请求出点F 的坐标.(3)如图,点C 是x 轴上一动点,连接接,直接写出26.在学习了三角形的知识后,关系进行了探究.AB BD ABD △(2)如图,若点E 在边证:;(二)应用拓展(3)如图,在四边形,请直接写出亲爱的同学,祝贺你已经完成了本次考试的所有题目,如果你还有时间,希望挑战一下自己,可以尝试完成下面两道题目,请注意,以下题目的分数不计入总分.四、附加题(本大题共27.已知是二元二次式28.设x ,y ,z 为互不相等的非零实数,且2AE AF AM +=ABDC 43AD =AC 2+-x y答案与解析1.D 【分析】本题考查了轴上点坐标的特征.熟练掌握轴上点坐标的纵坐标为0是解题的关键.根据轴上点坐标的纵坐标为0,判断作答即可.【详解】解:由题意知,点A 的纵坐标为0,故选:D .2.B【分析】本题主要考查了对顶角相等、平行线的性质等知识,理解并掌握平行线的性质是解题关键.首先根据“对顶角相等”可得,再根据“两直线平行,同旁内角互补”,由求解即可.【详解】解:如下图,∵,∴,∵,∴.故选:B .3.D【分析】本题考查了不等式的性质.熟练掌握不等式的性质是解题的关键.x x x 31120∠=∠=︒21803∠=︒-∠1120∠=︒31120∠=∠=︒a b ∥2180360∠=︒-∠=︒∵是的角平分线,∴,∵,BD ABC DE CD =BD BD =17.【分析】本题主要考查了解二元一次方程,解题关键是熟练掌握解二元一次方程的常用方法.利用代入消元法解该方程即可.【详解】解:由①可得,③,将③代入②,可得,解得,将代入③,可得,∴原方程组的解为.18.不等式组的解集,整数解为,1,2.【分析】本题考查的是解一元一次不等式组.分别求出各不等式的解集,利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则再求出其公共解集即可.【详解】解:解不等式得:,解不等式得:,∴不等式组的解集是,∴不等式组的整数解为,1,2.19.见解析【分析】根据,可得,进而得到,结合已知条件,通过等量代换,得到,即可求解,本题考查了平行线的性质与判定,解题的关键是:熟练掌握相关性质与判定定理.【详解】证明:(内错角相等,两直线平行),,(两直线平行,内错角相等),又,,(同位角相等,两直线平行).12x y =⎧⎨=⎩4237x y x y -=⎧⎨+=⎩①②42y x =-3(42)7x x +-=1x =1x =422y =-=12x y =⎧⎨=⎩12x -<≤0x =724x x +>-1x >-()1213x +-≤2x ≤12x -<≤0x =1E ∠=∠AD BE ∥D DCE ∠=∠B D ∠=∠B DCE ∠=∠1E ∠=∠ AD BE ∴∥D DCE ∴∠=∠B D ∠=∠ B DCE ∴∠=∠AB CD ∴∥20.见解析【分析】此题考查了全等三角形的判定,根据三角形中线的定义得到,,由,得到,利用即可证明.【详解】证明:∵与分别为,边上的中线,∴,,∵,∴,在和中,,∴.21.【分析】本题主要考查了坐标与图形、二元一次方程组的应用等知识,正确列出二元一次方程并求解是解题关键.设小长方形的长为,宽为,根据题意列出二元一次方程组并求解,然后确定点的坐标即可.【详解】解:设小长方形的长为,宽为,依题意,得,解得,∴,,∴点的坐标为.22.(1)A(2)同位角相等,两直线平行(3)是,理由见解析【分析】(1)由作图可知,,可证,然后作答即可;(2)根据平行线的判定定理作答即可;2CB CD =2C B C D ''''=CD C D ''=CB C B ''=HL A ABC B C '''≌△△AD A D ''BC B C ''2CB CD =2C B C D ''''=CD C D ''=CB C B ''=Rt ABC △Rt A B C ''' AB A B BC B C ''''=⎧⎨=⎩()Rt Rt HL ABC A B C ''' ≌(6,5)-x y B x y 127x y x y -=⎧⎨+=⎩32x y =⎧⎨=⎩26x =5x y +=B (6,5)-PM HE MN EF PN HF ===,,()SSS PMN HEF ≌(3)由平行线的性质,等边对等角可得,进而可证是外角的平分线.【详解】(1)解:由作图可知,,∴,故选:A ;(2)解:由题意知,,∴,∴判定的依据是同位角相等,两直线平行,故答案为:同位角相等,两直线平行;(3)解:是外角的平分线,理由如下;∵,∴,∴,∵,∴,∴,∴是外角的平分线.【点睛】本题考查了作一个角等于已知角,全等三角形的判定与性质,等腰三角形的判定与性质,角平分线等知识.熟练掌握作一个角等于已知角,全等三角形的判定与性质,等腰三角形的判定与性质,角平分线是解题的关键.23.(1);(2)(3)(4)他在投篮训练中每个球的平均分是分【分析】本题考查统计综合,涉及平均值、众数、极差、方差及解应用题,熟记相关统计量的定义及求解公式是解决问题的关键.(1)根据题中数据,由平均数即众数定义直接求解即可得到答案;(2)结合题中数据,由极差定义与求法代值求解即可得到答案;EAD DAC ∠=∠AD ABC EAC ∠PM HE MN EF PN HF ===,,()SSS PMN HEF ≌MPN EHF ∠=∠CD AB ∥CD AB ∥AD ABC EAC ∠EAD B ∠=∠AD BC ∥DAC C ∠=∠AB AC =B C ∠=∠EAD DAC ∠=∠AD ABC EAC ∠7.674>1.88)()(2297.68+-+-)()(2287.67+-+-∵点E 是线段的中点,∴直线是线段的垂直平分线,∴,在中,∴,解得AB EF AB AF BF =Rt AOF 22AO FO +=()2224=3FO FO ++FO∵点在直线∴,∵轴且点F 在x ∴.