2014人教A版高中数学必修三2.2.2《用样本的数字特征估计总体的数字特征》教案设计
- 格式:doc
- 大小:387.51 KB
- 文档页数:12
高中数学必修三学案:2.2.2用样本的数字特征估计总体的数字特征学习目标1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
2.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
3.会用样本的基本数字特征估计总体的基本数字特征。
学习过程一、课前准备1.预习众数、中位数、平均数的概念。
2.标准差、方差的概念。
(1).数据的离散程度可用极差、 、 来描述.样本方差描述了一组数据围绕平均数波动的大小.一般地,设样本的数据为123,,,n x x x x ,样本的平均数为x ,则定义 2s = ,2s 表示方差。
(2).为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根 s = ,s 表示样本标准差。
不要漏写单位。
3.如何从频率分布直方图中估计众数、中位数、平均数呢?①众数: 。
②中位数: 。
③平均数: 。
二、新课导学※ 探索新知新知1:众数、中位数、平均数(1)众数:一组数据中重复出现次数最多的数称为这组数的众数.(2)中位数:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数称为这组数据的中位数.① 当数据个数为奇数时,中位数是按从小到大的顺序排列中间的那个数.②当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的两个数的平均数.(3)平均数:如果有n 个数123,,,n x x x x ,那么nx x x n +++ 21叫这n 个数的平均数. 新知2:标准差、方差1.标准差考察样本数据的分散程度的大小,最常用的统计量是标准差。
标准差是样本数据到平均数的一种平均距离,一般用s 表示。
样本数据1,2,,n x x x 的标准差的算法:① 算出样本数据的平均数x 。
② 算出每个样本数据与样本(1,2,)i x x i n -=③ 算出②中(1,2,)i x x i n -=的平方。
④ 算出③中n 个平方数的平均数,即为样本方差。
2.2.2 用样本的数字特征估计总体的数字特征
整体设计
教学分析
教科书结合实例展示了频率分布的众数、中位数和平均数.对于众数、中位数和平均数的概念,重点放在比较它们的特点,以及它们的适用场合上,使学生能够发现,在日常生活中某些人通过混用这些(描述平均位置的)统计术语进行误导.另一方面,教科书通过思考栏目让学生注意到,直接通过样本计算所得到的中位数与通过频率直方图估计得到的中位数不同.在得到这个结论后,教师可以举一反三,使学生思考对于众数和平均数,是否也有类似的结论.进一步,可以解释对总体众数、总体中位数和总体平均数的两种不同估计方法的特点.在知道样本数据的具体数值时,通常通过样本计算中位数、平均值和众数,并用它们估计总体的中位数、均值和众数.但有时我们得到的数据是整理过的数据,比如在媒体中见到的频数表或频率表,用教科书中的方法也可以得到总体的中位数、均值和众数的估计.
教科书通过几个现实生活的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.教科书通过例题向学生展示如何用样本数字特征解决实际问题,通过阅读与思考栏目“生产过程中的质量控制图”,让学生进一步体会分布的数字特征在实际中的应用.
三维目标
1.能利用频率分布直方图估计总体的众数、中位数、平均数;能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养学生“实事求是”的科学态度和严谨的工作作风.
2.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.
3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.
重点难点
教学重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.
教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.
课时安排
2课时
教学过程
第1课时众数、中位数、平均数
导入新课
思路1
在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员:7,8,6,8,6,5,8,10,7,4;
乙运动员:9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究.——用样本的数字特征估计总体的数字特征.(板书课题)
思路2
在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.
推进新课
新知探究
提出问题
(1)什么是众数、中位数、平均数?
(1)如何绘制频率分布直方图?
(3)如何从频率分布直方图中估计众数、中位数、平均数?
活动:那么学生回忆初中所学的一些统计知识,思考后展开讨论,教师提示引导.
讨论结果:
(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息. (2)画频率分布直方图的一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.
(3)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25 t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25 t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.
请大家翻回到课本看看原来抽样的数据,有没有 2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)
分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.
提问:那么如何从频率分布直方图中估计中位数呢?
分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.
思考:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)
课本显示,大部分居民的月均用水量在中部(2.02 t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.
思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)
对极端值不敏感有利的例子:考察课本中表21中的数据,如果把最后一个数据错写成22,并不会对样本中位数产生影响.也就是说对极端数据不敏感的方法能够有效地预防错误数据的影响,而在实际应用中,人为操作的失误经常造成错误数据.
对极端值不敏感有弊的例子:某人具有初级计算机专业技术水平,想找一份收入好的工作,这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其原因是中位数对极小的数据不敏感.这里更好的方法是同时用平均工资和中位数来作为参考指标,选择平均工资较高且中位数较大的公司就业.对极端值不敏感的方法,不能反映数据中的极端情况.
同样的,可以从频率分布直方图中估计平均数,上图就显示了居民用水的平均数,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.由估计可知,居民的月均用水量的平均值为2.02 t.
显示了居民月均用水量的平均数,它是频率分布直方图的“重心”.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.从图上可以看出,用水量最多的几个居民对平均数影响较大,这是因为他们的月均用水量与平均数相差太多了.
利用频率分布直方图估计众数、中位数、平均数:
估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点) 估计中位数:中位数把频率分布直方图分成左右两边面积相等.
估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.
应用示例
思路1
例1 (1)若M 个数的平均数是X,N 个数的平均数是Y,则这M+N 个数的平均数是___________;
(2)如果两组数x 1,x 2,…,x n 和y 1,y 2,…,y n 的样本平均数分别是x 和y,那么一组数x 1+y 1,x 2+y 2,…,x n +y n 的平均数是___________.
活动:学生思考或交流,教师提示,根据平均数的定义得到结论.
解:(1)
N
M NY MX ++; (2)2y x +. 例2 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.
甲班:
112 86 106 84 100 105 98 102 94 107
87 112 94 94 99 90 120 98 95 119
108 100 96 115 111 104 95 108 111 105。