比和比例及百分数
- 格式:doc
- 大小:133.00 KB
- 文档页数:12
学科教师辅导讲义
运用比的基本性质,可以化简比
最简整数比:最简整数比是指比的前项和后项都是整数,且它们互素 (3)连比以及三连比的性质
(1)如果 k n m c b a k n c b n m b a ::::,::,::===那么 (2)如果k
c k b k a ck bk ak c b a k ::::::,0=
=≠那么 3.比例的意义:表示两个比相等的式子叫比例.
组成比例的四个数都不能是0. (1) 比例的基本性质
在比例中,两个内项和乘积,等于两个外项的乘积 例如:180∶3=240∶4 两个内项相乘:3×240=720 两个外项相乘:180×4=720
这两个乘积有相等的关系,如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,积也有这种关系,
(2) 如何判断两个比能否成比例
根据比例的意义和性质可以判断两个比能否组成比例
(3)解比例
求比例中的未知数叫做解比例
根据比例的基本性质,可以解比例
解比例后,检查是否正确的几种方法
①将x值代入原比例式中,看两个比的比值是否相等,比值相等,说明计算正确.
②将x值代入比例式中,看两个外项积是否等于两个内项积,如果两个积相等,说明计算准确.
③将x值代入原比例式中,写成分数形式,然后两个分数相除,商是否等于1,如果商是1,说明计算准确.
4. 比和比例的联系与区别
比和比例既有联系,又有区别
联系:比和比例有密切的联系,比例是由两个相等的比组成的,如果两个比相等,那么这两个比就可以组成比例,成比例的两个比,比值一定相等.例如
区别:比表示两个数相除,有两项:
比例是一个等式,表示两个比相等,有四项.
5. 求比值和化简比。
百分数与比例的运算定律在数学中,我们经常会遇到百分数与比例的运算。
百分数与比例是描述数量关系的常用方式,它们在实际生活和各个学科中都扮演着重要的角色。
在进行百分数与比例的运算时,我们需要了解它们的运算定律,以便正确地解决问题。
本文将介绍百分数与比例的运算定律,并通过例子来解析实际运用。
一、百分数的运算定律百分数是以百分号(%)表示的数,它表示某个数相对于100的比例关系。
在百分数的运算中,我们常常会遇到百分数的增加、减少、乘以和除以。
下面分别介绍这些运算定律。
1. 百分数的增加与减少当我们需要对某个数进行百分数的增加或减少时,可以通过以下公式得到结果:增加后的数 = 原数 ×(1 + 百分数)减少后的数 = 原数 ×(1 - 百分数)例如,如果一个商品的原价为100元,现在打九折出售,即打个90%的折扣,那么最后的售价计算如下:售价 = 100 ×(1 - 0.1)= 100 × 0.9 = 90元同样地,如果我们要对某个数进行百分数的增加,可以按照类似的方法进行计算。
2. 百分数的乘法当我们需要将某个数乘以一个百分数时,可以按照以下公式进行计算:结果 = 原数 ×百分数例如,一个商品的成本价为100元,现在要以150%的价格出售,那么售价计算如下:售价 = 100 × 1.5 = 150元这个公式也可以用于计算百分数的利润、增长率等。
3. 百分数的除法当我们需要将某个数除以一个百分数时,可以按照以下公式进行计算:结果 = 原数 ÷百分数例如,如果一个物品的收益率为30%,我们需要计算出它的总价值,计算公式如下:总价值 = 原价 ÷ 0.3二、比例的运算定律比例是用来表示两个或多个数之间的关系。
在比例的运算中,常见的问题包括比例的加减、乘除以及比例之间的转换。
下面分别介绍这些运算定律。
1. 比例的加减当我们需要对两个比例进行加减运算时,可以按照以下公式进行计算:结果 = 原比例1 ±原比例2例如,某个班级男生女生的比例为3:5,另一个班级男生女生的比例为2:5,我们希望计算两个班级总体男生女生的比例。
百分数与比例的计算在我们的日常生活和学习中,百分数与比例的计算无处不在。
无论是在购物时计算折扣,还是在分析数据时了解占比,或者是在规划资源时分配比例,都需要我们熟练掌握这两个重要的数学概念和计算方法。
百分数,简单来说,就是表示一个数是另一个数的百分之几。
比如说,如果说班级里有 60%的同学喜欢数学,那意思就是喜欢数学的同学人数占全班同学人数的 60/100。
百分数的计算通常涉及到将小数或者分数转化为百分数,以及百分数的四则运算。
要将小数转化为百分数,只需要将小数乘以 100,然后在后面加上百分号“%”。
例如,025 转化为百分数就是 25%。
如果是分数,先将分数化为小数(用分子除以分母),然后再按照小数转化为百分数的方法进行。