∵为等腰直角三角形,∴,∵,∴∵,(),2E a y =3,22E ⎛⎫ ⎪⎝⎭FE x ⊥3,02F ⎛⎫ ⎪⎝⎭ACD AC CD ==90ACD ∠︒90ACO MCD ∠+∠=90ACO CAO ∠+∠=︒设点,则,,故点,,得,∴点D 在直线上运动,设直线与x 轴交于点P ,与y 轴交于点Q ,连接并延长至点,使得,过点作轴交于点N ,连接和,如图,则点,,∵,∴,∵,∴,则线段垂直平分,∴,∵,,∴,∴,当、B 和D 共线时可以取到最小值,∵,,,∴,∴,,∵,,(),0C t 4OM OC CM t =+=+DM t =()4,D t t +4x t y t =+⎧⎨=⎩4y x =-4y x =-4y x =-AP AP P 'AP A P '=A 'A N x '⊥A D 'A B '()4,0P ()0,4Q -()0,4A 4OP OA OQ ===90AOP ︒=∠90APQ ∠=︒QD AA 'AD A D '=4AO =3OB =5AB =5ABD C AB BD AD BD A D '=++=++ A 'BD A D A B ''+=90A NP AOP '∠=∠=︒A P AP '=A PN APO '∠=∠()AAS A PN APO ' ≌A N AO '=PN PO =4OP =3OB =∵,∴∵,点D 为的中点∴,90BAC ∠=︒AB AC=45B C ∠=∠=︒AB AC =BC 1452EAD BAC ∠=∠=︒ADC ∠=∵,点D 为的中点,∴∵∴∴AB AC =BC 1452EAM MAN BAC ∠=∠=∠=︒MN AM⊥90AM N ∠=︒9045FNM MAN ∠=︒-∠=︒∴∵,∴∴∴在和中,180ECB ACD∠=︒-∠60BAC ∠=︒BDC ∠360B ACD ∠+∠=︒-180B ACD∠=︒-∠ECD B∠=∠ABD △ECD∴,∵∴∴∴∵∴.12AF EF AE ==30DAE ∠=︒1232DF AD ==226AF AD DF =-=212AE AF ==7CE AB ==5AC AE CE =-=。
杭州市2022~2023学年上学期期末模拟测试卷(一)八年级数学(时间:100分钟满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.若点A(m,n)在第三象限,那点B(﹣m+2,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知三角形的一边长为8,则它的另两边长分别可以是()A.4,4B.17,29C.3,12D.2,93.若a>b,则下列不等式不一定成立的是()A.a+3>b+3B.>C.>D.﹣3a<﹣3b4.如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110B.100C.55D.455.已知第二象限的点P(﹣4,1),那么点P到x轴的距离为()A.1B.4C.﹣3D.36.若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y27.已知两个一次函数y=kx+5和y=2x+1的图象交于A(m,3),则一次函数y=kx+5的图象所在的象限为()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限8.已知正比例函数y=kx(k≠0)的图象中,y随x的增大而减小,则一次函数y=kx﹣k的图象大致是()A.B.C.D.9.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是()A.a<0B.a>0C.a<1D.a>110.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=4,BD=6,则CD的长为()A.B.4C.D.二、填空题(本大题共6小题,每小题4分,共24分。
2022-2023学年度上学期期末学业水平检测八年级数学期末模拟试题第I 卷(选择题) 共30分一、单选题(共30分 每题3分)1.下面的图形中对称轴最多的是()A .B .C .D .2.下列长度的四根木棒中,能与长为5,10的两根木棒围成一个三角形的是()A .4B .5C .9D .15 3.下列各组图形中,BD 是ABC 的高的图形是()A .B .C .D .4.下列运算正确的是()A .232496b a b a b ⋅= B .2312332b b ab a ÷= C .11223a a a+= D .2112111a a a -=-+- 5.如图,在△ABC 中,AB =3,AC =4,BC =5,EF 是BC 的垂直平分线,P 是直线EF 上的任意一点,则PA +PB 的最小值是()A .3B .4C .5D .6 6.分式293x x --,当x 等于()时分式的值为零. A .3B .3-C .3或3-D .无法确定 7.如图,在△MPN 中,H 是高MQ 和NR 的交点,且PM =HN ,已知MH =3,PQ =2,则PN 的长为()A .5B .7C .8D .118.如图,在四边形ABCD 中,∠C =40°,∠B=∠D =90°,E ,F 分别是BC ,DC 上的点,当ΔAEF 的周长最小时,∠EAF 的度数为()A .100°B .90°C .70°D .80°(第5题图)(第7题图)(第8题图) 9.当2021a =时,()211111a a a a a -⎛⎫-÷ ⎪++⎝⎭+的值是() A .2022B .2022.5C .2021D .2021.5 10.如图,在平面直角坐标系中,对ABC 进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A 的对应点的坐标为()A .(1,2)-B .(1,2)--C .(1,2)-D .(1,2)第II 卷(非选择题) 共70分二、填空题(共15分 每题3分)11. 若一个多边形外角和与内角和相等,则这个多边形是_____.12.若二次三项式x 2+mx+14为完全平方式,则m 的值为_____.13.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是_____.14在△ABC 中,AC =5cm ,AD 是△ABC 中线,若△ABD 周长比△ADC 的周长大2cm ,则BA =_______.15.装裱在我国具有悠久的历史和鲜明的民族特色,是我国特有的一种保护和美化书画以及碑帖的技术.如图,整个画框的长()3m n +分米,宽为()2m n +分米,中间部分是长方形的画心,长和宽均是()m n +分米,则画心外阴影部分面积是_________平方分米,并求当2m =,1n =时的阴影部分面积是_________平方米.第13题图第 15题图三、解答题(共55分)16.(本题6分)解分式方程231233x x x x -=--17.(本题6分)证明:若2220a b c ab bc ac ++---=,则a b c ==18.(本题6分)先化简,再求值()22x y xy -•222x x xy y -+÷222x yx y -,其中x =-1,y =1.19.(本题7分)如图,在ABC 中,BAC ∠的角平分线交BC 于D ,且AB AC CD =+.求证:2C B ∠=∠.20.(本题8分)如图,求:(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1顶点的A1坐标________,线段CC1的长度为________;(2)在y轴上存在一点P,使得AP+BP的值最小,则AP+BP的最小值为________;(3)在x轴正半轴上存在一点M,使得S△ABM=S△ABC,则点M的坐标为________.21.