冀教版_七年级数学下册期末测试题2
- 格式:doc
- 大小:210.08 KB
- 文档页数:8
冀教版数学七年级下册期末测试题(一)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.下列多项式,在实数范围内能用公式法分解因式的有( )①x 2+6x +9;②4x 2-4x -1;③-x 2-y 2;④2x 2-y 2;⑤x 2-7;⑥9x 2+6xy +4y 2.A .3个B .4个C .5个D .6个2.若(a +b)2=(a -b)2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab3.计算(x 2-3x +n)(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =84.若a ,b ,c 是三角形的三边长,则代数式(a -b)2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定5.7张如图①的长为a ,宽为b(a >b)的小长方形纸片,按图②的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的方式放置,S 始终保持不变,则a ,b 满足( )A .a =52b B .a =3b C .a =72b D .a =4b 6.已知实数a ,b ,若a >b ,则下列结论正确的是( )A.a -5<b -5B.2+a <2+bC.3a <3bD.3a >3b7.下列列出的不等关系中,正确的是( )A.m 与4的差是负数,可表示为m −4<0B.x 不大于3可表示为x <3C.a 是负数可表示为a >0D.x 与2的和是非负数可表示为x +2>08.如果a >b ,下列各式中不正确的是( )A.a −3>b −3B.22b a -<- C.−2a <−2b D.−2+a <−2+b9.若m >n ,则下列不等式中成立的是( )A.m +a <n +bB.ma <nbC.ma 2>na 2D.a −m <a −n10.不等式22123x x +-≥的解集为( ) A.x ≥8 B.x ≤8 C.x <8 D.x ≤二、填空题(每小题3分,共24分)8711.(2014·陕西)因式分解:m(x -y)+n(y -x)=______________.12.计算:|-3|+(π+1)0-4=________.13.计算82014×(-0.125)2015=________.14.(2014·连云港)若ab =3,a -2b =5,则a 2b -2ab 2=________.15.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是. 16.不等式组⎪⎩⎪⎨⎧≥-<-43121x x ,的解集是_________________.17.学校举行百科知识竞赛,共有20道题,规定每答对一题记10分,答错或放弃记−4 分.九年级一班代表队的得分目标为不低于88分,则这个队至少要答对_____道题才能达到目标要求.18.某班男、女同学分别参加植树活动,要求男、女同学各植8行树,男同学植的树比女同学植的树多,如果每行都比预定的多植一棵树,那么男、女同学植树的数目都超过100棵;如果每行都比预定的少植一棵树,那么男、女同学植树的数目都达不到100棵,这样原来预定男同学植树______棵,女同学植树______棵.三、解答题(共46分)19.(6分)求不等式03.002.003.0255.014.0x x x -≤---的非负整数解.20.(6分)已知x m =3,x n =2,求x 3m +2n 的值.21.(9分)已知x(x -1)-(x 2-y)=-6,求x 2+y 22-xy 的值.22.(8分)学习了分解因式的知识后,老师提出了这样一个问题:设n 为整数,则(n +7)2-(n -3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?23.(8分)(2013·山东临沂中考)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A 、B 两种型号的学习用品共1 000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26 000元,则购买A 、B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28 000元,则最多购买B 型学习用品多少件?24.(8分)(2013·山东东营中考)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.25.(8分)某服装销售店到生产厂家选购A 、B 两种品牌的服装,若购进A 品牌服装3套,B 品牌服装4套,共需600元;若购进A 品牌服装2套,B 品牌服装3套,共需425元.(1)求A 、B 两种品牌的服装每套进价分别为多少元?(2)若A 品牌服装每套售价为130元,B 品牌服装每套售价为100元,根据市场的需求,现决定购进B 品牌服装数量比A 品牌服装数量的2倍还多3套.如果购进B 品牌服装数量不多于39套,这样服装全部售出后,就能使获利总额不少于1 355元,问共有几种进货方案?如何进货?(注:利润=售价-进价)参考答案:1.A2.C3.A4.B5.B6.A 解析:不等式的解集为3>x .故选A.7.A 解析:A 正确; x 不大于3可表示为x ≤3,故B 错误;a 是负数可表示为a <0,故C 错误;x 与2的和是非负数可表示为x +2≥0,故D 错误.8.D 解析:由不等式的基本性质1,得a −3>b −3,故A 正确;由不等式的基本性质3,得22b a -<-,故B 正确;由不等式的基本性质3,得−2a <−2b ,故C 正确;由不等式的基本性质1,得−2+a >−2+b ,故D 不正确.9.D 解析:A.不等式两边加的数不同,错误;B.不等式两边乘的数不同,错误;C.当a =0时,ma 2=na 2,故C 错误;D.由不等式的基本性质1和3知,D 正确.10.B 解析:不等式31222-≥+x x 两边同乘6,得3(2+x )≥2(2x −1),即6+3x ≥ 4x −2,所以x ≤8.11.(x -y)(m -n) 12.2 13.-1814.15 15. m ≤3 解析:解不等式组可得结果3,,x x m >⎧⎨>⎩因为不等式组的解集是x >3,所以结合数轴,根据“同大取大”原则,不难看出m 的取值范围为m ≤3.16. −2<x ≤−1 解析:由121<-x ,得2->x ;.143-≤≥-x x ,得由所以 −2<x ≤−1.17.12 解析:设九年级一班代表队至少要答对x 道题才能达到目标要求.由题意得10x −4(20−x )≥88,10x −80+4x ≥88,14x ≥168,得x ≥12.所以这个队至少要答对12道题才能达到目标要求.18.104 96 解析:设原来预定每行植x 棵树. 由题意,得⎩⎨⎧<->+,,100)1(8100)1(8x x 解得11.5<x <13.5. 因为x 为整数,所以x 为12,13.因为男同学植的树比女同学植的树多,所以男同学每行植13棵树,女同学每行植12棵树.所以原来预定男同学植13×8=104(棵)树,女同学植12×8=96(棵)树.19.解:原不等式可化为.323255104x x x -≤--- 去分母,得6(4x -10)-15(5-x)≤10(3-2x).去括号,得24x -60-75+15x ≤30-20x .移项,得24x +15x +20x ≤30+60+75.合并同类项,得59x ≤165.把系数化为1,得x ≤59165. 所以原不等式的非负整数解是0,1,2.20.∵x m =3,x n =2,∴原式=(x m )3·(x n )2=33·22=10821.由x(x -1)-(x 2-y)=-6得x -y =6,x 2+y 22-xy =x 2-2xy +y 22=(x -y )22,把x -y =6代入得622=18 22.(n +7)2-(n -3)2=(n +7+n -3)(n +7-n +3)=(2n +4)×10=20(n +2),∴一定能被20整除23.分析:(1)根据“购买A 型学习用品的件数+购买B 型学习用品的件数=1 000”和“购买A 型学习用品的费用+购买B 型学习用品的费用=26 000元”列方程或列方程组求解;(2)利用“购买A 型学习用品的费用+购买B 型学习用品的费用≤28 000元”列不等式进行 解答.解:(1)设购买A 型学习用品x 件,则购买B 型学习用品(1 000-x )件.根据题意,得20x +30(1 000-x )=26 000.解方程,得x =400,则1 000-x =1 000-400=600.答:购买A 型学习用品400件,购买B 型学习用品600件.(2)设购买B 型学习用品x 件,则购买A 型学习用品(1 000-x )件.根据题意,得20(1 000-x )+30x ≤28 000.解不等式,得x ≤800.答:最多购买B 型学习用品800件.点拨:(1)第一问也可列二元一次方程组进行求解;(2)第二问注意抓住关键词语列不等式,如“不超过”应为“≤”.24.分析:(1)设电脑、电子白板的价格分别为x 万元、y 万元,根据等量关系:1台电脑的费用+2台电子白板的费用=3.5万元,2台电脑的费用+1台电子白板的费用=2.5万元,列方程组即可.(2)设购进电脑a 台,则购进电子白板(30-a )台,然后根据题目中的不等关系列不等式组解答.解:(1)设每台电脑x 万元,每台电子白板y 万元.根据题意,得2=3.5,2+=.5,x y x y +⎧⎨⎩2解得=0.5,=.5.x y ⎧⎨⎩1 答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a 台,则购进电子白板(30-a )台,则0.5+1.5(30-)28,0.5+.5(30-),a a a a ⎧⎨⎩≥1≤30解得15≤a ≤17,即a =15,16,17.故共有三种方案:方案一:购进电脑15台,电子白板15台,总费用为0.5×15+1.5×15=30(万元); 方案二:购进电脑16台,电子白板14台,总费用为0.5×16+1.5×14=29(万元); 方案三:购进电脑17台,电子白板13台,总费用为0.5×17+1.5×13=28(万元). 所以方案三费用最低.点拨:(1)列方程组或不等式组解应用题的关键是找出题目中存在的等量关系或不等关系.(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解.25.解:(1)设A 品牌的服装每套进价为x 元,B 品牌的服装每套进价为y 元.依题意,得⎩⎨⎧=+=+,,4253260043y x y x 解得⎩⎨⎧==.75100y x ,答:A 品牌的服装每套进价为100元,B 品牌的服装每套进价为75元.(2)设购进A 品牌服装m 套.依题意,得⎩⎨⎧≥++≤+,,1355)32(25303932m m m 解得16≤m ≤18. 因为m 取整数,所以m 可取16、17、18,即共有3种进货方案.具体如下:①A 品牌服装16套,B 品牌服装35套;②A品牌服装17套,B品牌服装37套;③A品牌服装18套,B品牌服装39套.