比如 3/4,3÷4 = 075,化为百分数就是 75%。
百分数的加减法,要先把百分数化为小数或者分数,然后再进行计算。
比如计算 25% + 30%,可以先化为 025 + 03 = 055,也就是 55%。
百分数的乘除法相对来说更常见一些。
例如,一件商品原价100 元,现在打 8 折出售,也就是价格变为原价的 80%,那么现在的价格就是100×80% = 80 元。
再比如,一个班级有 50 名学生,其中 40%是女生,那么女生的人数就是 50×40% = 20 人。
比例,则是指两个比相等的式子。
比如 2:3 = 4:6,这就是一个比例。
比例的计算主要涉及到比例的性质和比例的求解。
比例的基本性质是:在比例中,两个内项的积等于两个外项的积。
利用这个性质,我们可以求解比例中的未知数。
比如,已知2:3 =x:6,根据比例的性质,3x = 2×6,解得 x = 4。
在实际生活中,比例的应用也非常广泛。
比如说在地图上,比例尺就是一个常见的比例应用。
比如地图上的比例尺是 1:10000,这意味着地图上的 1 厘米代表实际距离的 10000 厘米,也就是 100 米。
小升初毕业复习分数,比与比例题型汇总独家原创最新最全命中分数基础题题型一:单位一不变1、笑笑读一本故事书,第一天读了全书的40%,第二天读了全书的41,两天共读了52页,这本故事书有多少页?2、工程队修一条路,第一天修了全长的51,第二天修了全长的25%,还剩下154千米没修,这条路全长多少千米?3、水泥厂仓库里有水泥500吨,甲车队一次可以运走总数的12%,乙车队一次可以运走总数 20%。
如果让两个车队一起来运,一次共运走多少吨水泥?题型二:单位一改变4、一本小说,小明第一天看了全书的31,第二天看了剩下的32,还剩下全书的几分之几没看?5、张明看一本120页的故事书,第一天看了全书的41,第二天看了余下的52,第三天应从第几页看起?6、修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?题型三:比一个数几分之几多(少)几7、某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了,增加或减少了百分之几?8、一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变,升高、降低了百分之几?9、小李看了一本书,第一天看了全书的121还少5页,第二天看了全书的151还多3页,还剩206页,这本书共有多少页?10、一筐鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮子里还剩20个,篮子里原来有鸡蛋多少个?题型四:甲比乙多(少)几分之几11、(2017一中系)甲数比乙数多54,乙数比甲数少()() 12、水结成冰时,冰的体积比水增加 111,当冰化成水时,水的体积比冰减少题型五:总量为不变量。
13、某校六年级有甲、乙两个班,甲班人数是乙班的75,如果从乙班调3人到甲班,甲班人数是乙班人数的54,甲、乙两班原来有多少人?14、有两筐梨。
乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。
比例与百分数应用题比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.(一)两个数的比实际上就是两个数的商.两个数a与b(b≠0)的比可记为:因此,除法、分数、比例实质上是一回事.我们在实际应用当中可以选择不同的形式.(二)两个数的比叫做单比,两个以上的数的比叫做连比,如a∶b∶c(b≠0,c≠0),我们有时需要把几个单比化成连比.连比也满足比例的基本性质,即:a∶b∶c=na∶nb∶nc(n≠0)(三)如果两个变数y和x的比值(也就是商)一定,那么称y与x成正比例关系.(四)如果两个变数x和y的乘积一定,那么称x与y成反比例关系.例1.去年某地区参加数学竞赛的学生中,少数民族的同学占五分之一.今年全区参赛的学生增加40%,这样,少数民族的同学就占总人数的四分之一,与去年相比较,今年少数民族学生参赛人数增加了百分之几?[答疑编号5721150101]【答案】75%【解答】关键在于设好单位“1”,如读到“少数民族的同学占五分之一”的时候,就要想到“五分之一”是谁的五分之一.去年:总人数“1”,少数民族,今年,总人数:1今年,少数民族:增加:总结:单位“1”是分数、百分数应用题中最关键的一个要素.例2.手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒.8点整将手表对准,12点整手表显示的时间是几点几分几秒?