(本题10分)阅读材料,并完成下列问题:观察分析下列方程:①x+2x=3;②x+6x=5;③x+12x=7.由①得,方程的根为x=1或x=2,由②得,方程的根为x=2或x=3,由③得,方程的根为x=3或x=4.(1)观察上述方程及其根,可猜想关于x的方程x+2x=a+2a的根为________;(2)请利用你猜想的结论,解关于x的方程22211x xax a-+=+--.22.(本题12分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图1所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为;(3)如图3,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.。
八年级上学期 期末模拟数学试题(1) 一、选择题 1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .323.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .54.下列根式中是最简二次根式的是( )A .23B .3C .9D .125.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD 6.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 7.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 8.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)9.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.510.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .12二、填空题 11.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.14.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.17.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.18.化简:32|=__________.19.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).20.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.三、解答题21.23(3)812--+-22.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.23.如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB ⊥AC ,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.24.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
小明同学对以上结论作了进一步探究.如图1,在Rt ABC ∆中,190,2ACB AC AB ∠==,则:30ABC ∠=. 探究结论:(1)如图1,CE 是AB 边上的中线,易得结论:ACE ∆为________三角形. (2)如图2,在Rt ABC ∆中,190,,2ACB AC AB CP ∠==是AB 边上的中线,点D 是边CB 上任意一点,连接AD ,在AB 边上方作等边ADE ∆,连接BE .试探究线段BE 与DE 之间的数量关系,写出你的猜想加以证明.拓展应用:如图3,在平面直角坐标系中,点A 的坐标为(3,1)-,点B 是x 轴正半轴上的一动点,以AB 为边作等边ABC ∆,当点C 在第一象内,且(2,0)B 时,求点C 的坐标.25.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.四、压轴题=的图象为直线1.26.如图,在平面直角坐标系中,一次函数y x(1)观察与探究已知点A与A',点B与B'分别关于直线l对称,其位置和坐标如图所示.请在图中标出()C-关于线l的对称点C'的位置,并写出C'的坐标______.2,3(2)归纳与发现观察以上三组对称点的坐标,你会发现:P m n,关于直线l的对称点P'的坐标为______.平面直角坐标系中点()(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?28.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A 、是轴对称图形,不符合题意;B 、是轴对称图形,不符合题意;C 、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】,∴点A.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3.C解析:C【解析】试题分析:A1,故错误;B<﹣1,故错误;C.﹣1<2,故正确;2,故错误;故选C.【考点】估算无理数的大小.4.B解析:B【解析】【分析】【详解】ABC,故此选项错误;D=故选B.考点:最简二次根式.5.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.6.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.8.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.10.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.二、填空题11.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.14.【解析】【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ ,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,解析:3 4【解析】【分析】首先把113-=a b两边同时乘以ab,可得3b a ab-=,进而可得3a b ab-=-,然后再利用代入法求值即可.