冀教版数学七年级下册期末测试题(二)(时间:120分钟分值:120分)一、选择题(每题3分)1.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab2abB.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.a2﹣1=a(a﹣)2.根据国家统计局初步核算,2015年全年国内生产总值676708亿元,按可比价格计算,比上年增长6.9%,数据676708亿用科学记数法可表示为()A.6.76708×1013B.0.76708×1014C.6.76708×1012D.676708×109 3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.在建筑工地我们经常可看见如图所示用木条EF固定长方形门框ABCD的情形,这种做法根据是()A.两点之间线段最短B.两点确定一条直线C.长方形的四个角都是直角D.三角形的稳定性5.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)6.计算(﹣2)2015+22014等于()A.22015B.﹣22015C.﹣22014D.220147.若不等式组无解,则m的取值范围是()A.m>2 B.m<2 C.m≥2 D.m≤28.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°9.如图,AB∥CD,EF⊥AB于F,∠EGC=40°,则∠FEG=()A.120°B.130°C.140°D.150°10.已知关于x、y的不等式组,若其中的未知数x、y满足x+y>0,则m的取值范围是()A.m>﹣4 B.m>﹣3 C.m<﹣4 D.m<﹣311.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0 B.0≤a<1 C.0<a≤1 D.a≤112.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A.6 B.5 C.4 D.3二、填空题(每题3分)13.已知三角形的两边分别是5和10,则第三边长x的取值范围是.14.因式分解:(x2+4)2﹣16x= .15.计算:已知:a+b=3,ab=1,则a2+b2= .16.若不等式组的解集是﹣1<x<1,则(a+b)2016= .17.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.18.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是.19.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= .20.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为20cm2,则△BEF的面积是 cm2.三、解答题21.解不等式:﹣1>,并把它的解集在数轴上表示出来.22.已知a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.23.已知:a、b、c为三角形的三边长化简:|b+c﹣a|+|b﹣c﹣a|﹣|c﹣a﹣b|﹣|a﹣b+c|24.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF∴BD∥CE∴∠3+∠C=180°又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F .25.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.26.对于任何实数,我们规定符号=ad﹣bc,例如: =1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.27.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B 型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?参考答案:一、选择题(每题3分)1.【考点】因式分解的意义.【分析】根据因式分解是把一个多项式分解为几个整式积的形式进行判断即可.【解答】解:A、不是把多项式转化,故选项错误;B、不是把一个多项式转化成几个整式积的形式,故选项错误;C、因式分解正确,故选项正确;D、a2﹣1=(a+1)(a﹣1),因式分解错误,故选项错误;故选:C.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:676708亿=67 6708 0000 0000=6.76708×1013,故选:A.3.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由2x+1>3,解得x>1,3x﹣2≤4,解得x≤2,不等式组的解集为1<x≤2,故选:C.4.【考点】三角形的稳定性.【分析】根据三角形的稳定性,可直接选择.【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选D.5.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.6.【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式求出答案.【解答】解:(﹣2)2015+22014=﹣22015+22014=22014×(﹣2+1)=﹣22014.故选:C.7.【考点】解一元一次不等式组.【分析】求出两个不等式的解集,根据已知得出m≤2,即可得出选项.【解答】解:,∵解不等式①得:x>2,不等式②的解集是x<m,又∵不等式组无解,∴m≤2,故选D.8.【考点】三角形内角和定理;等边三角形的性质.【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选D.9.【考点】平行线的性质.【分析】过点E作EH∥AB,再由平行线的性质即可得出结论.【解答】解:过点E作EH∥AB,∵EH⊥AB于F,∴∠FEH=∠BFE=90°.∵AB∥CD,∠EGC=40°,∴EH∥CD.∴∠HEG=∠EGC=40°,∴∠FEG=∠FEH+∠HEG=90°+40°=130°.故选B.10.【考点】二元一次方程组的解;解一元一次不等式.【分析】先把两个二元一次方程相加可得到x+y=,再利用x+y>0得到>0,然后解m的一元一次不等式即可.【解答】解:,①+②得3x+3y=3+m,即x+y=,因为x+y>0,所以>0,所以3+m>0,解得m>﹣3.故选B.11.【考点】一元一次不等式组的整数解.【分析】首先解关于x的不等式组,确定不等式组的解集,然后根据不等式组只有一个整数解,确定整数解,则a的范围即可确定.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集为a<x<2,∵关于x的不等式组有且只有1个整数解,则一定是1,∴0≤a<1.故选B.12.【考点】三角形的面积.【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2016,最少经过4次操作.故选C.二、填空题(每题3分)13.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【解答】解:根据三角形的三边关系可得:10﹣5<x<10+5,解得:5<x<15.故答案为:5<x<15.14.【考点】因式分解-运用公式法.【分析】首先利用平方差公式分解因式,进而结合完全平方公式分解得出答案.【解答】解:(x2+4)2﹣16x=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.故答案为:(x+2)2(x﹣2)2.15.【考点】完全平方公式.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:716.【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2016次方,可得最终答案.【解答】解:由不等式x﹣a>2得x>a+2,由不等式b﹣2x>0得x<b,∵﹣1<x<1,∴a+2=﹣1, b=1∴a=﹣3,b=2,∴(a+b)2016=(﹣1)2016=1.故答案为1.17.【考点】因式分解-运用公式法.【分析】利用完全平方公式的特征判断即可求出m的值.【解答】解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式,∴2(3﹣m)=±10解得:m=﹣2或8.故答案为:﹣2或8.18.【考点】一元一次不等式的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.注意当x的系数含有字母时要分情况讨论.【解答】解:不等式ax+3≥0的解集为:(1)a>0时,x≥﹣,正整数解一定有无数个.故不满足条件.(2)a=0时,无论x取何值,不等式恒成立;(3)当a<0时,x≤﹣,则3≤﹣<4,解得﹣1≤a<﹣.故a的取值范围是﹣1≤a<﹣.19.【考点】三角形内角和定理.【分析】由∠ABC=42°,∠A=60°,根据三角形内角和等于180°,可得∠ACB的度数,又因为∠ABC、∠ACB的平分线分别为BE、CD,所以可以求得∠FBC和∠FCB的度数,从而求得∠BFC的度数.【解答】解:∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°﹣42°﹣60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD.∴∠FBC=,∠FCB=.又∵∠FBC+∠FCB+∠BFC=180°.∴∠BFC=180°﹣21°﹣39°=120°.故答案为:120°.20.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×20=10cm2,∴S△BCE=S△ABC=×20=10cm2,∵点F是CE的中点,∴S△BEF=S△BCE=×10=5cm2.故答案为:5.三、解答题21.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先去分母,然后去括号,移项合并,系数化为1,即可求得答案.注意系数化1时,因为系数是﹣1,所以不等号的方向要发生改变,在数轴上表示时:注意此题为空心点,方向向左.【解答】解:去分母,得x﹣6>2(x﹣2).去括号,得x﹣6>2x﹣4,移项,得x﹣2x>﹣4+6,合并同类项,得﹣x>2,系数化为1,得x<﹣2,这个不等式的解集在数轴上表示如下图所示.22.【考点】因式分解的应用.【分析】首先把代数式a3b﹣2a2b2+ab3分解因式,然后尽可能变为和a﹣b、ab相关的形式,然后代入已知数值即可求出结果.【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2而a﹣b=5,ab=3,∴a3b﹣2a2b2+ab3=3×25=75.23.【考点】三角形三边关系;绝对值;整式的加减.