[答疑编号5721150102]【答案】11点59分56秒【解答】按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒.所以在标准时间的一小时中手表走3660÷3600×3540=3599(秒),即手表每小时慢1秒,所以12点时手表显示的时间是11点59分56秒.例3.甲、乙、丙三人同去商场购物,甲花钱数的等于乙花钱数的,乙花钱数的等于丙花钱数的,结果丙比甲多花钱93元,问他们三人共花了多少钱?[答疑编号5721150103]【答案】429(元)【解答】根据比例与乘法的关系,甲数×=乙数×,即:甲数∶乙数=,乙数×=丙数×,即:乙数∶丙数=,连比后是甲∶乙∶丙=2×16∶3×16∶3×21=32∶48∶63.三人共花了(元).例4.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖果中有奶糖多少块?[答疑编号5721150104]【答案】9(块)【解答】这样做正确吗:糖数为总糖数变化了!不能作为单位1,应选奶糖数.以奶糖为单位1,则可列式得奶糖有块.总结:找到条件中隐含的基准量,选取的单位1应该是不变的.相关变形:1.奶糖占25%,放入16块奶糖,奶糖占45%,问原有奶糖多少块?(以水果糖数为单位1,答案为11)2.奶糖占45%,将其中16块奶糖换为水果糖,奶糖占25%,问原有奶糖多少块?(以糖数和为单位1,答案为36)3.奶糖占45%,同时拿出16块奶糖和16块水果糖,奶糖占25%,问原有奶糖多少块?(以糖数差为单位1,答案为18)例5.甲乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5.那么两包糖重的总和是多少?分析:从甲包取出部分放入乙包,总重量不变.这样我们就可以将总重量看作单位“1”,从拿出10克前后所占总重量的比例变化求得答案.[答疑编号5721150105]【答案】克【解答】甲包原来重量是总重量的,拿出10克后,甲包重量是总重量的,相差,所以,总重量=.答:两包糖重的总和是克.例6.一个真分数,如果分子、分母同时加上11,约分后等于;如果分子、分母同时加上23,约分后等于.那么分子、分母加上多少时约分等于.[答疑编号5721150106]【答案】59【解答】设分子分母的差为N,则分子+11=,分子+23=.所以N=(23-11),那么原来分子为:72,要使约分后变为,就要让分子等于N,所以分子分母都加上59.例7.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知:①第一包糖的粒数是第二包糖的;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的两倍.当两包糖合在一起时,巧克力糖占28%,那么水果糖所占百分比等于多少?[答疑编号5721150107][答疑编号5721150201]解:由题意知,苹果占四种水果总重量的,桔子占总重量的,梨子占总重量的,故菠萝占总重量的1---=,故总重量为56÷=168,本题答案为168.例2.某个小学对五六年级的学生进行体育测试,五年级400人中测试成绩为优秀的有46%,六年级480人中测试成绩为优秀的有35%,那么两个年级总共的优秀率是多少?[答疑编号5721150202]【解答】总人数:400+480=880;优秀的人数:400×46%+480×35%=184+168=352优秀率:352÷880×100%=40%变化1:1.如果五年级有800人,六年级有960人,那么总共的优秀率是多少呢?[答疑编号5721150203]【答案】40%【解答】2.如果五年级有4000人,六年级有4800人,那么总共的优秀率是多少呢?[答疑编号5721150204]【答案】40%【解答】总结:当两部分的优秀率一定时,混合之后的优秀率只与两部分的人数有关变化2:如果五年级优秀率为46%,六年级优秀率为34%,(1)两个年级的人数比是1:1,那么合并以后总的优秀率是多少?[答疑编号5721150205]【答案】40%【解答】(2)两个年级的人数比是1:2,那么合并以后总的优秀率是多少?[答疑编号5721150206]【答案】38%【解答】(3)两个年级的人数比是1:3,那么合并以后总的优秀率是多少?[答疑编号5721150207]【答案】37%【解答】总结:混合后的优秀率,分别与混合之前两部分优秀率作差,两个差之比是人数的反比.变化3:1.五年级400人,优秀率为40%,六年级优秀率35%,合起来优秀率是37%,那么六年级有多少人?