【详解】解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 17.3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE ⊥AB 于E ,解析:3;【解析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.18.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:23【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.解:∵32<,∴原式(32)=--23=-,故答案为:23-.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.19.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩ ∴47y x =-+∵D 为AB 中点,即D (122+,312-) ∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =- ∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.20.15【解析】【分析】试题分析:过D 作DE⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE⊥BC 于E ,∵∠A=90°,∴DA⊥AB,∵BD 平分解析:15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.三、解答题212【解析】【分析】首先根据二次根式、立方根、绝对值的性质将各项化简,最后再进行加减运算即可.【详解】23(3)812-3221=-+,2=【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解题的关键.22.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.23.(1)BC 2)12米.【解析】【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴=(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴12AD =(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.24.(1)等边;(2)ED EB =,证明详见解析;(3)12(,C +.【解析】【分析】(1)易证,60AC AE A ︒=∠=,因此ACE ∆是等边三角形; (2)连接PE ,结合,ACP ADE ∆∆等边三角形的性质,利用SAS 可证CAD PAE ∆≅∆, 由全等的性质知90ACD APE ∠=∠=,结合等腰三角形三线合一的性质可得EA EB =,等量代换即得ED EB =;拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA ,易知AO 、AH 长,由题中结论可得30AOH ∠=,结合(2)中结论,利用HL 定理可证ABH OCF ∆≅∆,可知CF 长,易得点C 坐标.【详解】解:(1)190,2ACB AC AB ∠== 30ABC ∴∠=60A ∴∠= CE 是AB 边上的中线12AE AB ∴= AE AC ∴=ACE ∴∆是等边三角形.(2)结论:ED EB =.理由:连接PE .∵,ACP ADE ∆∆都是等边三角形 ,,,60AC AD DE AD AE CAP DAE ∴===∠=∠=,CAD PAE ∴∠=∠,()CAD PAE SAS ∴∆≅∆,90ACD APE ∴∠=∠=,EP AB ∴⊥,∵PA PB =,EA EB ∴=,∵DE AE =,ED EB ∴=拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA .∵(3,1),22,30A AO AH AOH -∴==∴∠=,由(2)可知,,CO CB OC AC =∴=∵,1CF OB OF FB ⊥∴==,,()AH OF ABH OCF HL ∴=∴∆≅∆23CF BH ∴==+(1,23)C ∴+.【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,直角三角形的特殊判定,等腰三角形的性质,属于三角形的综合探究题,灵活利用等边三角形及直角三角形的性质是解题的关键.25.(1)21;(2)EF ⊥AD ,证明详见解析.【解析】【分析】(1)根据在直角三角形中,斜边上的中线等于斜边的一半可得ED =EB =12AB ,DF =FC =12AC ,再由AB =12,AC =9,可得答案;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【详解】(1)∵AD 是高,∴∠ADB =∠ADC =90°,∵E 、F 分别是AB 、AC 的中点, ∴ED =EB =12AB ,DF =FC =12AC ,∵AB =12,AC =9,∴AE +ED =12,AF +DF =9,∴四边形AEDF 的周长为12+9=21;(2)EF ⊥AD ,理由:∵DE =AE ,DF =AF ,∴点E 、F 在线段AD 的垂直平分线上,∴EF ⊥AD .【点睛】本题主要考查了线段垂直平分线的判定,直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ; ②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.28.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.29.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【解析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132, ∴5+32=5×32-1, ∴35,2⎛⎫⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭; (2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.。