【分析】根据三角形的三边关系得出a+b>c,a+c>b,b+c>a,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)﹣a|+|b﹣(c+a)|﹣|c﹣(a+b)|﹣|(a+c)﹣b|=b+c﹣a+a+c﹣b﹣a﹣b+c+b﹣a﹣c=2c﹣2a.24.【考点】平行线的判定与性质.【分析】根据平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系,分别分析得出即可.【解答】解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等),∴∠1=∠DGF,∴BD∥CE,(同位角相等,两直线平行),∴∠3+∠C=180°,(两直线平行,同旁内角互补),又∵∠3=∠4(已知)∴∠4+∠C=180°∴DF∥AC(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等).故答案为:(对顶角相等)、(同位角相等,两直线平行)、(两直线平行,同旁内角互补)、DF、AC、(两直线平行,内错角相等).25.【考点】三角形的角平分线、中线和高.【分析】(1)根据三角形内角和定理得∠BAC=180°﹣∠B﹣∠C=80°,然后根据角平分线定义得∠BAE=∠BAC=40°;(2)由于AD⊥BC,则∠ADE=90°,根据三角形外角性质得∠ADE=∠B+∠BAD,所以∠BAD=90°﹣∠B=20°,然后利用∠DAE=∠BAE﹣∠BAD进行计算;(3)根据三角形内角和定理得∠BAC=180°﹣∠B﹣∠C,再根据角平分线定义得∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),加上∠ADE=∠B+∠BAD=90°,则∠BAD=90°﹣∠B,然后利用角的和差得∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),即∠DAE的度数等于∠B与∠C差的一半.【解答】解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(3)能.∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=×40°=20°.26.【考点】整式的混合运算—化简求值;有理数的混合运算.【分析】(1)根据已知展开,再求出即可;(2)根据已知展开,再算乘法,合并同类项,变形后代入求出即可.【解答】解:(1)原式=﹣2×5﹣3×4=﹣22;(2)原式=(a+1)(a﹣1)﹣3a(a﹣2)=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,∵a2﹣3a+1=0,∴a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1.27.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A 型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.【解答】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得:,解得:;答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元;(2)设购进A型计算器a台,则购进B台计算器:(70﹣a)台,则30a+40(70﹣a)≤2500,解得:a≥30,答:最少需要购进A型号的计算器30台.冀教版数学七年级下册期末测试题(三)(时间:120分钟分值:120分)一、选择题(本题共10小题,每小题3分,共30分)1.如图所示,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DC→CA→AB→BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体()A.转过90°B.转过180°C.转过270°D.转过360°2.下列条件:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B-∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个(第6题图)(第8题图)3.如图所示,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30°B.40°C.50°D.60°4.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为()A.36°B.72°C.108°D.144°5.把14 cm 长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么 ( )A.有1种截法B.有2种截法C.有3种截法D.有4种截法6.下列运算正确的是() A.1243a a a =⋅ B.()9633222b a b a -=- C.633a a a ÷= D. ()222b a b a +=+7知3,5=-=+xy y x 则22y x +=()A. 25. B 25- C 19 D 、19- 8.计算()()2016201522-+-所得结果()A. 20152- B. 20152C. 1D. 29. 若79,43==yx,则yx 23-的值为()A .74 B .47 C .3- D .72 10.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是() A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8一.填空题(本题共6小题,每题4分,共24分) 11.若622=-n m ,且3=-n m ,则=+n m 12.方程()()()()32521841x x x x +--+-=的解是______13.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是__________ 14.若13x x-=,则221x x +=15.若代数式232x x ++可以表示为2(x 1)(x 1)b a -+-+的形式,则a b += ________ 16. 如图所示,将纸片△ABC 沿DE 折叠,点A 落在点A'处,已知∠1+∠2=100°,则∠A 的大小等于 度.三.解答题(共7题,共66分)17(本题8分)计算下列各式: (1)()()222226633m n m n m m --÷-(2)()()()()233232222x y x xy y x ÷-+-⋅18(本题8分)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中1a =.19(本题8分).已知751812,,1,1y y y x x x y x n m n nm =⋅=⋅>>----,求n m ,的值20.(本题10分)(1)若0352=-+y x ,求yx 324⋅的值 (2)已知2x -y =10,求()()()222x yx y 2y x y 4y ⎡⎤+--+-÷⎣⎦的值21.(10分)(1)如图(1)所示,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B ,C.△ABC 中,∠A =30°,则∠ABC +∠ACB = 度,∠XBC +∠XCB=度;(2)如图(2)所示,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(12分)如图所示,武汉有三个车站A,B,C成三角形,一辆公共汽车从B站前往C站. (1)当汽车运动到点D点时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段呢?在△ABC中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?(第22题图)(第23题图)23.(10分)(1)如图所示,有两根竹竿AB,DB靠在墙角上,并与墙角FCE形成一定的角度,测得∠CAB,∠CDB的度数分别为α,β.用含有α,β的代数式表示∠DBF和∠ABD的度数.(2)小明、小芳和小兵三位同学同时测量△ABC的三边长,小明说:“三角形的周长是11”,小芳说:“有一条边长为4”,小兵说:“三条边的长度是三个不同的整数”.三边的长度分别是多少?参考答案:一.选择题:1.D(解析:管理员正面朝前行走,转过的角的度数和正好为三角形的外角和360°.)2.D(解析:①因为∠A +∠B =∠C ,则2∠C =180°,∠C =90°,所以△ABC 是直角三角形;②因为∠A ∶∠B ∶∠C =1∶2∶3,设∠A =x ,则x +2x +3x =180°,x =30°,∠C =30°×3=90°,所以△ABC 是直角三角形;③因为∠A =90°-∠B ,所以∠A +∠B =90°,则∠C =180°-90°=90°,所以△ABC 是直角三角形;④因为∠A =∠B -∠C ,所以∠C +∠A =∠B ,又∠A +∠B +∠C =180°,2∠B =180°,解得∠B =90°,△ABC 是直角三角形.能确定△ABC 是直角三角形的有①②③④,共4个.)3.B(解析:因为△ABC 中,∠A =100°,∠B =40°,所以∠C =180°-∠A -∠B =180°-100°-40°=40°.)4.C(解析:因为∠A +∠B +∠C =180°,所以2(∠A +∠B +∠C )=360°,因为2(∠A +∠C )=3∠B ,所以∠B =72°,所以∠B 的外角度数是180°-∠B =108°.)5.D (解析:根据三角形的三边关系,两边之和大于第三边,最短的边长是1时,不成立;当最短的边长是2时,三边长是2,6,6;当最短的边长是3时,三边长是3,5,6;当最短的边长是4时,三边长是4,4,6和4,5,5.最短的边长一定不能大于4.综上可知有2,6,6;3,5,6;4,4,6和4,5,5,共4种截法.)6.答案:解析:因为347a a a ⋅=,故A 选项错误;因为()3236928a ba b -=-,故B 选项错误;因为633a a a ÷=,故C 选项正确;因为()2222a b a ab b +=++,故D 选项错误。