[答疑编号5721150208]【答案】600人【解答】六年级人数:五年级人数=(40%-37%):(37%-35%)=3:2;由于五年级400人,所有,六年级是600人2.五年级400人,六年级500人,五年级的优秀率是六年级的3倍,合起来优秀率是34%,那么五年级优秀率是多少?[答疑编号5721150209]【答案】54%【解答】五、六年级的人数比是4:5,五、六年级的百分率差的比是5:4,,五年级的优秀率是18%×3=54%例3.幼儿园大班和中班共有32名男生,18名女生.已知大班当中男生人数和女生人数之比为5:3,中班当中男生人数和女生人数之比为2:1,那么大班中有多少名女生?[答疑编号5721150210]【答案】12名【解答】方法一(方程)设大班有5x名男生,3x名女生,则中班有(18-3x)名女生,于是有2(18-3x)名男生.由男生共有32名,可列方程得5x+2(18-3x)=32解得x=4,于是大班有4′3=12名女生.答:大班有12名女生.方法二(比例的性质)大班当中男生占,中班当中男生占,合起来男生占.所以大班与中班的人数之比是,因此大班共有人,其中女生有名.例4.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知:①第一包糖的粒数是第二包糖的;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的两倍.当两包糖合在一起时,巧克力糖占28%,那么水果糖所占百分比等于多少?[答疑编号5721150211]【答案】44%【解答】由①第一包糖的粒数是第二包糖的知道,第一包数量:第二包数量=2:3.第一包占总数的,第二包占总数的;由③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的两倍知道,第一包糖中巧克力糖占总数的比:第二包糖中巧克力糖占总数的比=:=4:3因为当两包糖合在一起时,巧克力糖占28%,所以,第一包糖中巧克力糖占总数的比.第一包糖中巧克力糖在第一包糖中所占的百分比=所以,水果糖在第一包糖中所占的百分比=100%-25%-40%=35%,水果糖在总数中所占的比.答:当两包糖合在一起时,水果糖所占百分比等于44%.例5.某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?[答疑编号5721150212]【答案】24%【解答】1.甲、乙两校获一等奖的人数相等,且甲校获一奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6,甲、乙两校获奖总人数的比=6:5;甲校占两校获奖总数的比为6÷(6+5)=,乙校占两校获奖总数的;2.甲校获三等奖的人数占该校获奖人数的50%,占两校获奖总人数的;3.甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%,且甲校获二等奖的人数是乙校获二等奖人数的4.5倍。
专题二分数和百分数、比和比例应用题考点解析分数和百分数、比和比例应用题与整数和小数应用题一样,都属于根底型应用题,也是融入情景应用题中考查。
但是分数和百分数、比和比例应用题覆盖面更广、灵活度更高,学习和复习难度比整数和小数应用题大。
它一般与工程问题、浓度问题、经济问题等综合考查,形式多样,但万变不离其宗,掌握好解题步骤,理清思路,便能迎刃而解。
学习难度:★★★考点频率:★★★★精讲精练1 求一个数是另一个数的几分之几〔或百分之几〕是多少的应用题●根本关系式对应量标准量=几分之几〔或百分之几〕例①〔长沙长雅中学分班老〕某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐。
每名学生至少选择一种,也可以多项选择。
统计结果显示:70%的学生选择苹果,40%的学生选择香蕉,30%的学生选择梨。
那么三种水果都选的学生数最多占学生总数的百分之几?2求一个数的几分之几〔或百分之几〕是多少的应用题●根本关系式标准量 ×几分之几〔或百分之几〕 = 对应量例②〔广州培正中学分班卷〕今有桃95个,分给甲、乙两班学生,甲班分到的桃有29是坏的,其余皆好;乙班分到的桃有316是坏的,其余皆好。
甲、乙两班分到的好桃共有多少个?3一个数的几分之几〔或百分之几〕是多少,求这个数的应用题●根本关系式对应量 ÷几分之几〔或百分之几〕 = 标准量例③▶〔华罗庚全杯〕某种商品,如果减去定价的5%卖出,可得6250元的利润;如果减去定价的25%卖出,就会亏损1750元。