冀教版七年级数学下册期末考试试题及答案冀教版七年级数学下册期末考试试卷一、单选题1.已知a<b,则下列不等式中不正确的是()A.2+a<2+bB.a-5<b-5C.-2a<-2bD.ab<32.下列运算中,计算结果正确的是()A.3a^2·a^3=3a^6B.(2a^2)^3·(-ab)=-8a^7bC.5x^4-x^2=4x^2D.x^2÷x^2=13.把代数式x^3-2x^2+x因式分解,结果是()A.x^2(x-2)+xB.x(x^2-2x)C.x(x-1)^2D.x(x+1)(x-1)4.方程组xy=32,x+y-4的解是()A.x=-3y=-2B.x=6y=4C.x=2y=3D.x=3y=25.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°6.不等式组A.1+3x≤75x-2>3B.1+3x≤75x-2<3C.1+3x≥75x-2>3D.1+3x≥75x-2<37.如图,在△ABC中,点D在边BA的延长线上,∠ABC的平分线和∠XXX的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M的大小为()A.20°B.25°C.30°D.35°8.不等式3x-2x-7+1<22的负整数解有()A.1个B.2个C.3个D.4个9.当n为自然数时,(n+1)^2-(n-3)^2一定能被下列哪个数整除()A.5B.6C.7D.810.已知三角形的一边长是6 cm,这条边上的高是(x+4)cm,要使这个三角形的面积不大于30 cm^2,则x的取值范围是()A.x>6B.x≤6C.x≥-4D.-4<x≤611.如图,将△XXX沿射线BC的方向移动,使点B移动到点C,得到△DCE,连接AE.若△ABC的面积为2,则△XXX的面积为()A.2B.4C.8D.1612.若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<20,则这样的三角形有()A.2个B.3个C.4个D.5个13.已知a+b=-1,则3a^2+3b^2+6ab-4的值是()A.1B.-7C.-3D.-114.关于x,y的方程组A.-12x+y=mx+2=5m的解满足x+y<6,则m的最小整数值是()B.1C.2D.2515.如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是多少?答案:D。
2019—2020第二学期七年级数学期末测试卷二1.把58000表示成a ×10n (其中1≤a ≤10,n 为整数)的形式,则n=( ) A .-4B .2C .3D .42.如图,∠3的同位角是( ) A .∠1B .∠2C .∠BD .∠C3.下列等式从左到右的变形是因式分解的是( ) A .12a2b=3a•4ab B .(x+3)(x-3)=x 2-9 C .ax-ay=a (x-y )D .4x 2+8x-1=4x (x+2)-14.如图,已知直线AB 与CD 平行,直线EF 与AB ,CD 分别交于点E ,F ,若∠1=125°, 则∠2=( ) A .65°B .55°C .50°D .45°5.下列各式中,计算结果为a 8的是( ) A .a 4+a 4B .a 16÷a 2C .a 4•a 4D .(-2a 4)26.若一个三角形两边长分别是5cm 和8cm ,则第三边长可能是( ) A .14cm B .13cmC .10cmD .-3cm7.如图是测量嘉琪跳远成绩的示意图,直线l 是起跳线,以下线段的长度能作为嘉琪跳远成绩的是( )A .BPB .CPC .APD .AO8.解方程组 ⎩⎨⎧=-=+5341043n m n m ,如果用加减消元法消去n ,那么下列方法可行的是( )A .①×4+②×3B .①×4-②×3C .①×3-②×4D .①×3+②×49.一副三角板如图放置,点D 在CB 的延长线上,EF ∥CD ,∠C=∠EDF=90°,∠A=45°,∠EFD=30°,则∠DFB=( ) A .15°B .20°C .25°D .30°10.下列命题:①对顶角相等;②内错角相等;③两条平行线之间的距离处处相等; ④有且只有一条直线垂直于已知直线.其中是假命题的有( ) A .①②B .②④C .②③D .③④11.如图,已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,则下列不等式中不正确的是( )A .c <b <aB .ac >abC .cb >abD .c+b <a+b12.已知x 2-4x-1=0,则代数式2x (x-3)-(x-1)2+3的值为( ) A .3B .2C .1D .-113.若关于x 的不等式组 ⎩⎨⎧>->-04)1(2a x x的解集为x >3,那么a 的取值范围是( ) A .a >3B .a <3C .a≥3D .a≤314.如(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A .-3B .3C .0D .115.在锐角三角形ABC 中,∠A=50°,则∠B 的范围是( ) A .0°<∠B <90° B .40°<∠B <130° C .40°≤∠B≤90°D .40°<∠B <90°16.如图,在长方形ABCD 中,AB=5,第一次平移将长方形ABCD 沿AB 方向向右平移4个单位长度,得到长方形A 1B 1C 1D 1,第二次平移将长方形A 1B 1C 1D 1沿A 1B 1方向向右平移4个单位长度,得到长方形A 2B 2C 2D 2,……,第n 次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1方向向右平移4个单位长度,得到长方形A n B n C n D n (n >2).若AB n 的长为45,则n=( )A .10B .11C .16D .9二.填空颞(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.已知关于x ,y 的二元一次方程mx-2y=2的一组解为 ⎩⎨⎧==53y x ,则m= _________18.若有理数a ,b 满足|a+ |+b2=0,则ab= _________19.分解因式:x 3y-2x 2y+xy= _________20.在如图所示的长方形中放置了8个形状、大小都相同的小长方形,则图中阴影部分的面积为_________三.解答题(本大题共6个小题,共46分解答应写出相应的文字说明或解题步骤) 21.计算:(1)解方程组: ⎩⎨⎧=+=-123242n m n m(2)解不等式组 ⎩⎨⎧-≥--≥-xx x x 36273)1(2解集在数轴上表示出来.(3)已知:(x+1)(x+2)- ( )=6x+2,请计算 ( )内应填写的式子.22.在多项式的乘法公式中,完全平方公式是其中重要的一个.(1)请你补全完全平方公式的推导过程:(a+b)2=(a+b)(a+b)=a2+ ab+ ab+b2=a2+ 2ab+b2(2)如图,将边长为a+b的正方形分割成I,Ⅱ,Ⅲ,Ⅳ四部分,请用不同的方法分别表示出这个正方形的面积,并结合图形给出完全平方公式的几何解释.23.请同学们观察以下三个等式,并结合这些等式,回答下列问题.(1)请你再写出另外两个符合上述规律的算式:(2)观察上述算式,我们发现:如果设两个连续奇数分别为2n-1和2n+1(其中n为正整数),则它们的平方差是8的倍数.请用含n的式子说明上述规律的正确性.24.如图,AD,AE和AF分别是△ABC的高、角平分线和中线.(1)对于下面的五个结论:①BC=2BF;②∠CAE= ∠CAB;③BE=CE;④AD⊥BC;⑤S△AFB=S△AFC.其中错误的是_________(只填序号);(2)若∠C=70°,∠ABC=28°,求∠DAE的度数.25.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?26.问题解决:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:解:过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,…请你补充完成嘉淇的解答过程:问题迁移:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.。
冀教版七年级数学下册期末测试卷及答案冀教版七年级数学下册期末测试卷一、选择题(每题3分,共36分)1.二元一次方程2x+y=9的正整数解有()个。
A。
4 B。
5 C。
6 D。
72.关于x、y的方程组 { 2x+4y=2a+10.x+y=a },那么y是()。
A。
5 B。
2a+5 C。
a-5 D。
2a3.若a>b,则下列不等式中变形正确的是()。
A。
5a<5b B。
ma>mb C。
-a-6>-b-6 D。
+3>-34.不等式组 { 2x-1≥5.8-4x≤π } 的解集在数轴上表示为()。
图略)5.若以x为未知数方程x-3a+9=0的根是负数,则()。
A。
(a-2)(a-3)>0 B。
(a-2)(a-3)<0 C。
(a-4)(a-5)>0 D。
(a-4)(a-5)<06.用加减法解方程组 { 3x-2y=3(1)。
4x+y=15(2) } 时,如果消去y,最简捷的方法是()。
A。
(1)×4-(2)×3 B。
(2)×2+(1) C。
(2)×2-(1) D。
(1)×4+(2)×37.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD 的度数等于()。
图略)A。
60° B。
50° C。
45° D。
40°8.如图,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=36°,则∠2的度数为()。
图略)A。
24° B。
28° C。
30° D。
32°9.如图,下列能判定AB∥CD的条件有()个。
图略)A。
1 B。
2 C。
3 D。
410.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()。
A。
3cm、4cm、5cm B。
7cm、8cm、15cm C。
3cm、12cm、20cm D。
5cm、5cm、11cm11.代数式(-4a)的值是()。
冀教版七年级数学下册期末测试卷一选择题(每题3分,共36分)1 .二元一次方程2x+y=9的正整数解有( )个A 4 卜旧5 C 6 “D 7x y a2 .关于x 、y 的方程组,那么y 是()A 5 B 2a+5 C a-5 D 2a2x 4y 2a 103 .若a>b,则下列不等式中变形正确的是()A 5a < 5b B m 2a>n 2b C -a-6 >-b-6 D — +3> — +3222x 1 54 .不等式组的解集在数轴上表示为(8 4x 0o 1 W>0 1 fv A BCD5 .若以x 为未知数方程x-3a+9=0的根是负数,则( )15 .将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于 3个,通过以上内容可知共有 个小朋友分 个橘子16 .计算 (—x 2) 3?x 2=.17 .若4x 2 - 2kx+25是关于x 的完全平方式,则常数 k=. 18 .若 4x 2+kx+25=(2x-5) 2,那么 k 的值是A (a-2 ) (a-3) >0B (a-2 ) ( a-3) v 0C (a-4) ( a-5 ) > 0D (a-4 ) ( a-5 ) v 06.用加减法解方程组3x 4xA. (1) X4 — (2) X32y 3 (1) y时,如果消去y,最简捷的方法是()y 15 (2)B. (2) X2+(1) C . (2) X2—(1)D. (1) X 4+(2) X7 .如图,AB// CD ,/C= 80°, /CAD= 60°,贝U/ BAD 的度数等于( )A 60°8 .如图,将含有300角的三角板的直角顶点放在相互平行的两条直线其中一条上,若/ B 50° C 45° D 40°1=360,则/ 2的度数为( )A 24° B 28° C 30° D 32 )个.(1) / B+Z BCD=180 ; ( 2) / 1 = /2;(3) /3=/4; (4)A. 3cm> 4cms 5cmB. 7cms 8cm> 15cm11 .代数式(-4a) 2的值是( )A 16aC. 3cnr 12cmK 20cm B 4a 29 —4a 2D. 5cm> 5cnr 11cm D 16a 212 .下列各式正确的是()A (a+b) 2=a 2+b 2B (x+6) (x —6) =x 2—6 C(2x+3) 2=2x 2- 12x+9D (2x T ) 2=4x 2 - 4x+1填空题(每题3分,共36分)13 .关于x, y 的二元一次方程组4x 3y k的解满足x=y,贝U k= ________2x 3y 5x b 14.关于x 的不等式组x a2a 的解集为-3<x<3,则a=2b ,b= _______9.如图,下列能判定 AB// CD 的条件有( / B=Z 5. A 1 B 2 C 3 D 410.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是(19.因式分解:吊-n 2+mc+nc=.27.在^ABC中,AB=AC AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长ax by 220.在解关于x、y的方程组时,老师告诉同学们正确的解是cx 7 y 8x 2而得到的解为,则a+b+c的值y 221.已知a、b、c 为△ ABC的三边,则化简|a+b+c| - |a - b - c| - |a - b+c| - |a+b - c|=22.若(x+3)(2x-a)的乘积中,一次项系数为- 2,贝U a=23.如图,根据三角形的有关知识可知图中的x的值是.24.如图,将一长方形的纸片ABCtB AF折叠,点B到达点B'的位置,已知AB' // BD, / ADB=20,则/ BAF=5x 1 3( x 1)26.因式分解:(1)3a 2- 12(2)x 3y- 2x2y2+xy3(3)(x+1)(x+3)+1 (4)-4xx 3,小明由于看错了系数c,因y 22x-1 5x 1 25.解不等式组 3 2 1,并将解集在数轴上表示出来3+8x2y-4xy 2三解答题(本大题有5个小题,共48分)28.如图,已知DE// BC, CD是/ ACB的平分线,/ B=700, / ACB=50,求/ EDC^/ BDC的度数29.已知用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1) 1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.30.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式; (4).运用你所得到的公式,计算下列各题:①10.2X9.8,②(2m+n- p)(2m- n+p)27.在^ABC中,AB=AC AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长冀教版七年级数学下册期末测试卷答案1.A2.A3.D4.C5.C6.B7.D8.A9.C 10.A 11.D 12.D1.11 14.-1 , 1 15.7 , 37 16.-x 8 17. ±10 18. 20 19. (m+n)(m-n+c)20.7 21.0 22. 8 23. 60 24. 55 025.解不等式<1,得:x>- 1,解不等式5x - 1 < 3 (x+1),得:x<2,则不等式组的解集为-1Wxv2,将不等式组的解集表示在数轴上如下:।J . 「n o ; g26.(1)3a 2-12=3(a+2)(a-2) (2)x 3y - 2x2y2+xy3=xy(x-y)(3)(x+1)(x+3)+1=(x+2) 2 (4)-4x 3+8x2y-4xy 2=-4x(x-y)27.设AB= AC= 2x, BC= y, ,•点D是AC的中点,,AD= CD=AC =x AC边上的中线把三角形的周长分为24cm和30cm的两部分,AB= AC= 2x= 16, BG= 22,能构成三角形;②,解得,AB= AC= 2x=20, BG= 14,能构成三角形,即:三角形的各边是16, 16, 22或20, 20, 或20cm, 20cm, 14cm.28. B: .. AC由勺平分线,Z ACB=50°, . BCD=25°, DE// BC, . EDG=Z DCB= 25°,Z BDE-tZ B= 180°, •.-/ B=70°, . BD氏110°, . BDG= / BD曰 / EDG= 1100 —25°= BDG= 85°.14. 16cm, 16cm, 22cmZACB=29.分析:(1)根据“用3辆A型车和2辆B型车载满货物一次可运货17吨” “用2辆A型车和3辆B型车载满货物一次可运货18吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=35,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用 A 型车每辆需租金200 元/次,B型车每辆需租金240元/次,分别求出租车费用即可.解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=35, ... a=a、b都是正整数,3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3);A型车每辆需租金200元/次,B型车每辆需租金240元/次,,方案一需租金:9X 200+2X 240 = 2280 (元),方案二需租金:5X 200+5X 240=2200 (元),方案三需租金:1X 200+8 X 240 = 2120 (元),/ 2280>2200 >2120, •••最省钱的租车方案是方案三:A型车1辆,B型车8辆,最少租车费为2120元.30.分析:( 1 ) 利用正方形的面积公式就可求出;( 2) 仔细观察图形就会知道长,宽,由面积公式就可求出面积;( 3 )建立等式就可得出;( 4 )利用平方差公式就可方便简单的计算.解:(1)利用正方形的面积公式可知:阴影部分的面积= a2-b2;故答案为:a2-b2; (2)由图可知矩形的宽是a - b,长是a+b,所以面积是(a+b) (a-b);故答案为:a- b, a+b, (a+b) (a-b) ; (3) (a+b) (a-b) =a2- b2 (等式两边交换位置也可) ;故答案为:(a+b) (a-b) =a2-b2; (4)①解:原式=(10+0.2) x (10—0.2 ) = 102- 0.2 2= 100- 0.04 =99.96 ;②解:原式=[2m+ (n — p) ] ?[2m — ( n — p) ] = (2m)2— ( n —p) 2 =4m2 - n2+2np- p2.。
冀教版七年级下册数学期末试卷一、选择题:(本大题共14个小题,1~6小题每题3分,7~14小题每题2分,共34分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角都互补C.直角的补角仍然是直角D.对顶角相等2.(3分)目前世界上强大的显微镜的观测极限为0.0000000027mm,数据0.0000000027用科学记数法表示为()A.2.7×10﹣10B.2.7×10﹣9C.﹣2.7×1010D.﹣2.7×109 3.(3分)下列图形中,能确定∠1=∠2的是()A.B.C.D.4.(3分)下列因式分解正确的是()A.a(a﹣b)﹣b(a﹣b)=(a﹣b)(a+b)B.a2﹣9b2=(a﹣3b)2C.a2+4ab+4b2=(a+2b)2D.a2﹣ab+a=a(a﹣b)5.(3分)已知是方程2x﹣ay=3的一组解,那么a的值为()A.﹣1B.3C.﹣3D.﹣156.(3分)如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD7.(2分)已知三角形三边长分别为3,x,10,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.78.(2分)对不等式,给出了以下解答:①去分母,得4(x﹣1)﹣(x+3)>8;②去括号,得4x﹣4﹣x+3>8③移项、合并同类项,得3x>9;④两边都除以3,得x>3其中错误开始的一步是()A.①B.②C.③D.④9.(2分)当n为自然数时,(n+1)2﹣(n﹣3)2一定能被下列哪个数整除()A.5B.6C.7D.810.(2分)对于任意的底数a,b,当n是正整数时,其中,第二步变形的依据是()A.乘法交换律与结合律B.乘法交换律C.乘法结合律D.乘方的定义11.(2分)如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CDB.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BCD.由AD∥BC得到∠3=∠412.(2分)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.13.(2分)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°14.(2分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°二、填空题:(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)15.(3分)计算:(﹣a2b)2=.16.(3分)长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.17.(3分)有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.18.(3分)若不等式组的解集是﹣1<x<1,则(a+b)2011=.19.(3分)如图,有三种卡片,其中边长为a的正方形卡片1张,长为a、宽为b的长方形卡片4张,边长为b的正方形卡片4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为.20.(3分)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2;使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,….按此规律,要使得到的三角形的面积超过2021,最少经过次操作.三、解答题:(本大题共6个小题,共48分.解答应写出文字说明、证明过程或演算步骤)21.(8分)计算:(1)解不等式组:,并把解集表示在数轴上;(2)因式分解:﹣8ax2+16axy﹣8ay2.22.(7分)对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.已知T(1,﹣1)=﹣2,T(﹣3,2)=4.(1)求a,b的值;(2)利用(1)的结果化简求值:(a﹣b)2﹣(a+2b)•(a﹣2b)+2a(1+b).23.(8分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)(1)求∠CBD的度数.