这种商品的购入价是多少元?4 现实生活中的百分数应用题●常见的百分率计算公式合格率=合格产品数÷产品总数×100%出勤率=实际出勤人数÷应出勤人数×100%成活率=成活数量÷试验数量×100%例④〔南京师大附小毕业卷〕一次考试共有5道试题,做对第1、2、3、4、5题的分别占参加考试人数的95%,80%,79%,74%,85%,如果做对3道或3道以上的题为合格,那么这次考试的合格率至少是多少?5 比例尺应用题●图上距离、实际距离和比例尺三者之间的关系式图上距离:实际距离 = 比例尺三个相关的量中,知道任意两个量,就可以根据关系式求出另一个量。
比和比例的知识点比和比例是数学中的重要概念,广泛应用于各个领域。
比是指同类事物在数量上的相对大小关系,而比例是指两个或多个比相等的关系。
比和比例的概念在日常生活中也随处可见,例如购物时的折扣比、食谱中的配料比例等等。
本文将详细介绍比和比例的相关知识点,帮助读者更好地理解和应用这些概念。
一、比的概念比是指同类事物在数量上的相对大小关系。
比可以用分数、小数或百分数来表示。
比的常见形式有以下几种:1. 分数形式:将比的两个数值用分数的形式表示,如2/3、5/8等。
2. 小数形式:将比的两个数值用小数的形式表示,如0.5、0.75等。
3. 百分数形式:将比的两个数值用百分数的形式表示,如50%、75%等。
比的大小可以通过以下几种方式进行比较:1. 同分母比较:比较两个比的分子,分母相同的情况下,分子越大,比就越大。
2. 同分子比较:比较两个比的分母,分子相同的情况下,分母越小,比就越大。
3. 交叉相乘比较:将两个比的分子分别相乘,然后比较所得乘积的大小,乘积越大,比就越大。
二、比例的概念比例是指两个或多个比相等的关系。
比例可以用分数、小数或百分数来表示。
比例的常见形式有以下几种:1. 分数形式:用分数的形式表示比例关系,如1:2可以写成1/2。
2. 小数形式:用小数的形式表示比例关系,如1:2可以写成0.5。
3. 百分数形式:用百分数的形式表示比例关系,如1:2可以写成50%。
比例的特点:1. 反比例:当两个量成反比时,它们的乘积保持不变。
例如,一个物体的速度和所用时间成反比,速度越快,所用时间越短。
2. 直比例:当两个量成直比时,它们的比值保持不变。
例如,一个物体的速度和所需的力成直比,力越大,速度越快。
比例的应用:比例在实际生活中有着广泛的应用,以下举几个例子:1. 食谱中的配料比例:烹饪中常常需要按照一定的比例来添加各种食材,以保证菜肴的口感和味道。
2. 地图的比例尺:地图上的比例尺可以帮助我们了解地理位置的远近关系,从而更好地规划旅行路线。
比和比例(沪教版六年级第三章知识点)比的概念:a,b 是两个数或者两个同类的量,为了把b 和a 相比较,将a 和b 相除,叫做a和b 的比,记作a:b 或写成b a,其中b ≠0;读作a 比b 或a 与b 的比。
比值:在a :b 中,a 叫做比的前项,b 叫做比的后项,前项a 除以后项b 所得的商叫做比值。
(比值是一个数,可以用分数、小数或整数表示。
)比和比值的区别:从意义上看,比表示两个数的运算,而比值是结果;从写法上看,比必须有前、后项,且都是数,可以是整数、小数或分数;而比值本身就是一个数,可以是整数、小数或分数,若写成分数一定要是最简分数。
用比的方法,可以知道a 是b 的几倍(几分之几)注意:1、比表示两个量的关系,比值是数值,不含比号。
(注意区分比和比值)2、求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位。
3、比是有序的,比的前项、后项不能颠倒。
4、比值可以是整数、小数,也可以是分数。
5、如果把比写成分数形式,在约分时,分母中出现“1”表示比的后项,不可省略不写。
6、小数比化为最简整数比,先把比的前项和后项化成整数,再来化简。
比、分数和除法三者之间的关系是:即:比的前项相当于分数的分子和除法中的被除数;比的后项相当于分数的分母和除法中的除数; 比值相当于分数的分数值和除法中的商。
除法商不变性质:被除数和除数同时乘以或者除以相同的数(0除外)它们的商不变。
分数的基本性质:分数的分子与分母都乘以或者都除以同一个不为零的数,所得的分数与原分数的大小相等。
比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),比值不变。
可以化为最简整数比。
注意:1、整数比的化简就是用比的前项和后项同时除以它们的最大公因数,直至两个前项和后项互素;2、分数比的化简可以把比式看成除式,直接进行分数除法运算(如果用除法化简的结果是整数,那么分母1不能省略,把商化成比的形式);3、小数比的化简先把比的前项和后项化成整数,再来化简;4、带有单位的比的化简,先把单位统一后在化简。