(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.24.(8分)发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°(1)如图1,若AD⊥BC于点D,求∠DAE的度数;(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF =°.(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC 的角平分线,若P为线段AE上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF 与∠B,∠C的关系,并说明理由.25.(8分)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.价格/类型A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?26.(9分)嘉嘉同学动手剪了如图①所示的正方形与长方形纸片若干张.问题发现(1)他用1张Ⅰ型、1张Ⅱ型和2张Ⅲ型卡片拼出一个新的图形(如图②).根据图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为a+2b,宽为a+b的大长方形,那么需要Ⅱ型卡片张,Ⅲ型卡片张.拓展探究(3)若a+b=5,ab=6,求a2+b2的值;(4)当他拼成如图③所示的长方形时,根据图形的面积,可把多项式a2+3ab+2b2分解因式,其结果是.解决问题(5)请你依照嘉嘉的方法,画出图形并利用拼图分解因式:a2+5ab+6b2=.参考答案与试题解析一、选择题:(本大题共14个小题,1~6小题每题3分,7~14小题每题2分,共34分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据线段定理、平行线的性质、对顶角和直角的性质判断即可.【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、直角的补角仍然是直角,是真命题;D、对顶角相等,是真命题;故选:B.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000027=2.7×10﹣9,故选:B.3.【分析】分别根据对顶角相等、平行线的性质、三角形外角的性质、直角三角形的两个锐角互余和余角的性质对四个选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项符合题意;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项不符合题意;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项不符合题意;D、若已知三角形是直角三角形,则由直角三角形两锐角互余和同角的余角相等可判断出∠1=∠2,故本选项不符合题意.故选:A.4.【分析】直接利用公式法以及提取公因式法分别分解因式得出答案.【解答】解:A、a(a﹣b)﹣b(a﹣b)=(a﹣b)2,故此选项错误;B、a2﹣9b2=(a﹣3b)(a+3b),故此选项错误;C、a2+4ab+4b2=(a+2b)2,正确;D、a2﹣ab+a=a(a﹣b+1),故此选项错误;故选:C.5.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.【解答】解:把代入方程2x﹣ay=3,得2﹣a=3,解得a=﹣1.故选:A.6.【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【解答】解:由图可得,△ABC中AC边上的高线是BD,故选:D.7.【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣3=7,10+3=13,∴7<x<13,∵若x为正整数,∴x的可能取值是8,9,10,11,12五个,故这样的三角形共有5个.故选:C.8.【分析】去分母注意不要漏乘不含分母的项1,去括号注意括号前面的符号,移项也注意变号,不等式两边同时乘以或除以一个负数注意不等号的改变,利用这些即可求解.【解答】解:依题意得,②中应该4x﹣4﹣x﹣3>8,∴错误的是②.故选:B.9.【分析】先将代数式(n+1)2﹣(n﹣3)2分解因式,进而可求解.【解答】解:(n+1)2﹣(n﹣3)2=(n+1+n﹣3)(n+1﹣n+3)=4(2n﹣2)=8(n﹣1),∴当n为自然数时,(n+1)2﹣(n﹣3)2一定能被8整除,故选:D.10.【分析】根据题目中的运算过程,可以发现第二步的依据是乘法交换律和结合律.【解答】解:由题意可得,第二步变形的依据是乘法交换律和结合律,故选:A.11.【分析】根据平行线的性质与判定,逐一判定.【解答】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.12.【分析】根据题意画出图形即可.【解答】解:根据题意可得图形,故选:C.13.【分析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.【解答】解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选:C.14.【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.二、填空题:(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)15.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(﹣a2b)2=a4b2.故答案为:a4b2.16.【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【解答】解:∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.17.【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=600,4(x+y+z)=600,∴x+y+z=150.∴三种商品各一件共需150元钱.18.【分析】解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2011次方,可得最终答案.【解答】解:由不等式得x>a+2,x<b,因为﹣1<x<1,∴a+2=﹣1,b=1所以a=﹣3,b=2,因此(a+b)2011=(﹣1)2011=﹣1,故答案为:﹣1.19.【分析】先计算出这9张卡片的总面积,其和为一完全平方式,因式分解即可求得大正方形的边长.【解答】解:由题可知,9张卡片总面积为a2+4ab+4b2,∵a2+4ab+4b2=(a+2b)2,∴大正方形边长为a+2b.故答案为:a+2b.20.【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:连接A1C,∵AB=A1B,∴△ABC与△A1BC的面积相等,∵△ABC面积为1,∴S△A1BC=1.∵BB1=2BC,∴S△A1B1B=2S△A1BC=2,同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2021,最少经过4次操作.故答案为:4.三、解答题:(本大题共6个小题,共48分.解答应写出文字说明、证明过程或演算步骤)21.【分析】(1)根据一元一次不等式组的解法求解即可;(2)先提公因式﹣8a,再利用完全平方公式即可进行因式分解.【解答】解:(1)解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集为:﹣2≤x<3.在数轴上表示为:(2)原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.22.【分析】(1)根据新定义运算法则列出方程组即可求出a与b的值.(2)根据整式的加减运算以及乘除运算进行化简,然后将a与b的值代入原式即可求出答案.【解答】解:(1)由T(1,﹣1)=﹣2,T(﹣3,2)=4,得:a﹣2b﹣1=﹣2,﹣3a+4b﹣1=4,即,解得:.(2)原式=a2﹣2ab+b2﹣(a2﹣4b2)+2a+2ab=a2﹣2ab+b2﹣a2+4b2+2a+2ab=2a+5b2.当a=﹣3,b=﹣1时,原式=2×(﹣3)+5×(﹣1)2=﹣1.23.【分析】(1)由平行线的性质可求得∠ABN,再根据角平分线的定义和整体思想可求得∠CBD;(2)由平行线的性质可得∠APB=∠PBN,∠ADB=∠DBN,再由角平分线的定义可求得结论;(3)由平行线的性质可得到∠ACB=∠CBN=60°+∠DBN,结合条件可得到∠DBN=∠ABC,且∠ABC+∠DBN=60°,可求得∠ABC的度数.【解答】解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣60°=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°;(2)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(3)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°.24.【分析】(1)利用三角形内角和定理和已知条件直接计算即可;(2)根据平行线的性质可得结论;(3)如图2,同理可得结论.【解答】解:(1)如图1,∵∠B=72°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠EAC=∠BAC=36°,∴∠AED=∠C+∠EAC=36°+36°=72°又∵AD⊥BC于D,∴∠ADE=90°,∴∠DAE=90°﹣∠AED=90°﹣72°=18°.(2)如图2,∵PF⊥BC,AD⊥BC,∴PF∥AD,∴∠EPF=∠DAE=18°;故答案为:18;(3)如图2,∠EPF与∠B,∠C的关系:∠EPF=;理由是:△ABC中,∠BAC=180°﹣∠B﹣∠C,又∵AE平分∠BAC,∴∠EAC=∠BAC=,∴∠AED=∠C+∠EAC=90°+﹣∠B,又∵AD⊥BC于D,∴∠ADE=90°,∴∠DAE=90°﹣∠AED=90°﹣(90°+﹣∠B)=,∵PF⊥BC,AD⊥BC,∴PF∥AD,∴∠EPF=∠DAE=.25.【分析】(1)首先设购进A种新型节能台灯x盏,B种新型节能台灯y盏,由题意可得两个等量关系:①A、B两种新型节能台灯共50盏,②这批台灯共用去2500元,根据等量关系列出方程组,解方程组可得答案;(2)设购进B种新型节能台灯a盏,则购进A种新型节能台灯(50﹣a)盏,由题意可得不等关系:a盏B种新型节能台灯的利润+(50﹣a)盏B种新型节能台灯的利润≥1400元,根据不等关系列出不等式,解可得答案.【解答】解:(1)设购进A种新型节能台灯x盏,B种新型节能台灯y盏,由题意得:,解得:,答:购进A型节能台灯30盏,B型节能台灯20盏;(2)设购进B种新型节能台灯a盏,则购进A种新型节能台灯(50﹣a)盏,由题意得:(100﹣65)a+(60﹣40)(50﹣a)≥1400,解得:a≥26,∵a表示整数,∴至少需购进B种台灯27盏,答:至少需购进B种台灯27盏.26.【分析】(1)通过观察图形和面积计算可得:(a+b)2=a2+2ab+b2;(2)由面积计算(a+2b)(a+b)=a2+3ab+2b2可得共需Ⅰ型卡片1张,Ⅱ型卡片2张,Ⅲ型卡片3张;(3)由(a+b)2=a2+2ab+b2可得,a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13;(4)由图形可得a2+3ab+2b2=(a+b)(a+2b)(5)由拼图(如图)可得a2+5ab+6b2=(a+2b)(a+3b).【解答】(1)由题意得(a+b)2=a2+2ab+b2;(2)由面积计算(a+2b)(a+b)=a2+3ab+2b2可得共需Ⅱ型卡片2张,Ⅲ型卡片3张;(3)∵(a+b)2=a2+2ab+b2可得,a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13;(4)由图形可得a2+3ab+2b=(a+b)(a+2b);(5)由拼图(如图)可得a2+5ab+6b2=(a+2b)(a+3b).。
冀教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,A(8,0)、B(0,6)分别是平面直解坐标系xOy坐标轴上的点,经过点O且与AB相切的动圆与x轴、y轴分别相交与点P、Q,则线段PQ长度的最小值是()A.4B.5C.4.6D.4.82、不等式组的解集在数轴上可表示为()A. B. C. D.3、方程3x+y=4的解是()A. B. C. D.4、若a>b,则下列式子正确的是()A.a﹣4>b﹣3B. a< bC.3+2a>3+2bD.﹣3a>﹣3b5、下列运算正确的是()A.-3(x-1)=-3x-1B.-3(x-1)=-3x+1C.-3 (x-1)=-3x-3D.-3 (x-1)=-3x+36、如图,PA是⊙O的切线,A为切点,PO的延长线交⊙O于点B,若∠B=32°,则∠P的度数为()A.24ºB.26ºC.28ºD.32º7、下列计算正确的是()A.3m 2•m=3m 3B.(2m)3=6m 3C.(a+b)2=a 2+b 2D.3mn﹣3n=m8、如图,已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD;②AD∥BC;③∠B=∠D:④∠D=∠ACB.正确的有()A.1个B.2个C.3个D.4个9、如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④10、下列计算正确的是()A.a 3•a 2=a 6B.(-3a 2)3=-27a 6C.(a-b)2=a 2-b2 D.2a+3a=5a 211、以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边可以画出三角形的个数为( )A.1B.2C.3D.412、利用一张左、右两边已经破损的长方形纸片ABCD折纸,如图,将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,若∠AED′=46°,则∠EFB的度数为()A.67°B.64°C.88°D.46°13、如图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.14、若(x﹣2y)2=x2﹣xy+4y2+M,则M为()A.xyB.﹣xyC.3xyD.﹣3xy15、计算(a3)2•a2的结果是()A.a 8B.a 9C.a 10D.a 11二、填空题(共10题,共计30分)16、若x2+kx﹣15=(x+3)(x+b),则k=________.17、若x2-9=(x-3)(x+a),则a=________.18、已知a+b=8,ab=15,则a2+b2=________.19、因式分解:________.20、已知a,b,c为三角形的三边,且满足,a是整数且a>b,则a的值是________.21、关于,的二元一次方程组的解为,则的值为________22、已知是方程组的解,则a2﹣b2=________.23、已知关于的二元一次方程组的解是,其中的值被盖住了,不过仍能求出,则的值是________.24、如图所示,已知a∥b,∠1=29°,∠2=33°,则∠3=________度.25、如图,在平面直角坐标系中,抛物线可通过平移变换向________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是________.三、解答题(共5题,共计25分)26、解不等式组,并写出该不等式组的所有整数解.27、完成下面的证明:已知:如图,是平分线上一点, BE∥DF交于点,AB∥CD;求证:.证明:∵BE∥DF,∴▲(),∵平分,∴▲;又∵AB∥CD∴▲,().28、已知,如图,AB∥CD,∠ABE=80°,EF平分∠BEC,EF⊥EG,求∠DEG的度数.29、解不等式组,并将它的解集在数轴上表示,然后写出它的所有整数解30、一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、C5、D6、B7、A8、C9、B10、B11、B12、A13、C14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
冀教版七年级数学下册期末测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠DD .∠B=∠E ,∠A=∠D6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.已知15xx+=,则221xx+=________________.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.解不等式组并求出它所有的非负整数解.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、C6、C7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、20°.3、724、235、2或2.56、2或-8三、解答题(本大题共6小题,共72分)x1、12、0,1,2.3、(1)(4,-2);(2)作图略,(3)6.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)20%;(2)6006、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
冀教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列运算正确的是()A. B. C. D.3、解方程组,错误的解法是()A.先将①变形为,再代入②B.先将①变形为,再代入②C.将,消去D.将,消去4、如果是一个完全平方式,那么k的值是()A.6B.±6C.±12D.125、已知△ABC的∠A=60°,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )A.270°B.240°C.200°D.180°6、给出下面个式子:①;②;③;④;⑤,其中不等式有().A. 个B. 个C. 个D. 个7、如图,直线AB∥CD,且AC⊥AD,∠ACD=58°,则∠BAD的度数为()A.29°B.30°C.32°D.58°8、如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是()A.p=﹣5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=﹣1,q=69、下列计算结果正确的是()A. =±6B.(﹣ab 2)3=﹣a 3b 6C.tan45°=D.(x﹣3)2=x 2﹣910、下列命题正确的个数是()①等腰三角形的腰长大于底边长;②三条线段a、b、c,如果a+b>c,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A.0个B.1个C.2个D.3个11、画△ABC中AC边上的高,下列四个画法中正确的是()A. B. C. D.12、如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A.(4,3)B.(2,4)C.(3,1)D.(2,5)13、如图,在梯形ABCD中,AB∥CD,AD=DC=CB,若,则A.130°B.125°C.115°D.50°14、3a=5,9b=10,3a+2b=()A. 50B. ﹣5C. 15D. 27a+b15、已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.2021二、填空题(共10题,共计30分)16、如图,已知AB与CF相交于点E,∠AEF=80°,要使AB∥CD,需要添加的一个条件是________.17、若a>b,则________ ;若a<b,则________。
冀教版七年级数学下册期末试卷(及答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知a, b满足方程组则a+b的值为()A. ﹣4B. 4C. ﹣2D. 22.如图, 直线AB∥CD, ∠C=44°, ∠E为直角, 则∠1等于()A. 132°B. 134°C. 136°D. 138°3.某车间有26名工人, 每人每天可以生产800个螺钉或1000个螺母, 1个螺钉需要配2个螺母, 为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉, 则下面所列方程正确的是()A. 2×1000(26﹣x)=800xB. 1000(13﹣x)=800xC. 1000(26﹣x)=2×800xD. 1000(26﹣x)=800x4. 点C在x轴上方, y轴左侧, 距离x轴2个单位长度, 距离y轴3个单位长度, 则点C的坐标为()A. (2, 3)B. (-2, -3)C. (-3, 2)D. (3, -2)5.点A在数轴上, 点A所对应的数用表示, 且点A到原点的距离等于3, 则a的值为()A. 或1B. 或2C.D. 16.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.若, 则的值为()A. 3B. 6C. 9D. 128.设[x]表示最接近x的整数(x≠n+0.5, n为整数), 则[ ]+[ ]+[ ]+…+[ ]=()A. 132B. 146C. 161D. 6669.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10.已知是二元一次方程组的解, 则的值为A. -1B. 1C. 2D. 3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是__________.2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 若|a|=5, b=﹣2, 且ab>0, 则a+b=________.4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 若方程组, 则的值是________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1.解不等式组:, 并将解集在数轴上表示出来.2. 已知关于x的方程有整数解, 求满足条件的所有整数k的值.3. 如图, 点C, E, F, B在同一直线上, 点A, D在BC异侧, AB∥CD, AE=DF, ∠A=∠D,(1)求证: AB=CD;(2)若AB=CF, ∠B=30°, 求∠D的度数.4. 如图1, △ABD, △ACE都是等边三角形,(1)求证: △ABE≌△ADC;(2)若∠ACD=15°, 求∠AEB的度数;(3)如图2, 当△ABD与△ACE的位置发生变化, 使C、E、D三点在一条直线上, 求证:AC∥BE.5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作, 无人化是自动驾驶的终极目标. 某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场. 今年每辆无人驾驶出租车的改装费用是50万元, 预计明年每辆无人驾驶出租车的改装费用可下降.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.B3.C4.C5.A6.C7、C8、B9、D10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.-22.105°3.-74.-15、24.6.2或-8三、解答题(本大题共6小题, 共72分)1.-7<≤1.数轴见解析.2.k=26, 10, 8, -8.3、(1)略;(2)∠D=75°.4.(1)略(2) ∠AEB=15°(3) 略5.(1)20%;(2)6006、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
PC B A七年级下学期期末数学测试题一、选择题:(本大题共10个小题,每小题分,共20分)1.下列计算错误的是······························· ( )A. 743x x x =⋅B. 632)(x x =C. x x x =÷33D.844216)2(y x xy =- 2.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=600,∠ACB=800,BP 平分∠ABC , CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100 C .1150 D .1207.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8. 下列各式中,与2)1(+-a 相等的是( )A. 12-a B .12+a C. 122+-a a D. 122++a a 9. 如图,已知AB OC ⊥,OD 平分AOC ∠,D 、O 、E 、 三点在同一条直线上,那么AOE ∠等于( ) A. 45B. 50C. 135D. 15510、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。
设改变后耕地面积x 平方千米,林地地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A ⎩⎨⎧⋅==+%25180x y y xB ⎩⎨⎧⋅==+%25180y x y xC ⎩⎨⎧=-=+%25180y x y xD ⎩⎨⎧=-=+%25180x y y x CDOBAE二、填空题:(每小题3分,共30分.) 11.已知| m -2 |+(3-n )2=0,则-n m =。
12.“a 的3倍与4的差不大于1”列出不等式是。
13.在△ABC 中,∠A =90°,∠B -∠C =14°,则∠B =°,∠C =°。
14.一个两位数,十位数字比个位数字大5,,且这个两位数比两个数位上的数字之和的8倍还大5.如果设个位上的数为x ,则可列方程 。
15.不等式2734x x +>+的正整数解是_____. 16.分解因式:3x x -=__________.17.人体内有种细胞的直径为0.000000000000105米,用科学记数法表示这个数为 米。
18.如图,∠1 = 55°,a ∥b , 则∠2 = 度。
19.如果1kx x 2++是一个完全平方式,那么k 的值是 . 20.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= . 三、解答题:(共50分)21.分解因式:(1)x x -3 (2)-2x+x 2+122.计算或化简:(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)23.解方程组:(1)⎩⎨⎧=+-=300342150y x y x(2).先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.24.乘法公式的探究及应用.21 a b1D2A ECB(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+25.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
26.为了保护环境,某企业决定购买10台污水处理设备.现有 A 、B 两种型号的设备,其中经预算,该企业购买设备的资金不高于105万元。
(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,l0年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)七年级下期期末数学测试题一、选择题:1.下列分解因式正确的是 ( )A.x2-x=x(x2-1) B.x2+y2=(x+y)2C.m2+m=m(m2+1) D.x2-1=(x+1)(x-1)2.小明有两根长度分别为3厘米,5厘米的木棒,要选择第三根木棒做成三角形,现有2厘米、4厘米、6厘米、8厘米、10厘米的木棒各一根,则可供小明选用的木棒有()A、2根B、3根C、4根D、5根3. 天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )4.在一次数学竞赛中共有25道题,答对一道得4分,答错或不答扣2分,小明同学想得到不低于80分的成绩那么他至少答对多少道题()A、20道B、21道C、22道D、23道5.△ABC中∠A,∠B,∠C, 三个角度数之比是1:2:3,则这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、无法确定6.如右图,已知∠1=50°,∠2=50°,∠3=100°,那么∠4的度数为()A.40°;B.50°;1 32 4C .80°;D .100°。
7.当x =2时,代数式ax 3+bx +1的值为6,那么当x =-2时,这个式子的值为 ( ) A .6 B .-4 C .5 D .18.如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3x -5y -28=2的一个解,那么a 的值是 ( )A .3B .2 C.-2 D.-39.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .(2a 2+5a)cm 2B .(3a +15)cm 2C .(6a +9)cm 2D .(6a +15)cm 210.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )11.不等式组⎩⎨⎧+-a x x x <<5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a12.下列能用平方差公式计算的式子是A .(a -b )(b -a )B .(-x +1)(x -1)C .(-a -1)(a +1)D .(-x —y )(-x +y )13.已知三元一次方程组⎪⎩⎪⎨⎧=+=+=+543z x z y y x ,则=++z y x ( )A 、5B 、6C 、7D 、814.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-215.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场 16.若使代数式312m -的值在-1和2之间,m 可以取的整数有( ) (A )1个 (B )2个 (C )3个 (D )4个 二、填空题 17.分解因式:(1)a 3-a =(2)3ax 2+6axy +3ay 2 =18.计算:(1)14x 3yz 2·(-10x 2y 3)= (2) (x-2y )2= (3)(5x+2y )(5x-2y )=(4)302112(20053)()33--++--= 19.在等腰△ABC 中,两边长分别是10cm ,13cm ,则它的周长的是 。
20.不等式3x -7<4的正整数解为____________。
21、已知5,7x y =⎧⎨=⎩是方程kx-2y-1=0的解,则k=_____。
22、如图,A B ∥CD ,∠FGD=120°,∠FEB=40°则∠F=b 上.若∠1=40°,则∠2的度数为 . 24.命题“同角的余角相等”的条件结论25.小明拿70元钱去商店为班级购买两种奖品钢笔和笔记本,钢笔的单价是12元,笔记本的单价是8元,由于实际需要钢笔至少买两支,笔记本至少买三个,则他有 种购买方案。
(钱可以有剩余) 26. 观察下列算式:① 1 × 3 - 22= 3 - 4 =-1, ② 2 × 4 - 32 = 8 – 9=-1 ,③ 3 × 5 - 42 = 15 – 16= -1 , ……按以上规律第4个算式为 ;第n (n 是正整数)个算式为 ;(把这个规律用含字母n 的式子表示出来). 27.如果1<x<2,化简│x-1│+│x-2│=________.28.在△ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是_________. 29.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.30.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.三、解答题:31.解二元一次方程组、解不等式或不等式组(1) 4812325x y x y +=-= (2) 22x +≥2123x -+ (3) ⎪⎩⎪⎨⎧-<+≤+3128)2(3x x x xFDC B EA 32.计算: 分解因式: (1)(x+5y )(x+4y )-(x-y )(x+y ) (2)161212+-y y33.DE ∥BC ,CD 是∠ACB 的平分线,∠B =80,∠ACB=500,求∠EDC ,∠CDB34,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|(6分)35\如图1,已知∠1 =∠2,∠B =∠C ,求证:AB ∥CD 。